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Abstract— This paper proposes a novel algorithm for But at the same time, humans’ expression-based ap-
extracting informative motion features in daily life action proach causes some critical problems as follows. Firstly,
recognition based on Support Vector Machine(SVM). The 4 is difficult to generate expressions in some actions.

main advantage of the proposed method is not only to extract A . -
remarkable motion features which fit into human intuition, Secondly, there is difficulty of select!ng “?'eva”t moUo_n
but also to improve the performance of the recogniton feature from the generated expressions in some action.
system. Concretely speaking, the main properties of the Finally, it is difficult to determine which motion features
proposed method are 1)optimizing kernel parameters so as s important quantitatively.

to minimize its generalization error, 2)extracting remarkable Thus, this paper proposes an algorithm that automati-

motion features in response to the sensitivity of the ker- . - . .
nel function. Experimental result shows that the proposed cally extracts informative motion features corresponding

algorithm improves the accuracy of the recognition system t0 the target action quantitatively from reference motion
and enables human to identify informative motion features data. The proposed method differs from other feature

intuitively. extractor in the following points. One significant point in
the aspect of performance is that the proposed method
extracts informative motion in the single criterion of classi-

Intelligent computational systems like robots are exfication and extraction, meanwhile common classifier with
pected to support humans in everyday tasks and activiti@me feature extractor such as Fisher discriminant analysis
in the near future. To achieve assistance in a wide rangsr principal component analysis uses different criterion
of areas, it will be important for that kind of systems to beon feature extraction and classification. The significant
able to communicate effectively with human. Recognizingyoint in the aspect of feature extraction using kernel[4]
human actions has potential to contribute to this abilityis that the proposed method is well-suited to “knowledge
and many other applications, such as human computeiscovery”, meanwhile other kernelized feature extractor is
interaction and search engine for multi media databasesnot designed for “knowledge discovery”.

It is proper to divide the process of action recognition In section 2, an action recognition system as the basis
into the following two phases. The former is to acquireof the proposed algorithm will be described. The qualita-
time series of three-dimensional body motion structurallftive and detailed description of our knowledge discovery
from some instruments, such as multiple images sensapproach, which utilizes kernel parameters optimization,
systems and infrared motion capture systems. The lattergll be explained in section 3 and 4, respectively. The
to symbolize these kinds of motion to action names. Thiperformance evaluation of the proposed algorithm will be
hypothesis has roots in MLD[1]. As the former phase, aoted in section 5.
state of the art technique of marker-less human motion
tracking such as Deutshcers[2] is actively developed idl: DAILY LIFEACTION RECOGNITION SYSTEM: HARS
recent years. But it is rare that these kinds of systems As for the basis of the proposed algorithm, we con-
robustly work in real-time. Our research focuses on thatructed a SVM-based action recognition system. It takes
latter phase. over the characteristics of Shimosaka et al.’s system[3] and

As the latter phase(symbolizing recognition), Shimosak#lori et al.'s[5] mentioned below.
et al.[3] developed a recognition system for such a daily First feature isSmultaneous Recognition. This is be-
life action as walking and sitting, whose performance icause human can recognize multiple action at the same
optimized by Support Vector Machine(SVM). The maintime. For example, human can readily recognize someone
remarkable characteristics of the system is to utilize exwaving his or her hand while walking as “waving one’s
pressions of action by human knowledge. hand and walking”.

The approach produces the following merits. At first, Second feature i&nclarity in Recognition. This is be-
this enables the system to improve recognition performanaause human cannot always give absolute decision whether
easily and to be built intuitively. Secondly, this approachsome action really occurs or not when watching someone
aids for designer of the system to detect remarkable motiaacting. For instance, decision whether lying or not made
features in motion candidates. by human may contain unclarity on observing someone
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getting up. Consequently, our system is designed to be abe Kernel based Action Element Recognizer
to output multiple action name labels at the same time and Time series of human motion is utilized as input of each

to output not only decisive result, but unclarity result. AR aAn AER outputs result of classification whether the
In Mori et al's system[5], an approachutilizing Ex-  assigned action occurs or not per frame in synchronized
pressions of Action by Human, is adopted. This has arisen yith the input motion. The output of AER consists of
from feature selection problem, because such remarkablg,jiple classes, which represent not only decisive but also
features for recognizing some action as motion and posgexplicit result. Concretely speaking, the number of the
of body region have wide variation. For example, for'category is three. One category is named as “yes” which

ward motion of hips could be one of the features forepresents that the assigned action clearly occurs. Another
walking, meanwhile the direction of head is considereqs pamed as “no” which represents that the opposite

as irrelevant. Because human can easily express an acti,r;p]@amng of “yes”. The last one represents the unclarity
by representing the motion or the pose of body parts, g; recognition result called as “neutral”.
designer of the system selects input motion with aid of the AER contains two binary classifiers and outputs
these expressions. Because this manual fashion approggfhgrated result of the two binary values. Concretely
invokes some critical problem noted above, the necessity %fpeaking, the one binary classifier judges whether “yes” or
this research proposing automatic extractor becomes Cle%t-“yes", the other judges whether “no” or not-“no”. The
In order to make us evaluate performance of a recogngonfiguration of the AER is shown in Figure 2. The reason
tion system (.easily,. the correctness of the recqgnition resq}\;hy we have adopted this composition is that “neutral”
by humans is defined as follows. On observing SOMeONytegory rarely happens in some actions. For example,

acting, even if he or she is performing several actiong,man can explicitly discriminate motion as sitting down
simultaneously, reference data of recognition result is geRynen watching someone standing then sitting.
erated in synchronized with input as the discrimination of

one action by paying attention to this action only. For  Time Series of

instance, if the target action is assigned as “walking”, '"RMotion — _

h “ . Il Y Positive Estimated
human pays attention to “walking”. Thus, the reference / i Binary \ Result:
is equal to the result whether someone is walking, even if | \1 Ll WClassifier] Y | ortjtycs/neutral/ no}
he or she actually “walking” and “standing” at the same %\ AJ ! N};gative j
. s K inary
time. AL Classifier

A. Input and Output Fig. 2. Configuration of Action Element Recognizer

The input of the system is time series of human motion.
Concretely speaking, our system utilizes articulated human _. _— e
body motion whose three-dimensional configuration is re- uslen;gs 'fﬁ; nﬁn(a::asggiiﬁ:r ilile:rr:zl AcéaRSS\'/f\';Zr dljnlc:l:cot;
covered. The output of our system contains some actio% y ) y

. i " . Y
names in synchronized with a frame of the input motion..the time serles_of _mput motior) = {x;,y;};, are the
input-output pairs in total frames, wherer; represents

B. Configuration of HARS i th frame sample motion and its corresponding reference
. . ' ._binary(e.g. “yes” or not-“yes”) signal by,;. We can write
Figure 1 shows the processing flow and the conﬂguratloBy o, the co-efficiencies whose value is proportional to

OT .the system. In order .to reallz.e the smu!tgneous recoQr'nportance of the templates. Similarity value between the
nition, the system contains multiple recognition processeﬁ»Iput motion and one template motion is represented by

ea_ch Of. W.h.iCh s assign.ed to the rec“ogn.izer for one aCtionl(ernel K (zx;,x). The mapping between the input and the
Th's. prlmltlve”process IS caIIed_ as "Action _Element ReC’output of the binary classifier in the AERcan be written
ognizer(AER)”. One AER runs in parallel with the others.aS
The system collects the results of all AERs, and outputs
the results of each recognition process per frame. An AER !
which recognizes walking discriminates whether someone f(x) = sgn (Z aiy; K (@, x:) + b)
is walking. =1

where b depicts offset and the functioggn(-) is a step

function where the relation of input-output is represented
'l/;/-l-’;\\\ = Standing and as
X B 1 >0
' 8 sgn(t) = i .
I - gn(t) —1 if otherwise
lnputt\ o : [Yrepresents
HAL N S ° Action H H H 11
Input: *s~ree?
Time Series of Y Element Learnm_g_pro_cess in the binary _clfassmer of AER tunes
the co-efficienciest, b) from the training data. SVM[6] is
Fig. 1. Configuration of Recognition System utilized as learner in it. SVM is one of the honored learning

algorithm in the view of regularization, model selection and
requirements of the computation resource.



Kernel as Product of Kernels per Gazed Motion: The IV. KERNEL PARAMETERS OPTIMIZATION
k(fernltlel r\:altlie n ;che lAER binary cla('js_smer |shas t_he_lprpdu_ct In this paper, the generalization error is utilized as the
of all the kernel values corresponding to the similarity IN,gicator of the optimization. Therefore, the optimized

each gazed motion. When the number of the gazed moti%md parameter@” is defined a®* = arg ming T'(Kg)
where & € R% denotes the kernel parametefS(Kg)

in the target action ig, the kernel value in the target action
depicts the generalization error of the SVM.

K(-,-) can be written as
d In order to optimize kernel parameters easily and ro-
K(x,x;) = H Kj(cpj(a:(j)), goj(wz(-j))) bustly, an effective search in kernel parameters space must
j=1 be considered. In this paper, the gradient descent algorithm
is utilized. General outline of the kernel parameters opti-
where V) denotes the selected input motion in thie mization algorithm is listed as Table I.
th gazed motiongp;,(-) represents the converter from the
selected input motion to the input feature, and the kernel TABLE |
value which Corresponds to the S|m||ar|t|esj|rth gazed KERNEL PARAMETERSOPTIMIZATION BASED ON GRADIENT
motion represented bY(j(~, -). In this paper, the gazed 1. Initialize & with some value and iteration numbees0
motion means the candidate of the remarkable motion 2 Learing by SVM withig, finding co-efficiencies.
1 ; X i . alculating generalization err@’ and its derivative.
for recognizing the target action. In general, Radial Basis 4. update the kernel paramet@rsuch thatT'(Kg) is mini-
Function is utilized as the kernel for gazed motion, thus mized asA@ = —edT /00, 0 — 6 + ABU ¢ — i + 10
the final form of the kernel is represented as He > 00

5. Inthe case thatA#| is less than some positive constant or
) 9 is larger than some iteration times, then terminate, otherwise
j J return to2. .
4 |o;@@) - o, (@)
K(.’B, :BZ) =€exp | — Z 2 . (1)
- [op
]:1 J

There are several good estimators for the performance
of SVM. In this research, th&pan technique proposed
by Chapelle et al.[7] is adopted. This is because the
gradient descent technique requires the derivative function

It is the fundamental premise that the kernel types andf generalization error by kernel parameters and it can be
their parameters are priori given in the learning process afxplicitly written if estimator is based o§pan. The prop-
any kernel classifiers, and the performance is surely derty of generalization error witBpan has close relationship
pendent on the kernel types and their parameters. Howeweith the Leave-One-Out cross-validation error(LOO). The
SVM achieves more honor than other classical learningomputational cost of LOO is too high but accuracy gets
algorithms, the performance fails to acquire high accuracgxcellent quality. In contrast, thgwan technique requires
when some kernel types and its parameters are set. Thigss computational resource than the case of LOO.
the functionality that adjusts the kernel feature space must o
be needed in order to build more suitable SVM. A. Span Bound of Generalization Error

It is natural to think that sensitivity of the kernel value After learning by SVM, the span corresponding to the
with respect to change of input should be large if it isp th support vector by the variablg, can be defined as
relevant for recognition. On the other hand, the smallethe distance between thgx,) and linear combination,,
sensitivity of the kernel value might be desired in theby all the support vector except theth support vector in
case of no importance. As for Mahalanobis kernel utilizedeature spaceb(-) as
in our recognition method, the remarkable input feature
requires smaller variance in relevant input feature than

I1l. REMARKABLE MOTION EXTRACTOR BASED ON
KERNEL PARAMETERS

in irrelevant. Ap = _ > Ai‘ﬁ(wi)’_ > di=1

In opposite way, if one wants to know which input i#pap>0 #pap>0
feature is relevant, it is somewhat appropriate that he or she 55 = min ||¢(x,) — d(x)||? = _11
judges which input motion is remarkable by observing the P(T)en, (Ksv )pp

kernel sensitivity. As for Mahalanobis kernel, the inversg,hare functiong : X — F (F represents some feature
of the variances in Eq.(1) helps the designer of the space) satisfiesp(u)!p(v) = K(u,v), (u,v € X) and
recognition system to detect which motion is informative.j- corresponds to extended Gram Matrix of all the
This is because these parameters affect the sensitivity Qﬂpport vectors. The upper bound of the generalization

the kernel values. ~ error based on th&pan is defined as
This paper utilizes the kernel parameters optimization

which adjusts kernel sensitivity in order to extract remark- 1< 9

able motion features and to optimize its performance at T = 1 Z‘II(O‘PSP -1

the same time. In the case of our system, the proposed p=t

algorithm adjusts the variances in Eq.(1) and trade offvhere a denotes the co-efficiency obtained by SVM,
positive number in SVM. depicts step function to penalize.
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Because the optimization process requires the derivative R k |
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by the kernel parameters, the gradientlof o, S2 must Foif Ams | KeepDown || Look Avay | LookDown
be calculated. The probabilistic approach by approximating ] - - >~
. . . . . . Look U Lying Lying On Back |Lying On Face
the step function with sigmoid function[8] is adopted. : S YT
In this case ¥ is approximated as a sigmoid function as Rl M 1 1
Lying On Side | On Four Limbs| Raise Hand |Showing Hand
1 A # A k
‘I’(t) = , A>0, B>0. si’x{: snu.xg:)ncmarsming{):mmr Sxaﬁ\ain
1+ exp(—At + B) i | A ® Joint
. . . . stanl st | M. M End Site
The parameters! and B in the sigmoid function can be Stand St

estimated by minimizing Kullback-Leibler Divergence. The _ N . o
. - Fig. 3. This figure shows thumbnails of Target Actions(in left

gradlent_of the co-efficiency Can_ be calculated becauseside) and skeletal configuration of BVH used in this experiment(in

the relation between output and input of the SVM can beignt side). The body contains 11 joints each of which has 3

written only by support vectors. The computation for thedegrees of freedom.

derivative ofSﬁ can be calculated by utilizing Woodbury

Theorem[9], and finally this is derived as TABLE IlI
992 - ENUMERATION OF GIVEN MOTION INFORMATION
P _ g4 f(fl K50 f(jl 1 | Relative horizontal posi-{| 2 | Sum of distance between
04, p 00, % tion of right hand to left hands and body
pp 3 | Mean speed of hands 4 | Bentness of Hips
5 | Mean speed of hips(1) 6 | Height of hips
Whereoq represents the th kernel parameter. 7 | Upper direction of head| 8 | Distance between hips$
from hips and foots
V. EXPERIMENTS 9 | Upper direction of hips|| 10 | Horizontal orientation of
from foots head from hips
A. Target Action and Motion Candidates 11 | Upper orientation of|| 12 | Upper orientation of
head from hips head from ground

In order to evaluate the performance of the proposed 13 | Mean height of head(1)|| 14 | Height of hips
method, 18 action names, such as “Standing”, “Folding 15 | Upper orientation of hips|{ 16 | Horizontal orientation of
. ! : ' hips
Arms” are _sek—;-cted and ICS Action D?-tabase[lo] are use_d' 17 | Upper direction of head| 18 | Upper direction of head
The specification of the motion used in the experiments is from left hand from right hand
listed as Table II. This is the collections of motion data with | 19 | Upper direction of hips|| 20 | Upper direction of hips
ference action name labels. BVH, the format of motion from left knee from right knee
reterer : , C 21 | Height of left hand 22 | Height of right hand
data, is a de-facto standard in computer graphics by the 23 Relative height of left|| 24 | Relative height of right
Biovision Corporation. A BVH file contains the structure hand from hips hand from hips

of a human as a linked joint model(figure) and the motion| 2> | Mean upper velocity ofj| 26 | Mean upper velocity of

. . . left hand right hand
of the figure per frame. The skeletal configuration of the 7 T Righest refative height of| 28 | Mean height of head(2)
BVH used in the experiment is shown in Figure 3. hands from head
29 | Mean speed of hips(2) || 30 | Mean speed of left foot
TABLE 1l 31 | Mean speed of right foof| 32 | Speed of Rotation of

hips in vertical axis

SPECIFICATION OFICS ACTION DATABASE

D.O.F. 36(11 Articulation)

Actor a male in 20s

Format Biovision BVH and its label ; fg
Num. of Files | 125 (Avg. 3.2[sec.) B. Given Parameters and Condition

As the initial parameters of this experiment, the param-
eters of Mahalanobis kernel and trade-off number in SVM
125 BVH files and 2,250 reference files are used in our €X' are given asr; = 1.5v/fq (1< j < fa), C=5Ffain
periments. The label in the database representing humang{ 18 action names, wherg; denotes the dimensionality
judgment has three kinds of values (yes, neutral, no) igf the kernel input space (i.82). The Maximum iteration
every frame per one action name. Figure 3 depicts all 1§mes of the gradient descent procedure is set as 30. As
action names and snapshots of them. Although this actiaRe updating rate of the second procedure in the table |
database contains labels of 25 action names, 18 names g&et asc, = 0.05 for kernel parameters ang: = 0.1e,
selected. This is because the time when the unselectgst penalty term.
action names, such as “Walking” and “Sit Down” occur
is short. C. Result of Applying Proposed Method
As for candidates of remarkable motion feature, the hu- Average of Accurate Rate: Figure 4 shows that error rate
man motion feature utilized in Shimosaka et al.'s system[3jhe before and after the kernel parameters optimization in
are selected. The entire selected motion features are listéte case that all the 32 motion features are utilized. As
as Table Ill. The bracket after candidates(right side o& whole, the accuracy of the recognition in each target
the table) represents the duplication of candidates, eaclttion achieves 80[%)]. Especially, the accurate rate in
of whose span is different. 14/18 action names is larger than than 90[%].



In almost all the target actions, the accuracy gained by
the optimized kernel parameters is better than the case of o}
the initial kernel parameters. Unfortunately, the accurate
rate reported in [3] is better than the proposed method. This
result shows that the strategy which utilizes expression of

. . . 'y R
action works good only if expressions can be generated A
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ratio of inverse variance
=

easily.
Furthermore, the target action “Stand Still” gains less 0 : 5 = 5 5 o
accurate after the kernel parameters optimization. It is ID of Enumeration of Given Motion Information

found that the variance corresponds to velocity of hips is. . . o
; ig. 5. Normalized inverse variance after optimization in “Stand-

much smaller than the others. It seems that this causes t % are shown. ID 4 in Given Motion Information represents

decline of the accurate rate. Precise analysis for not onbgentness of hips’.

“Stand still” but also “Turn” must be one of the future

work of our research.
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£ OnFour Limbs £ (009000000 booe 000997 oseco
g) Raise Hand }§ 0 L L L . . .
2 Showing Hand | ¢ 5 10 15 20 25 30
= Sitting ID of Enumeration of Given Motion Information
Sitting On Chair
Si"iniondﬂswl: Fig. 6. Normalized inverse variances after optimization in “Raise
l;tr:xndilr:g Hand " are shown. ID 26 in Given Motion Information represents
Turn “Mean upper velocity of right hand”

Fig. 4. This figure illustrates error rate before and after kernel

parameters optimization in each action. Error rate in the case of o .
the initial given kernel parameters are represented by the squi% Velidation of the Detection Scheme

points. Circle points depict the case of the optimized kernel As a validation of the detection scheme that kernel

parameters and cross points represent the score reported in [Sé'ensitivity responses to remarkableness of motion features
the performance obtained by the selected motion feature

Ratio of the gained kernel parameters. Figure 5 and judged by inverse of the variances is evaluated. Concretely
6 shows the relative ratio of the kernel parameters aftegpeaking, some human motion features, whose correspond-
the procedure of the proposed algorithm in the case dfg inverse of the variance is large(large value in the
“Standing” and “Raise Hand”, respectively. In each figureyertical axis of the Figure 5 and 6), is selected from all the
the number on the horizontal axis corresponds to theandidates. In this experiment, the number of the selected
number in Table IIl. The vertical axis shows the normalizednotion features is set to 7. The reason why we set the
inverse of the variances whose maximum value is 1. Ifumber as 7 is not clear, but it is thought that 7 selected
the scheme of the proposed detection method, the largtgatures contain adequate relevant motion information in
value in the vertical indicates more relevant motion featuregach action because the maximum dimension of features
because smaller kernel parametermakes kernel more reported in [3], [S] is 7. As this experimental condition,
sensitive. the variances are set to equal after the selection.

In the case of “Standing”, inverse of the variance corre- Figure 7 shows the error rate in each target action gained
sponds to bentness of hips is largest. Next, the orientatidsy the selected 7 features and optimized 32 features. In alll
of the upper body is detected, and horizontal posture dhe target action except “Look Down”, the accurate rate
hips is detected as the third relevant motion feature. Thigcquires 90 [%)]. As for “Look Down”, because the accurate
result fits into human intuition. rate in the case of the optimized 32 features fails to acquire

As for “Raise Hand”, the proposed algorithm detect90 [%], the selected 7 features from these features also
velocity in the upper orientation of right hand only. It is seem to have trouble to recognize. The result noted above
found that there is no “Raise Hand” motion where leftexperimentally implies that the detection scheme based on
hand moving upward is observed in the training databasée kernel sensitivity is valid.

Thus, no proper priori idea like symmetry of action gives As another validation of the detection scheme, the
improper result, but this result shows that the relatioperformance obtained via motion features by removing
between the gained ratio of the kernel parameters andrge inverse variance is evaluated. It can be said that
motion in the training data seems to be natural. the previous validation evaluates the affection of removing



Error Rate [%]

0 5 1015 20 25 30 35 VI. CONCLUSION
Fold ArmsQ x . . .
Keep Down | ‘Seia This paper proposes an algorithm for extracting remark-
LijlfggV;g able motion features from candidates of motion features
Look Up 46 in human daily life action recognition based on kernel

Lying -%- selected by human

classifier. This algorithm is based on kernel parameters

g Lszl&‘gg%r;};iilz : % Peatures o optimization as minimization of generalization error. In this

§ (l;r)l/ ?fu?zi?;%: paper,Span based generalization error which can be calcu-

5 Sho}:‘;ﬁ;gzﬁg ) lated effectively and has close relationship to Leave-One-
Sitting Out cross-validation error is utilized. This paper adopts

Sitting On Chair
Sitting On Floor
Stand Still
Standing

gradient information because search method for kernel
parameters space must be effective.

The experimental result for performance evaluation
shows that the accuracy of recognition achieves high
Fig. 7. This figure shows the error rate gained by selected BNough, in addition, the performance after the optimization
features which is thought to be remarkable. The performancef the kernel parameters is better than the case of the initial
gained by the optimized 32 features in the previous experimerfettings. It is also proved that the relative importance values
Is also shown. which corresponds to inverse of the variances(the kernel
value in Mahalanobis kernel) fits into human intuition. The
other experiment proves that our detection scheme is valid

irrelevant motion features. On the other hand, this experiD the point that the motion features corresponding to some
ments evaluate the importance of the motion feature whod@arge sensitivity of kernel functions is critical to recognize.
kernel parameter(invariance variance) is large. Especially, We have plan to apply the proposed method as the
the number of the removed feature is 1. After the removafollowing way. In recognition system using marker based
the variances are set as equal. Furthermore, the kernel (4-Wearable based motion capturing system, the proposed

rameters optimization is executed for such 31 dimension§1ethod helps the designer to decide the minimum essential

The performance score in each condition is shown ifensors to recognize the target actions, because these kinds

Figure 8. The result shows that the performance of the aﬂf sensors burden the actor. . - .

the targets except “Keep Down” and “Sitting On Chair”, In '_[he future work, systematic method f_or listing motion
“Standing” obtained by the optimized kernel parameteré’?and!date will be epr(_)red, because _t_h|s paper lists the
from 31 dimensions is worse than the others. This resuFtand'd_ates of the motion fe_atures utilized n [31. N.e.Xt:
implies that the removed largest inverse of the variance m@nalysis between density In input space and its sensitivity
tion feature is fatal to recognize, thus the kernel parametefg kernel featu_re space .W'” be considered, be_cause.the
optimization via 31 dimension fails to acquire generalityprc’posed algorithm |n|_t|aI|zes the parameters which satisfy
but over-fitting. This result indicates the proposed deted2N9€ of kernel value is same in each feature.

tion scheme based on inverse of the variances(generally
speaking, the kernel sensitivity) seems to be valid.

Turn
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