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Abstract— In this paper, we propose a robust online action
recognition algorithm with a segmentation scheme that detects
start and end points of action occurrences. In other words, the
algorithm estimates reliably what kind of actions occurring at
present time. The algorithm has following characteristics. 1)
The algorithm incorporates human knowledge about relation
between action names in order to simplify and toughen the
algorithm, thus our algorithm can label robustly multiple action
names at the same time. 2) The algorithm uses time-series
Action Probability that represents the likelihood of each action
occurrence at every frame time. 3) The classification technique
with hidden Markov models (HMMs) enables the algorithm
to detect robustly and immediately the segmental points. The
experimental results using real motion capture data show that
our algorithm not only decreases effectively the latency for
detecting the segmental points but also prevents the system from
making unnecessary segments due to the error of time-series
action probability.

Index Terms— Action Recognition, Segmentation, Hidden
Markov Model, Support Vector Machine, Motion Capture

I. INTRODUCTION

Recognizing human action [1], [2], [3] is one of essential
foundations to achieve smooth communication between in-
telligent systems, especially robots, and human. It is also a
key technical element in achieving analysis and surveillance
of human activity by intelligent systems. In order to achieve
immediate support for human life by such systems, it is a
very important factor that action recognition runs online. In
this context, the meaning of “online” is similar to “filtering”,
not “smoothing” in signal processing. In other words, the
system must recognize action name at the present time from
history of the input motion source until the present time.

In order to realize high performance daily action recogni-
tion system, we must consider the time-dependency problem.
In this context, the time-dependency problem means that
human requires a certain time interval to behave that action.
This means an action at current frame is dependent on the
previous frames and will be the same if the previous frame
action does not end.

Our previous work [4] proposed online action recognition
with statistical learning techniques, that can react immedi-
ately the changes (segmental point) of human action. How-
ever, their frame-wise recognition result does not incorporate

the property of the time-dependency. Thus its recognition
result tends to be unstable. Inamura et al. [5] proposed an
elegant action recognition algorithm using hidden Markov
models (HMMs). In the system, the input motion should be
segmented with a constant intervals before the recognition
process executes. Because it is probable that the constant
length interval contains the segmental point of actions, such
as the transition from walking to running, the system cannot
detect immediately the change of human action (segmentation
point). Other Markov-based recognition systems [6], [7], [8]
has been proposed and has proved to have good performance
for detecting the segmental points, however, the assumption
in their systems does not fit for the property of great variety of
actions. Their main target actions are only dynamic actions,
such as walking, jogging and running. They do not focus
on static actions like sitting and lying. Thus their system
will be poor when the systems include not only dynamic
actions but also static actions, such as sitting and lying,
because it is hard to optimize the transition probability of
Markov process due to the fact that the interval of action
occurrence has very wide variety. For example, it is possible
for human to behave stable actions such as lying and sitting
very long, not temporal. On the other hand, it is impossible
for human to behave dynamical actions such as jumping and
turning the body in long interval. Thus, the simple Markov-
based recognition will fail to recognize action transition or
detect the segmental point once the system recognize motion
as stable action like lying. This is because the transition
probability of Markov process will be very low from lying
state to not-lying state when the Markov transition probability
is learned with maximum likelihood estimation from real
daily life action data.

Consequently, we focus on the start and end point of the
target action occurrence, not on the frame-wise transition
of actions. Markov-based methods assign the point-wise
recognized result by using past recognition result, however,
our method assumes the recognition result is the same with
the result of the previous frames until the segmental point
is detected. Ge [9] proposed semi-Markov models that fits
better for detecting segmental point than the simple Markov-
based recognizer, however, they limit the interval length a



priori. Thus some stable actions, such as lying and sitting
cannot be applied to this method.

In addition to the time-dependency problem, we must
consider another property of daily actions: simultaneousness.
This means that it is often that multiple actions occurs at
the same time. Result like “waving hand while standing” is
an example of this phenomena. We categorize daily actions
so as to make the system be able to handle multiple action
names at the same time.

Consequently, we propose a novel online recognition
method that can detect immediately the segmental points of
actions. Our method has the following characteristics, 1) the
system can label multiple action names at the same time,
2) the system uses the knowledge about categorization of
actions in order to simplify the algorithm, 3) the system uses
HMMs to detect the segmental points, 4) the system uses
SVM-based classification for the input of HMMs.

The rest of the paper proceeds as follows. Section II
outlines our proposed algorithm: input / output, what is
conceptual relation of daily actions, and processing flow
of the algorithm. Section III introduces the details of the
algorithm using HMMs, a part of our proposed method in
section II. Section IV presents results of several experiments
about online recognition and segmentation. We conclude in
section V with some directions for future research.

II. ONLINE RECOGNITION AND SEGMENTATION WITH

CONCEPTUAL RELATION OF ACTION

A. Input and Output

The input of the algorithm are time-series data of motion
features depicted by x1, . . . , xt, where xt represents the
motion feature at time t-th frame. XT contains a certain
length history of the motion features until T -th frame. As
an output of the algorithm, lt represents the action names to
be recognized at t-th frame. Thus, the algorithm estimates
lT from XT . And the algorithm detects the segments of
action occurrence at the same time. When T = 10, for
example, our algorithm assigns l10 = {sitting, looking away}.
And our algorithm may assign l90 = {standing} when T =
90 (see Fig. 1). The algorithm also chunks actions from
segmentation results as {looking away, 1 − α, 80}, {sitting,
1 − α, 40}, {standing, 60, 100 + α} when T = 100,
where each parenthesis represents an action segment as
{action name, start frame, end frame} and α represents
any positive value (100 + α means the action does not end
at the present time, similarly, 1 − α means that the system
cannot understand the start point of the action before the
system watches human).

It is not easy to estimate time-series labels and detect the
action segments, because it is frequent that the labels assigned
with multiple action names. A label l20 = {looking away,
sitting} in Fig. 1 is an example for that. There are many
action names which occur at the same time. They have no

Fig. 1. Input and output of the algorithm is shown. Input: time-series of
human motion. Output: segmented recognition results of the system

exclusive relation. In this context, a subjective “exclusive”
means one action never occurs when another action occurs.
The complexity due to the output labels with multiple action
names will be reduced by incorporating human knowledge
about daily action. We use knowledge about categorization
of actions positively.

B. Conceptual Relation of Action in Daily Life

In this research, we adopt the existing categorization
method proposed in our past work [10]. This categorization
scheme utilizes the hierarchical relation of action names. For
example, sitting on floor is a kind of sitting. This looks like
“inheritance” in Object Oriented Programming (OOP). The
reason why we adopt this categorization scheme is that an
action has exclusive relation to the others in the same group.
Specifically, a group of action categorized by gazing full-
body posture, which we call root group, contains standing,
lying and sitting. Obviously, they have exclusive relation to
the others. Thus, it is expected for our algorithm to be simple
and robust and the system never output conflicted recognition
result when we run and separate the algorithm via each action
group. The conflicted result means the misclassified result
like “lying on side and sitting”. Furthermore, the output of
system can be at several levels of details of the recognition.

However, there are groups of actions that do not inherit the
root group when we gaze only a part of body, such as neck
and arms. For example, look away cannot be a kind of sitting,
standing or lying. Thus, we modify the categorization scheme
with hard-hierarchical representation of the previous work to
semi-hierarchical representation of actions. Specifically, we
annotate the relation between groups if and only if there
exists hierarchical relation, else they are independent from
the others. Fig. 2 shows our categorization scheme (this is
the implementation used in the experiments of this paper.)

C. Process for Online Recognition and Segmentation with
Semi-Hierarchical Representation

In order to incorporate the property of simultaneous and
to exploit fully the knowledge of hierarchical representation
of actions, the recognition and segmentation algorithm men-
tioned in section III runs in parallel with each action groups.
Then the system integrates the recognition and segmentation
result in each action groups to eliminate the conflict of
the result from view of the hierarchical relations. Hence,



the proposed algorithm is summarized as follows. First, the
recognition and segmentation algorithm in each group of
actions executes. Next, the error correction runs when the
recognition and segmentation result in one group conflicts
the parental group’s result. Specifically our algorithm revises
the result of the child group of actions. Fig. 3 shows the
processing flow of the our proposed algorithm. In the next
section, we will describe the details of the recognition and
segmentation method in a group of actions.

Fig. 2. Semi-Hierarchical Repre-
sentation of Actions

Fig. 3. Recognition and Segmen-
tation Process with Semi-Hierarchical
Representation of Actions

III. ONLINE RECOGNITION IN A GROUP OF ACTIONS

WITH HMM

In this section, we explain the details of the online recog-
nition method in a group of actions with HMM, a part of our
proposed method.

A. Overview

1) Defining Action Probability: The procedure discussed
in this section estimates frame-wise action labels and detects
action segments for actions in a group. Each action label
contains not multiple action names but only one action
name because an action has exclusive relation to the others
in a group of actions. You may think it is easy to apply
some classical multi-class pattern classification algorithms,
such as K-nearest neighbor method [11], Gaussian process
classification [12], and combinatorial scheme of support
vector machines [13] to this problem. This is, however, not
a simple matter. It is because it often occurs that the system
should not label any action names. We must incorporate
the situation of l

(g)
t = φ, where g means ID of the action

group, l
(g)
t depicts the label in g-th group at time t, and

φ = NULL. Thus, the following equation that is often seen
in the multi-class classification problems does not satisfy our
problem,

∑K
k=1 p(l(g)

t = a
(g)
k |Xt) = 1, where a

(g)
k represents

k-th, (k = 1, . . . , Kg) action name in g-th group. Instead,
the following equation as p(l(g)

t = φ|X ) +
∑K

k=1 p(l(g)
t =

a
(g)
k |Xt) = 1 satisfies our problem. On the other hand, it is

not easy to design p(l(g)
t = φ|Xt) in general. Thus we use

the following simple but satisfactory equation written as

p(l(g)
t = a

(g)
k |Xt) + p(l(g)

t �= a
(g)
k |Xt) = 1, ∀k. (1)

In this research, we call this probability function Action
Probability. In the following, we make a simplified notation
q
(g,k)
t = p(l(g)

t = a
(g)
k |Xt). From the definition of the Action

Probability, the minimum risk that the system misclassified
the label at time t seems

if q
(g,λ)
t > 0.5 then l

(g)
t = a

(g)
λ , else l

(g)
t = φ (2)

where λ = argmaxk q
(g,k)
t , however, the result of this

classification rule will be poor. This is because Action
Probability at each time does not incorporate the time-series
dependency of action occurrence. Hence, our recognition and
segmentation method does not use classification rule in (2),
but uses sequential pattern of Action Probability (see. Fig. 4).
The strategy of this procedure is to detect the global change
of the value q

(g,k)
t . Before we mention this, we proceed with

the description of the implementation for Action Probability.

Fig. 4. Recognition and segmentation based on Action Probability in a
group of actions

2) Implementing Action Probability using SVM: The basic
idea is to wrap a binary classification result (whether input
motion should be categorized into the target action or not) to
interpret it as Action Probability. Roughly speaking, there are
two approaches to prepare the binary classification result. The
first approach is a kind of one-class classification techniques
[10], [14], [15], where the learning process is executed
without negative instances. The second approach is a kind
of two-class classification techniques [16], [17]. The first
approach discriminates from the likelihood of probability
function that corresponds to the target action. The second
approach classifies directly whether the input motion to be
categorized or not. In this research, we adopt the two-class
classification approach. Specifically we adopt a kernel-based



online action recognition method [4] based on support vector
machines (SVM) [13]. As a wrapping method that enhances
the binary output of SVM to a probability density function,
we adopt Platt’s method [18]. Thus q

(g,k)
t can be defined as

q
(g,k)
t = p(l(g)

t = a
(g)
k |Xt)

=
1

1 + exp(−σsign(l(g)
t = a

(g)
k )f(Xt))

, (3)

where function f depicts output of SVM for Xt, sign(c)
represents an indicator function and σ depicts a positive
constant. Specifically, sign(c) returns +1 if c is true, else
returns -1. This satisfies Action Probability defined in (1).
At most time, f tends to output positive value if the target
action occurs, else negative. Because |f(Xt)| corresponds to
the reliability of the output of SVM, it is natural to formulate
Action Probability as written in (3).

B. Modeling time-series Action Probability with HMM

1) Stable and Unstable intervals: We can find that there
are two kinds of drastic changes of time-series of Action
Probability. One is due to the temporal noise or error of
Action Probability. The other comes from the segmental point
of actions (see Fig. 4). This is normal response of Action
Probability. Someone may think that it is simple and efficient
to use “moving averaging” models in order to eliminate high
frequency noise, however, the moving averaging models have
trade-off problem. When we set the big window size in
this method, the latency to detect segmental points occurs.
Instead, when we set the small windows size in order to react
quick response for the segmental points, the performance
of the chunking process will be poor. Thus, we design our
algorithm to meet the performance of not only eliminating
the error of Action Probability but also detecting quickly
the segmental points. What is worse, the segmentation using
moving averaging models will fail when several Action
Probabilities are both high and the difference of them is
very small.

From Fig. 4, you may find it is impossible to determine
whether noise or segmental points just observing the drastic
change of time-series q

(g,k)
t . Our approach waits to determine

the segmental points until drastic change of q
(g,k)
t disappears.

This seems to be critical in the latency of the segmentation,
however, it is not so critical. It is because most intervals of the
drastic change is very short. Hence, we must categorize two
kinds of time-series model: the stable and unstable intervals
of time-series q

(g,k)
t and make classification rule. This rule

classifies which categories fits better for the current time-
series Action Probability. In this research, we use hidden
Markov models [19] for time-series Action Probability mod-
eling.

2) Designing HMMs for Stable Intervals: In order to
represent the stable intervals, the corresponding time-series
q
(g,k)
t must satisfy the following conditions. One condition

is that the largest q
(g,k)
t is near to 1 while the others is

around to 0 and the situation retains at a certain interval.
Another condition is that the largest q

(g,k)
t is near to 0

and this situation keeps at a certain interval. The former
condition can be interpreted as “we can assign easily one
action name as the label at current time”, similarly, the latter
as “we can assign φ as the label at present time”. Because
it is hard to prepare both conditions in a HMM, we make
two HMMs, respectively. We call the HMM for the former
situation Stable-P HMM, and the HMM for the latter situation
Stable-N HMM.

In Stable-P HMM, we focus on the first and second
largest q

(g,k)
t . This is because there is significant difference

between the largest q
(g,k)
t and the second largest q

(g,k)
t in

this situation. Hence, we set the observation variable for
HMM yt ∈ R

2 at frame t as yt = (q(g,λ)
t , q

(g,ζ)
t )T, yt−1 =

(q(g,λ)
t−1 , q

(g,ζ)
t−1 )T, . . . , where λ means the ID of action name

that satisfies the largest q
(g,k)
t at frame t. Similarly, ζ depicts

ID for the second. This means λ = argmaxk q
(g,k)
t , ζ =

arg maxk �=λ q
(g,k)
t . Stable-P HMM must output y that satis-

fies {yt}2 � {yt}1 ≈ 1. Thus, we design Stable-P HMM
as a single state Markov model. The emitter function of
Stable-P HMM is Gaussian distribution. On the other hand,
the output of Stable-N HMM must satisfy {yt}1 ≈ 0 in a
certain interval. Then, we also design Stable-N HMM as a
single state Markov model. The emitter function of Stable-
N HMM is also Gaussian distribution. The parameters of
Stable-{P/N} HMMs are obtained from EM algorithm [20]
using real time-series Action Probability data. We illustrate
the imagery of the state transition model projected onto the
observation space y (see Fig. 5).

3) Designing HMMs for Unstable Intervals: As a matter
of course, we require multiple Action Probabilities in order
to represent unstable intervals. Here we use the same variable
yt used in Stable-{P/N} HMMs. We design the five states
hidden Markov Model as Unstable HMM. In each state of
Unstable HMM, the emitter probability function is Gaussian
distribution. In order to make clear distinction between
Stable-{P/N} HMMs and Unstable HMM, we design the state
diagram for Unstable HMM as Fig. 6. This state diagram
implies the situation {yt}2 � {y}1 ≈ 1 and {yt}1 ≈ 0
never continues and is likely to output ambiguous values of
Action Probability.

Fig. 5. State transition diagram for
Stable-{P/N} HMM

Fig. 6. State transition diagram for
Unstable HMM



C. Online recognition and segmentation using stable and
unstable HMM

In this section, we describe how to estimate time-series
action names and detect action segments (tuple of action
name, start point of occurrence, end point) with Stable-P,
Stable-N HMM, and Unstable HMM. At first, the algorithm
detects the changes λ, where λ = argmaxk q

(g,k)
t , as a cue

of the segmental points (t = t0). Then, the algorithm starts to
classify the current time-series q

(g,k)
t0:t is in stable or unstable

interval by calculating the likelihoods of the HMMs. Table I
shows the description of our proposed algorithm.

TABLE I

ONLINE SEGMENTATION ALGORITHM IN g-TH GROUP OF ACTIONS

Setting; SP: Stable-P HMM, SN: Stable-N HMM, U: Unsta-
ble HMM, fixed the maximal interval length for HMM: TI

0 Initialization; t = 0, t0 = 0, l
(g)
t = φ

1 Calculating Action Probabilities of all the target actions in the
group q

(g,k)
t , sorting them and selecting largest two q

(q,k)
t

as yt.
2 Assigning temporary labels at time t as follows.

if {yt}1 ≤ 0.5, l
(g)
t = φ, else , l

(g)
t = aλ

where λ = arg maxk q
(g,k)
t .

3 Checking the temporary labels as follows.

if l
(g)
t0
�= l

(g)
t goto 4.

else t0 ← t and goto 6.

4 Correcting the temporary labels by discriminating stability of
time-series AP as follows.

l
(g)
t ← l

(g)
t0

if

(
l
(g)
t = φ, ln pSN(yt0:t) < ln pU(yt0:t)

l
(g)
t �= φ, ln pSP(yt0:t) < ln pU(yt0:t)

else keeping l
(g)
t and t0 ← t.

5 Updating flag frame t0.
if t− t0 > TI , then t0 ← t

6 Fixing l
(g)
t , t← t + 1, and returning to 1.

The advantage of the algorithm is that the length of interval
t0 : t is not fixed but variable. This mechanism limits the
latency for detecting the reliable segmental points as small
as possible. Of course, we must give upper bound constant
TI for the interval.

IV. EXPERIMENTAL RESULTS

In this section, we illustrate the performance of the
proposed recognition and segmentation method using time-
series human motion data. We evaluated two aspects of the
algorithm. One is for the performance of the segmentation
in a group of actions. The other is for advantageous im-
provement to incorporate the semi-hierarchical representation
of groups of actions (see Fig. 2). As the evaluation for
recognition performance in a group of actions, we calculated
the performance scores in three aspects, 1) the frame-wise
accuracy for online recognition, 2) the accuracy for the timing
of the detected start and end point of the action segments,
3) the accuracy of the number of the action segments. As

TABLE II

SPECIFICATION OF MOTION FOR TEST USED IN THE EXPERIMENT

Actor 4 Males in 20s
� of files 50
Total time 750 seconds, [avg. 15 seconds]
� of segments 338 (assigned by human)

for the accuracy of the number of the action segments, we
compared the number of the action segments detected by the
proposed method and labeled by human. As the evaluation for
effects on the semi-hierarchical representation, we evaluated
the revised and the error corrected frames by using constraints
of it.

Motion Dataset: In the following sentences, we de-
scribe motion data for training and evaluating used in the
experiments. All the motion data contain human skeletal
configuration and the time-series joints angles acquired by
a magnetic motion capture system with 30 Hz. The skeletal
configuration in the experiments has 36 degrees of freedom.
Specifically, the format of the motion data is BVH. We
categorize the motion data used in the experiments into
two categories. One motion dataset serves as the training
data for the Action Probability implemented in (3). In this
experiment, we used ICS action database [21] for this dataset.
ICS action database contains 3 ∼ 4 seconds pre-segmented
motion clips about 25 actions. The motions are labeled with
action names frame-wise. The other category serves as the
testing data for our proposed recognition and segmentation
method. The specification and the quantum of the motion
data for testing our proposed method is summarized in Table
II. The thumbnails of the example of the test motion in this
experiment is shown in Fig. 7.

Fig. 7. Thumbnails of motion data example for testing the proposed method
is shown. The figures, for example, 270, indicate frame number from the
start.

Evaluation Method: As the performance scores for the
frame-wise accuracy and timing accuracy of detecting the
segmental point, we used F-measure as a basic performance
score in the experiments. F-measure with adjustable positive
parameter β is defined as

Fβ =
1

β
β+1

1
R + 1

β+1
1
P

, β > 0,

where R denotes recall and P denotes precision performance.
Because F-measure can be interpreted as a harmonic mean
of the recall and the precision, a higher F-measure indicates



the higher performance of the classifier. In this experiment,
the adjustable parameter in F-measure, β, was set at 1.0.

For the frame-wise accuracy, R and P denotes as follows

P =

X
t,g

�l̂
(g)
t = l

(g)
t ��l̂

(g)
t �= φ�

X
t,g

�l̂
(g)
t �= φ�

, R =

X
t,g

�l̂
(g)
t = l

(g)
t ��l

(g)
t �= φ�

X
t,g

�l
(g)
t �= φ�

,

where l̂ denotes estimated action labels, on the other hand,
the action labels made by human is represented by l. A
function �var� returns 1 if var is true, else returns 0. As for
the accuracy of timing of the detection of segmental points,
it is not proper to use the indicator function �·�. It’s because
this returns 0 in either case the difference between true and
estimated segmental point is very small or too large. Thus
we re-define the indicator function whose value is not zero
but small when the difference is large. Specifically, we use
Gaussian function as exp(−|t̂ − t|2/152),where t̂ represents
estimated segmentation points, and t depicts ones made by
human. So, for the accuracy of the timing of the segmental
points, R and P denotes as follows

P =

X
i,l,g

exp
“−|t̂(g)

i,l − t
(g)
∗,l |2

152

”

X
i,l,g

�t̂
(g)
i,l �= φ�

, R =

X
i,l,g

exp
“−|t̂(g)

∗,l − t
(g)
i,l |2

152

”

X
i,l,g

�t
(g)
i,l �= φ�

,

where t̂
(g)
i,l means i-th estimated segmentation points of

action label l in g-th group, t
(g)
∗,l depicts ones which are

made by human and are the closest to t̂
(g)
i,l in P . The same

goes for t̂
(g)
∗,l and t

(g)
i,l in R. We calculated the ratio: (� of

segments made by system) / (� of segments made by human)
for accuracy of the number of the action segments. This
implies that the ratio closer to 1.0 is better performance.

In order to clarify the performance of the proposed method,
we compared the other online recognition method using time-
series Action Probability. Classification for the first method
is the same as (2). The second one uses moving averaging
methods in order to eliminate the high frequency noise
of Action Probability. This means that the moving averag-
ing method uses feature vector r

(g)
t written as {r(g)

t }k =
∑TR−1

τ=0 q
(g,k)
t−τ /TR. The classification rule for the moving

averaging method can be written in (2) except replacing q
(g,k)
t

by r
(g)
t .
Condition and Parameters: In the following, we

describe the specific conditions and the parameters used in
this experiment. In order to achieve our implementation of
Action Probability, we used the same condition for SVMs
reported in our previous report [4]. We optimized σ in (3) by
MAP (maximum a posteriori) estimation. In this experiment,
we use a Gamma distribution as the prior distribution of σ.
Specifically we set the distribution as p(σ) = Γ(γ, γ−1) ∝
σγ−1 exp(−γσ), where γ > 0 (we set γ = 0.1 in the
experiments). In the experiment we used a part of motions

in ICS action database in order to learn SVM and σ. We
used a kind of cross validation techniques (5-fold) for the
optimization procedure of σ.

In order to make Stable-P, Stable-N, and Unstable HMMs,
we prepare the segments that contain time-series Action
Probability. The preparation is done manually by watching
and cutting for the corresponding HMMs. All the parameters
of the HMMs are optimized with the EM algorithm from this
segmented time-series Action Probability. We calculated the
performance in several conditions by changing the interval
window size TI = 5, 10 and TR = 5, 10, 25.

Result: The performance for each condition of each
algorithm is shown in Table III. In Table III, AP+threshold
represents the compared method without smoothing, and MA
denotes the compared moving averaging method. The figures
in parenthesis denotes upper bound of length of intervals:
TI for HMM and TR for the moving averaging method, re-
spectively. In each method, the frame-wise accuracy achieves
similar score, however, our method is superior in removing
the unnecessary action segments than the other methods. As
we noted above, the moving averaging method gets worse
in the timing accuracy of detecting segmental points, when
we set TR = 25 in order to remove unnecessary action
segments as much as our proposed method can do. This
result implies our recognition method can not only eliminate
the error of Action Probability but also detect the segmental
point quickly. The recognition and segmentation result of the
proposed method with time-series Action Probability for the
input motion in Fig. 7 is shown in Fig. 8.

TABLE III

RECOGNITION PERFORMANCE IN EACH METHOD

frame-wise timing ratio of �
of segments

Our Method(5) 0.81 0.55 1.10
Our Method(10) 0.81 0.55 0.97
AP+threshold 0.82 0.52 1.60
MA(5) 0.82 0.53 1.42
MA(10) 0.81 0.53 1.32
MA(25) 0.80 0.51 0.96

Advantageous Effect using Semi-Hierarchical Rela-
tion: As a result of the effect using the semi-hierarchical
representation of actions, the number of the revised frames
and the error corrected frames is illustrated in Table IV. This
result shows that our approach is very simple but has certain
advantage when we compare the recognition method without
hierarchical relations.

TABLE IV

ERROR CORRECTION USING STRUCTURES OF GROUPS OF ACTIONS

� of revised frame � of corrected frame
HMM(5) 971 643

HMM(10) 859 531



Fig. 8. Recognition and segmentation result of our method is shown. The
1st row of the figure represent root group’s time-series Action Probability.
The 2nd shows the estimated labels for the root group. The 3rd and the
4th represent “standing group”’s result, the 5th and 6th represent “sitting
group”’s result, the 7th and 8th represent “lying group”’s result, and the 9
th and 10th represent “looking group”’s result, respectively.

V. CONCLUSION
In this paper, we propose a robust online action recognition

algorithm using segmentation scheme that detects the start
and end points of action occurrence. Our algorithm utilizes
a semi-hierarchical representation for categorizing actions in
order to simplify the algorithm. As a part of the algorithm,
we use time-series of Action Probability, the likelihood
of action occurrence. Action Probability is calculated from
the result of SVM-based online action recognizer [4]. The
system can classify robustly and immediately whether the
current time is to be segmented or not by stability analysis
for Action Probability with hidden Markov models. The
experimental result using real motion capture data shows
that our algorithm does not only prevent the system from
making the unnecessary segments due to the error of time-
series Action Probability but also decreases the latency for
detecting the segmental point better than the moving average
method. In addition, our algorithm can be applied to dynamic
actions such as walking with the action recognition method
considering dynamics of motion [22].

Our suggestion for future work is as follows. Our algorithm
works well, however, there are multiple parameters and
conditions given a priori. Thus we will explore how to reduce
these parameters. Also, the error correction algorithm using
the semi-hierarchical representation of groups is good but
naive. Hence, we have a plan to make alternate for that.
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