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This paper presents a recognition method for human daily life action. The system deals
with actions related to regular human activity such as walking or lying down. The main
features of the proposed method are: 1) simultaneous recognition, 2) expressing unclarity
in human recognition, 3) defining similarity between two motions by utilizing kernel func-
tions derived from expressions of action based on human knowledge, 4) robust learning
capability based on support vector machine. Comparison with neural networks optimized
by back propagation algorithm and decision trees generated by C4.5 proves that the ac-
curacy of recognition in the proposed method is superior to the others. Recognizing daily
life action robustly is expected to ensure smooth communication between humans and
robots and to enhance support functionality in intelligent systems.

Keywords: Action Recognition; Learning; Support Vector Machine; Motion Capture File.

1. Introduction

In the future robots, including humanoids, are expected to support humans in every-
day tasks and activities in the future. To provide assistance in various applications,
it will be important for robots to communicate effectively with humans. Recogniz-
ing and understanding human actions has the potential to contribute to this com-
munication ability along with many other applications, such as human computer
interaction and search engines for multi media databases.

In most research works, the target actions are sign gestures. For example, Starner
et al. made a system that recognizes American sign language! and Wilson et al.?
implemented a system that recognizes user’s gestures. Regular actions, such as
walking and sitting will be important as the target actions to recognize in support
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systems for everyday life. We have designed and implemented a recognition system
for such regular actions®. The details of these features are described in section 2.
Because this system has lacked learning ability, in other words, the performance
of the system must be tuned by hand, there have been problems with extensibil-
ity and versatility of the system. The main contribution of this paper is to solve
these problems through the design and implement of a recognition algorithm whose
performance can be tuned by a learning process using sample motion data.

2. Recognition of Human Daily Life Action
2.1. Primaitive characteristics in our recognition method

The proposed recognition system in this paper contains the characteristics of our
former recognition system? described below.

2.1.1. Simultaneous recognition

It is preferable that a recognition system for human daily life action be able to
output multiple action names simultaneously as the recognition result. For example,
humans can readily recognize the two actions involved when observing someone
waving his or her hand while walking.

In order for the output of a recognition system to be closer to human recognition,
we should design the system to have this ability. Specifically, a recognition system
should be designed to be able to output multiple action names at the same time.
We designed our system to have this ability of outputting multiple action names
simultaneously.

2.1.2. Unclarity in recognition

Humans can not always could not decide, with an absolute certainty, on whether
some actions really occur or not when watching someone acting. For instance, the
decision as to whether a human is lying or not made by a human may have a degree
of uncertainty when observing someone getting up from lying to sitting. In order for
the output of a recognition system to be closer to human recognition, the system
should be designed to be able to output “fuzzy” recognition results. We designed
our system so it can output not only decisive but also unclear results.

2.1.3. Utilizing expressions of actions hand-written by human

Feature selection and extraction is considered as one of the most important elements
in action recognition, because the specific features of each action such as the position
and the pose of the body region vary widely. For example, the forward motion of
hips could be one of the features of walking, while head direction is considered as
an irrelevant and unnecessary feature of sitting.
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Humans can intuitively extract specific important features of each action. In
other words, humans can easily express an action by interpreting the motion or the
pose of body parts. Thus we pay attention to these expressions. Consequently, our
system uses only relevant features of the target action derived from the expressions.

2.2. C'riterion of Performance

The performance of an action recognition system should be evaluated along with
many other pattern recognition applications such as OCR, face recognition and
speech recognition. The main criterion of the evaluation is the accuracy of recog-
nition results. The correctness of recognition result is basically based on human
judgment.

While humans can intuitively recognize human motion adequately and assign
several action names, there are several way of evaluating the accuracy of recognition
results. Because of the variety of actions and the time segmentation problem, it is
hard to evaluate properly the accuracy of a recognition result.

Thus, in order for us to evaluate the performance of a recognition system, the
correctness of the recognition result by humans is defined as follows. On observing
someone acting when the person is performing several actions simultaneously, refer-
ence data of recognition result is labeled in synchronized with the input motion for
all the candidate action names. Thus, as the performance evaluation of the system,
the performance evaluation for each candidate action name is executed separately.
In other words, the correctness of recognition results is generated by humans from
moment to moment with someone’s motion as decision results whether one specific
action occurs or not.

The recognition algorithm we implemented in the former recognition system?®
fundamentally uses fuzzy logic, which is extended to handle time series problems.
This method has the advantage that the system can be implemented intuitively.
However, the ability of learning process is an essential factor in the action recogni-
tion system for the following two reasons. The first reason is that there is difficulty
in tuning the performance by hand. The second is that there is a variety of action
names we have to target.

3. Recognition System Implementation
3.1. Input and output

While many other recognition systems* use a sequential series of images as the input
to the systems, our system uses a motion capture file that contains human posture,
which is measured by some optical or mechanical motion capturing system. This
enables the system to obtain information on motion easily and robustly, and we can
concentrate on designing the recognition process itself.

The output of our system contains some action names in synchronized with a
frame of the input, so that the problem of the segmentation of the time direction
is not treated in this paper.
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The format of the file is BVH?, a de-facto standard motion file format by Bio-
vision Corporation. BVH files contain the structure of a human as a linked joint
model(figure) and the motion of the figure per frame. Fig. 1 depicts an example of
the time-series (i.e. sequence) of input and output of our recognition system.

® o [17]18[19) @ @ @ [41]42[43]44] ® ® @[84]85[86[87[88][90[91]92[93[94]95[96] ® ® ® frames t

Input
Motion

Standing  Standing Standing Standing  Standing Recognition
Walking Turn Turn  Result

Fig. 1. This figure shows a time-series of the input and output of our recognition system.

The figure used in the proposed system is shown in Fig. 2. The hips are defined
as the root joint of the figure and has 6 degrees of freedom (DOF). As for the
torso, neck, legs and arms, each joint has 3 DOF. Therefore, the figure has total of
36 DOF. BVH files can be generated from the data captured by a magnetic mo-
tion capturing system (MotionStar, Ascension Technology) in which an actor wears
magnetic sensors fitted to the corresponding joints. The body motion is measured

every 33 msec.

® Joint
B EndSite e To Main Unit
X Sensor I of

Motion Star

Fig. 2. Human as linked joint model and an actor with magnetic sensors are shown

3.2. Recognition system configuration

Fig. 3 shows the processing flow and the structure of our system. In order to realize
the simultaneous recognition, the system contains multiple recognition processes,
each of which is assigned to the recognition of one action. This primitive recognition
process for one action is called an “Action Element Recognizer (AER)”.
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The process of each AER runs in parallel with the other AERs. For example,
AERs recognizing such actions as walking, sitting, and other actions run in parallel.

The system collects the results of all the processes, and outputs the results of
each recognition process per frame. New action can be recognized simply by adding
that recognition process to the system.

As noted above, an AER recognizes one assigned action. In practice, an AER
recognizing walking discriminates whether someone is walking or not walking. Thus,
the result of one AER process is independent of the others, and the total perfor-
mance of the system relies on the performance of each AER.

( GetUp Y. \
Diduph DS : \‘xpo
BN AN Standing and
. Y AR
H \ Standing Look Down
1
E — Collector |[=f= Output
1 I R
\ ’ S
\ /! neutral”
i S
Input:~s<is® °
Time Series of - [ represents Action
Human Motion \ Walking Y Element Recognizej

Fig. 3. Configuration of recognition system

3.3. AER configuration

A time series of human motion is the input of each AER. An AER outputs the
recognition result whether the assigned action occurs or not per frame in synchro-
nized with the input motion. An AER in our former system outputs a matching
value with range 0 to 1 by utilizing fuzzy logic, so that the output of the AER
gives the system the unclarity associated with humans. But this causes difficulties
in preparing referential recognition results of humans.

Hence, in the newly proposed AER, the output consists of multiple classes that
represent not only decisive but also inexplicit result, so that humans can easily make
the databases which contain humans recognition results. Specifically, the number
of the categories is three. One is the category named “yes” which represents that
the assigned action clearly occurs. Another is named “no” which represents that
the opposite meaning of “yes”. The last one represents the unclarity of recognition
result called “neutral”. Thus, the proposed AER is a multi-class (three classes)
classifier.

In general, the framework of the multi-class classifier is summarized as following
three types. One of the methods consists of “one vs. one” classifier. This requires
three binary classifiers. Another one is built as “one vs. the other” classifier. This
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method also requires three binary classifiers. The last one is categorized into K
nearest neighbors method.

In spite of the above technique, the proposed AER requires two binary classifiers
and outputs the integrated result of two binary values. Specifically, the one binary
classifier judges whether “yes” or non-“yes”, the other judges whether “no” or
non-“no”. The reason that we have adopted this composition is that the “neutral”
category rarely happens for some actions. In other words, humans can explicitly
discriminate motion as sitting down when watching someone standing then sitting.

3.3.1. Binary classifier in AER

In brief, each of two binary classifiers in an AER recognizes input human movement
by utilizing some templates that represent a time series of human motions acquired
in advance. In other words, the binary classifier utilizes a template matching tech-
nique. Specifically, the output is calculated based on the similarities between the
input motion and the templates with humans reference.

The system utilizes the expressions of action described by humans, in order that
the AER can take full advantage of the excellent power of feature selection and
extraction by humans. More specifically, the system selects the input motion and
transforms it into adequate features for AER.

The expressions of action hand-written by humans are divided into three cate-
gories in terms of the manner of conversion from the input motion to the features.
The three categories are listed as follows.

e Status
For example, the phrase “the position of the head is high” is categorized
into this type. In this type of expression, the input motion is normalized by
some reference value, such as body height. Finally, this normalized value
is converted to the input feature with range from 0 to 1 by some scaling
factors. This process makes the system easy to deal with variant types of
the input motion, such as angle, velocity and height.

e Transition
This represents the transition of the status of some motion with time. For
example, the phrase “the height of the head goes down’ is categorized into
this. In this type, after the input motion is converted to the normalized
value in the same manner as Status, the converted value for a certain
period is selected as the input feature. For example, 13 samples of height of
head, which are sampled from a certain time during 2 seconds at 6 Hertz,
are selected as the input feature.

e Iteration
This represents the repetition of some event that occurs in input motion.
For example, the phrase “each foot contacting on the ground’ is categorized
into this way. This process converts input motion to the input feature by
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the frequency domain in order to strengthen the iteration of motion.

In general, a recognition system changes the recognition algorithm by consider-
ing the difference in the treatment of the input motion in terms of time series. The
several categories of expressions are generated by the difference in the treatment
of the input motion in terms of time series. Thus, there is a the problem with how
the way of recognition differs with the type of the expressions arises. Specifically,
the different types of the expressions cause the corresponding template matching
method. In the worst case, the way of the learning process is different because of
the types of AER.

In order to reduce and eliminate such differences caused by several types of
expressions and to unify the method of recognition and learning in all the AERs,
the binary classifier in the proposed AER utilizes the kernel technique®. The kernel
serves as the function that mathematically calculates similarity between one sample
and another sample. This has drawn attention in the field of statistical machine
learning community. We set the binary classifier in the proposed AER as the kernel
classifier, and the kernel technique enables the binary classifier to deal with the
three types of expressions uniformly.

3.3.2. Binary classifier as kernel classifier

From here, a kernel classifier is introduced as the binary classifier in the AER.
We denote by x the time series of input motion. D = {z;,y;}!_, are the input-
output pairs in total [ frames, where x; represents i th frame sample motion and its
corresponding reference binary (e.g. “yes” or non-"yes”) signal by y;. We can write
by «a; the coefficients whose value is proportional to the importance of the templates.
The similarity value between the input motion and one template is represented by
Kernel K (x;, ). By utilizing these notations, the mapping between the input and
the output of the binary classifier in the AER f can be written as

f(x) = sgn (z: aiyi K (i, ) + b). (1)

The parameter b depicts the bias value and the function sgn(-) is a step function
where the relation of input-output is as follows.

+1ift>0
sgn(t) = { —1 if otherwise (2)

3.3.3. Deriving kernels: combination of kernel values per expression

The proposed method derives the kernel value in the classifier as the products of
all the kernel values corresponding to the similarity in each expression. Specifically,
the kernel value that corresponds to the similarities in j th expression Kj(-,-) can
be written as

K;(p;(2), 05 (D)), (3)
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where () denotes the selected input motion in the j th expression, and w;(+)
represents the converter from the selected input motion to the input feature.

When the numbers of the expressions in the target action is d, the kernel value
in the target action K(-,-) can be written as

d
K(zi,x) = [] Ki(pi(=), 05 (x9)). (4)

j=1

3.3.4. Ezample: deriving kernel in walking

The derivation process of the kernel value in walking is as follows. The relations
between expressions, selected motions, and the type of expressions are listed in the
Table 1. The image of the derivation process is depicted in the Fig. 4.

Table 1. Example: information for recognizing walking

Expressions Selected Motions Type of Expressions
Position of Head is High | The height of the head Status

Moving forward Forward velocity Status

Each foot contacting | Relative height between | Iteration

ground right and left legs

Relational Height
in Two Foots

: Feature Scaling or l @ ¢ Kernel Function

Transform Function for j th Description
Kernel Value
Fig. 4. Example: Derivation process of the kernel value in the binary classifier of the walking AER.
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4. Learning Process of AER
4.1. General outline of learning process

The learning process in the AER tunes the coefficients («;, b) of the binary classifiers
from the training data, that contain the input-output pairs. The things we have to
pay attention to in the learning process are listed as follows.

e Generalization ability

e Incremental (Online) learning ability

e Model selection in terms of kernel

e Computational cost of learning and recognition process

Even though there are several types of learning processes for the kernel classifier
proposed in the statistical machine learning community, such as Gaussian process’,
relevance vector machine® and Support Vector Machine (SVM)Y, SVM is utilized
as the basic learning scheme of our proposed method. This is because no kernel
classifiers except SVM can optimize their performance incrementally by utilizing
the same criterion as the batch process. In the following sections, the detailed ex-
planations of the learning process are described. Firstly, the batch SVM learning
process is introduced as the basic scheme of our learning process. Secondly the on-
line learning algorithm based on SVM is described. Finally, the kernel parameters
optimization technique which serves as the part of the model selection problems is
explained.

4.2. Learning scheme based on SVM
4.2.1. Batch learning algorithm

If some adequate motion samples with humans’ judgment which contain “yes”,
“neutral” and “no” can be acquired, the batch learning process can be executed
to optimize the weighting and the bias parameters. Specifically, this algorithm op-
timizes the weighting parameters «; and the bias parameter b from the motion
samples with humans judgment D = {z;,y;}\_; and the kernels given previously.
This utilizes the criterion so called “margin” criterion which represents the degree
of separation between one category and the other. The detailed derivation of this
algorithm is described by Vapnik!©.

The optimization algorithm in this learning process is derived from the quadratic
programming problem of weighting parameters a;, 7 = 1,...,[, and can be written
as

[
minimize : W(a) = % Z Zyiyjaiozjl((a:i, ;) — Z a; + bZaiyi

. i =0
subject to : Z il
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where the constant positive number C' penalizes the training error in the non-
separable case.

This QP problem makes the solution have a number of weighting parameters
equal to zero. Since there is a weighting parameter «; associated each of the mo-
tion templates x;, only the templates corresponding to non-zero «; (the “support
vectors” ) will influence the output of the classifier.

4.2.2. Online learning algorithm

The online learning algorithm relies on the same scheme as the batch learning
of SVM mentioned above. The online learning algorithm we use can be applied,
only if optimized binary kernel classifiers are given in advance and the additional
motion with human judgment is input. This algorithm was originally proposed by
Causwenberghs et al.'1. Tt basically uses the Karush-Kuhn-Tucker (KKT) condition
in the batch learning of SVM QP problem in order to avoid the over-fitting problems
which often occur in many other online learning algorithms. The optimal condition
used in this algorithm is denoted as follows, which is derived by KKT optimal
condition.

We define by ¢(-) the derived function of the performance function W in the Eq.

(5)

o) = 5 (©
=yif(®i) -1 (7)

Then, the relation between the weighting parameter a; and the function g(x;)
should be written as

glzi)) =9 =0if0< ;< C (8)
<0if a; =C

If we consider that the optimized binary classifier trained with data D =
{z;, yi}§=1 is given, we denote by «a; the optimal weighting parameters. Next, the
new labeled sample denoted by {x.,y.} is added to the classifier, then the value of
derived function g(x.) is calculated as the first step of the online learning. If the
value of g(x.) is equal to or less than zero, the corresponding weighting parame-
ter should be more than zero, which is derived from Eq. (8). In other words, the
additional motion should be one of the support vectors.

In the case that the additional motion must be a support vector, the iterative
process is performed as follows. The iterative process increases the value of the
coefficients . in incremental steps to keep the Eq. (8) in the previous training
data, until additional training data satisfies the Eq. (8). The change of the other
coefficients by «. growth is derived by equilibrium status based on KKT condi-
tion. The detailed information for deriving the equilibrium relations is described by
Causwenberghs et al.!!.
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4.2.3. Kernel parameters optimization

It is a fundamental premise that the kernel types and their parameters are priori
given in the learning process of any kernel classifiers, and the performance is surely
dependent on the kernel types and their parameters. SVM performs better than
other classical learning algorithms in terms of the performance for many applica-
tions. However, the performance fails to provide high accuracy when some poor
type of kernel and its parameters are set. In this paper, the kernel parameters op-
timization scheme is adopted as the part of the solution for these kind of model
selection problems.

A generalization error of a SVM can be written as the function of the parameter
0 € R%, the kernel parameters, by T7'(6). Finally, we denote by 8 the optimized
kernel parameters as

0" = arg main T(0) 9)

In order to realize the kernel optimization scheme easily and robustly, the fol-
lowing list is a summary of what needs to be considered.

e Utilizing an effective searching algorithm in the space of kernel parameters.
e Using an accurate estimator of the performance of SVM computed with a
small amount of calculation

In this paper, the gradient descent algorithm is utilized as the effective search engine.
Thus, the general outline of the kernel optimization algorithm is listed as

(1) Initialize 6 with some values.
(2) Using a batch SVM algorithm, find the optimal coefficients.
(3) Update the parameter 6 such that 7(6) is minimized.

This can be written as

aT(0)
0 —0—c¢ 10
- 50 (10)
(4) Go to step 2 or stop when the minimum of 7 appears
in balance. We can write the terminal condition
of this step as
aT(0)
< €, 11
50 (11)

where ¢ is some positive constant number.

There are several good estimators for the performance of SVM. In this research,
we adopt the “Span” technique proposed by Chapelle et al.'2. This is because the
gradient descent technique requires the derived function for kernel parameters and
coefficients, and we can explicitly write it if the estimator is based on span bound.
The property of the span bound technique has a close relationship with the Leave-
One-Out cross validation error estimation, whose computational cost is too high
but has excellent quality accuracy of estimation.
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The estimator based on the span bound is defined as

—_

l
=3 Z (apSp — 1), (12)

where ¥ is sigmoid function which is denoted as

1
U(t) = A B> 0. 1
(*) 1+ exp(—At + B)’ >0, B=20 (13)

The parameters A and B are derived with the Platt’s process'3. The variable Sp
represents the span bound of training data corresponding to p th support vector
and is defined as

Ap = Z Aig(®i), Z)\i =1,, (14)

i#p,op >0 i#p
Sy =d? = mi —x)? 15
(a’pa Ap) af}élj{lp(wp x)”, (15)

where A, represents the linear combination of all the support vectors except the p
th support vector training data. Thus, we explain .S}, holds the distance between A,
and x,. In practice, the computation of S}, is easy enough as

S — (16)

where K sv denotes
~ K 1

We define by K, the matrix containing the kernel values corresponding to all the
support vectors.

5. Performance Evaluation Experiments

We present some experiments for evaluating the performance of the proposed recog-
nition system optimized by the learning process described in the previous section.
The evaluation criterion of all the experiments we performed is based on the average
frame-wise accuracy of AERs.

The experiments we conducted can be divided into three categories:

e the evaluation of the performance acquired by the batch SVM learning process
and comparison with the performance acquired by other classical batch learning
algorithms,

e the evaluation of the properties of the SVM based online learning algorithm,

e the evaluation of the properties of the kernel parameter optimization algorithm.
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Fig. 5. The 25 daily life actions and their names are listed as the targets in the experiments

5.1. Target actions and motion data

For the experiments, we selected 25 actions as the target actions in the experiments
which occur indoors and can be measured by the motion capturing system, such as
lying and getting up. Fig. 5 depicts all the names and snapshots of the target actions.
In each experiment, we have measured motion data by a magnetic motion capturing
system. All the motion data we have used in the experiments is incorporated in ICS
Action Database'#. Each motion data in this database contains a BVH formatted
motion capture file and its reference files per each target action. One reference file
contains judgment by humans for the assigned action per frame by three degrees
(“yes”, “neutral” and “no”) .

Specifically, the motion data used in the experiments consists of 5 collections
of BVH files. One set contains 25 BVH files and its reference files. In other word,
125 BVH files and 3,125 reference files are used in our experiments. The average
span of one BVH file is almost 3 sec. and the total length of all BVH files is 12,126
frames. The actor in all the BVH files is the same male person. Fig. 6 depicts a
thumbnail of one BVH file when the actor stands up. The thumbnails are selected
per 10 frames, i.e. 0.33 sec.

5.2. Fwvaluation of performance by batch learning

We evaluated the performance of the system optimized by the batch SVM learning
algorithm. The evaluation is done by calculating the average accuracy per frame
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Fig. 6. A BVH file from ICS Action Database where a male stands up from sitting. The thumbnails
are selected per 0.33 sec. from the file. The figures shown in the right-top side of each thumbnail
indicate seconds from the starting time.

of all AERs when the test motion data are input to the system. We define the
accuracy ratio as the percentage of the frames agreeable with the reference and the
output. We select one collection of BVH as the training data and four collections as
the evaluation data in turn. Then we calculate the average performance from five
accuracy ratios.

Here, the prior parameters of SVM utilized in this experiment are described.
We utilize radial basis function in all the kernels in all the AERs. We denote by
o > 0 the kernel parameter, which is the same value in all kernels. If we define by
fa the total number of the features dimension, then the kernel parameter o is set
to 1.5v/f; and the penalizing constant number C' is 100+/fy.

Besides the evaluation of the performance of the proposed system, the compar-
ison with multi layered neural networks optimized by back propagation algorithm
(BP) and decision trees automatically generated by C4.5'° is conducted. All the
features utilized in these classifiers are same as the features which enters directly
to the kernels of the proposed system.

The neural networks configuration in the experiments contains three layers of
neurons. The type of the neurons in the input and the output layer is basically a
linear function, while the type in the hidden layer is a sigmoid function. The number
of the neurons in the hidden layer is empirically set at 2f; to perform better. As
the implementation of C4.5 algorithm, we use the software by Quinlan'®.

The average performance per AER optimized by the batch SVM, BP and C4.5
are shown in Fig. 7. The numbers on the horizontal axes of Fig. 7 depicts the ID of
the target action name written in Table 2. By the batch SVM, the mean accuracy of
all the target actions per frame reaches 97.2%, meanwhile the accuracy reaches only
96.0% in the neural networks by BP and 96.1% in the C4.5 decision trees. Table 2
also shows average and variance of the performance per target action name. This
shows that the proposed method has better performance than the other method in
the most target action names(21/25).
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Fig. 7. This shows the average accuracy ratio per AER in each recognition method.

Table 2. This table shows the mean of the accuracy rate and its standard deviation for each
learning algorithm (SVM, BP, C4.5) per target action name

Target Action Kernel Machine(SVM) NN (Back Prop) | Decision Tree(C4.5)
1. Fold Arms 98.3 + 2.0 [% 94.1 £ 5.3 % 98.9 £+ 1.6 [%]
2. Get Up 99.0 + 0.6 [% 95.4 + 1.3 [% 97.2 £ 1.3 [%
3. Jump 99.4 + 0.2 [% 99.3 £ 0.0 [% 99.0 £ 0.6 [%
4. Keep Down 98.4 + 1.4 [% 96.1 + 2.3 % 97.0 £ 1.2 [%
5. Lie Down 96.5 + 1.7 [% 96.2 + 0.8 [% 95.2 + 2.7 [%
6. Look Away 92.3 + 1.4 [% 91.1 £ 2.1 [% 91.3 £ 2.1 [%
7. Look Down 86.7 + 2.2 [% 84.8 + 2.2 [% 84.5 £ 1.6 (%
8. Look Up 96.6 + 1.0 [% 94.3 £ 2.0 [% 96.1 + 2.6 (%
9. Lying 98.6 £ 0.5 [% 98.4 £ 0.5 [% 99.4 + 1.3 [%]
10. Lying On Back 99.4 + 0.8 [% 98.7 £ 1.9 % 98.5 + 1.9 [%
11. Lying On Face 99.8 + 0.1 [% 99.8 + 0.1 [%)] 97.9 £ 1.8 [%
12. Lying On Side 99.5 + 0.3 [% 97.9 £ 1.8 [% 97.5 +£ 2.8 [%
13. On Four Limbs 99.6 + 0.1 [% 98.8 £ 1.0 [% 96.8 + 2.5 [%
14. Raise Hand 99.1 + 0.1 [% 98.6 + 0.2 [% 98.6 + 0.4 [%
15. Running 100.0 £+ 0.0 [% 99.8 + 0.0 [% 99.8 + 0.2 [%
16. Showing Hand 99.8 + 0.4 [% 97.6 £ 0.8 [% 97.3 £ 1.3 [%
17. Sit Down 99.2 + 0.1 [% 98.8 £ 0.1 [% 98.8 +£ 0.1 [%
18. Sitting 96.4 + 0.8 [% 94.9 + 1.6 [% 97.2 + 4.5 [%]
19. Sitting On Chair 97.2 + 1.2 [% 96.0 + 1.6 [% 924 + 1.8 %
20. Sitting On Floor 95.4 + 1.9 [% 949 + 2.1 % 92.3 + 3.3 %
21. Standing 98.7 + 0.5 [% 98.5 +£ 0.4 [% 98.3 £ 0.8 [%
22. Stand Still 94.5 + 2.4 [% 91.3 £ 2.5 [% 93.3 £ 2.0 [%
23. Stand Up 98.0 + 0.1 [% 98.5 + 0.2 [%] 98.2 + 0.5 [%
24. Turn 95.5 + 0.6 [% 95.4 % 0.7 [%] 95.2 + 1.1 [%
25. Walking 93.7 £ 1.4 [% 90.9 + 0.5 [%] 90.8 + 2.0 [%

5.3. Fvaluating properties of online learning

In this experiment, we evaluated the property of the online learning algorithm men-
tioned above. We compared the performance and some parameters of the recognition
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system acquired by the batch SVM with those by the online SVM. Specifically, we
compared the performance, the number of the support vectors and the sum of all
the coeflicients of the classifier, which can be written as 2221 a;. The reason why
we evaluated the sum of the weighting parameters is that it represents the relations
of the margin between two classes. The two types of AERs to be compared are
described as follows. The former is acquired only by the batch learning algorithm
from two sets of BVH files. The latter is acquired by the online SVM with one
training data set, after the batch learning process with one collection of training
data.

The experimental result shows that the average difference in the performance
between two classifiers is 0.1%. The number of support vectors by the incremental
SVM is 1.13 times those of the batch SVM. Thus, we consider this online learning
algorithm has the similar properties as the batch learning algorithm.

In fact, the number of the target actions we can actually evaluated in this
experiment was 19. This is because the online learning process is broken by the
numerical unsteadiness of the iterative steps for the other actions (i.e. six of them)
such as turn and look away. Specifically, the unsteadiness occurs at the inversion of
the matrix where each component represent the product of the kernel value and the
two labels. We will implement a recursive updating of the inversion of the matrix
which will avoid this unsteadiness, instead of calculating the inversion directly.

5.4. FEwvaluating property of kernel parameters optimization

An experiment to evaluate the property of our kernel parameters optimization was
conducted. Specifically, the performance and the changes in the number of the
support vectors are the criteria for the evaluation. In this experiment, we selected 8
actions such as folding arms and lying to satisfy all the conditions listed as follows.

e Actions whose accuracy cannot reach 99%.

e Actions where the types of the expressions consists only of “Status”.

e Actions whose classifier is NOT burdened by the improper reference signal and
feature selection from the expressions.

This experiment was conducted as follows. The kernel parameters optimization exe-
cutes with one collection of the motion set, which is exactly the same as the training
set in the experiment of the batch learning. Next, the performance evaluation was
performed with 4 collections of the motion data. Then we compared the number of
the support vectors in these classifiers with that in the classifiers acquired by the
experiment in the batch SVM.

The experimental results show that the performance increases only 0.4%, while
the number of the support vectors shows a dramatic 34.2% decrease.
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6. Conclusion

We designed and implemented a recognition system for daily human life action. The
design principles of our former system were the simultaneous recognition, expressing
the unclear result in recognition, and utilizing expressions of action by humans
knowledge in order to achieve a recognition result close to that of a human. The
proposed system in this paper improves on the above features. The modification
of the recognition process to incorporate learning ability to the system is the main
feature reported in this paper.

Motion capture files are utilized as the time series of input motion of the pro-
posed system. In order for the system to output multiple recognition results simul-
taneously, it consists of the recognition processes (AER), as many as the number
of the target actions , with AERs running in parallel.

The AER which contains two binary classifiers, is designed to output multi-class
decision results of one action to realize the unclarity in recognition. The binary
classifier utilizes voting framework as a linear combination of similarities between
input motions and the sample motion data acquired in advance. By utilizing a
kernel technique to calculate similarity, the recognition and learning process can be
unified to reduce the differences caused by the multi types of expressions of action
by humans.

The learning scheme we adopted is based on Support Vector Machine, which
can execute with the training data (motion and humans judgment). In this paper,
the extended learning algorithms of SVM, which can be computed in the online
situation, and kernel optimization as a part of model selection of kernel classifiers,
are applied to the recognition system.

The experimental results show that the performance of our system is superior
to other classical classifiers such as the multi layered neural network optimized by
a back propagation algorithm, and the decision tree generated by a C4.5 algorithm.

We also show that the property of the online learning is similar to batch SVM
algorithm. The result of the evaluation of the property of kernel parameters opti-
mization showed that it effectively reduces the number of Support Vectors.

In the future we intend to make an algorithm to integrate the online learning
algorithm and the kernel optimization algorithm. This is because that the parallel
execution of two algorithms has the potential to be a more user friendly automatic
optimization process and guarantee the optimality of its performance.

We also plan to design a new kernel function which can more effectively incorpo-
rate the expressions of action and to develop a new learning algorithm incorporating
prior knowledge of action. The expansion of target actions and the construction of
a knowledge database of action are also important.
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