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Abstract – This paper proposes a recognition algorithm
based on kernel classifier for human daily life action such
as walking or lying down. The advantage of the proposed al-
gorithm is to realize implant of qualitative human knowledge
and robust recognition accuracy at the same time. The main
features of the presented method are: 1)utilizing Gaussian
process with latent variables for relation between recognized
labels and input human motion, 2)in order to embed prior
knowledge for proper recognition of novel motion dissimi-
lar to the learned motion data, assigning probabilistic labels
to virtual human motions generated in “Sparse” area of in-
put motion feature space, 3)learning parameters of classifier
by real human motion with labels and the virtual motions
in Bayesian perspective. The result of cross-validation like
experiment shows that the accuracy of the proposed method
is as good as support vector classification based recogni-
tion methods. It is also shown that the proposed method can
recognize some novel motion fit into human common sense
even when the classifiers without embedded knowledge fails
to recognize it.

Keywords: Behavior Recognition, Knowledge Incorpora-
tion, Kernel Methods, Bayesian Statistics, Motion Capture

1 Introduction
Recognizing human daily life action is one of essential

factors to realize smooth communication between intelligent
systems and human. It is also a key technical element to
realize analysis and surveillance of human activity with in-
telligent system for human life assistance. The authors have
built action recognition systems for daily life action, such as
walking and sitting [1], [2]. Roughly speaking, the recogni-
tion algorithms we developed are divided into two categories.
The former type of the recognition algorithms has advantage
in embedding prior knowledge of human action. The latter
type is based on statistical methodology, especially memory
based approach.

In the former type recognition algorithms, a designer of
the system describes discriminant rules based on human
knowledge about action, and implements the rules into the
system. This approach has advantage in embedding qualita-
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tive prior knowledge of action but has difficulty in optimizing
parameters of the rules.

In the latter type recognition algorithms, motion features
relevant to the target action name are selected by human, then
the system classifies the selected motion features with kernel
technique [3]. In case of walking, forward motion of hips is
selected as one of the relevance motion features of walking.
This approach has advantage that it is easier to make system
robust than the former type, but has disadvantage in not fully
making use of the human qualitative prior knowledge about
action. For example, if some action is described as “head
to be high”, the former technique recognizes motion with
concept of “how high the head is”, on the other hand, the
latter technique utilizes height of head without concept of
“head is high or not”.

When volume of training data is too small and the distri-
bution of the data is not properly scattered into motion fea-
ture space, it is hard to make the classifier understand the
concept of description about action. This sometimes invokes
that the latter type algorithms cannot give assurance of out-
put proper recognition result for novelty motion dissimilar
to the training data because of small diversity in the training
motion data. In this context, the proper recognition result
means the result fitting into human common sense.

This problem can be resolved only if the training motion
data have very large size and diversity. But the preparation
of such data demands very laborious work. In other pattern
recognition community, some previous researches already
targeted compensation technique for the poor data problem.
In area of computer vision, proper prior knowledge that cate-
gorization of images remains unchanged after the images are
rotated, resized, translated is often used. Schölkopf et al. [4]
used virtual images rotated and rescaled from real image to
enhance the performance of the system. Romdhani et al. [5]
also used virtual samples by changing illumination of real
images for robust face detection. In area of natural language
processing, bioinformatics, and speech processing where the
data can be obtained very easily, semi supervised learning
technique is often used to enhance the performance because
it is very hard to prepare labels of all the data. Inoue et al.
[6] and Nigam et al. [7], combines little amount of labeled
data with large size of unlabeled data.



Unfortunately, it is not easy to apply the techniques men-
tioned above for the domain of action recognition, because
it is difficult to make definition of invariant motion feature
in action recognition itself, and it is also very hard to pre-
pare large size of unlabeled data. In contrast to the area of
natural speech processing, the preparation of large diversity
of motion data is very hard work, because measuring human
motion only for a short time makes an actor exhausted.

Therefore, the main contribution of this paper is to build
recognition algorithm to prevent the recognition system from
nonguarantteed performance for novelty motion dissimilar
to the training motion data. The proposed recognition algo-
rithm basically integrates both the advantages of the previ-
ous two techniques we developed, the qualitative knowledge-
based and the statistical approach. This is designed not only
to assure the system performance for input motion similar to
the training data, but also to ensure the proper recognition
result for “unseen” alien motion.

The proposed algorithm pays attention to the “sparse area”
where the training data rarely happen. The virtual data gen-
eration technique is utilized in the sparse area and labeling
task is automatically done probabilistically. The proposed
algorithm combines the real training motion with labels and
virtual motion with probabilistic labels in Bayesian perspec-
tive, and optimizes the performance.

Next section introduces the configuration of our recogni-
tion system. Then, the formulation of probabilistic model
to incorporate qualitative prior knowledge with kernel tech-
nique is introduced. Section 4 explains the automatic al-
gorithm to generate and implant virtual motion. Section 5
shows the validity of our approach. Finally, we give some
brief conclusions.

2 Daily life action recognition system:
HARS

2.1 Input and output
The input of the system is time series of human motion.

Concretely speaking, our system utilizes articulated human
body motion whose three-dimensional configuration is re-
covered. The output of our system contains some action
names in synchronized with frame of the input motion.

2.2 Configuration of HARS
Figure 1 shows the processing flow and the configuration

of the system. In order to realize the simultaneous recogni-
tion, the system contains multiple parallel recognition pro-
cesses, each of which is assigned to the recognizer for one
certain action. This primitive process is called as “Action El-
ement Recognizer(AER)”. One AER runs in parallel simul-
taneously with the others. The system collects the results of
all AERs, and outputs the results of each recognition process
per frame. An AER which recognizes walking discriminates
whether someone is walking, for example.

Figure 1: Configuration of recognition system

2.3 Kernel based action element recognizer
Time series of human motion is utilized as input of each

AER. An AER outputs result of classification whether the
assigned action occurs or not per frame in synchronized with
the input motion. One category is named as “yes” which
represents that the assigned action clearly occurs. Another is
named as “no” which represents that the opposite meaning
of “yes”. Thus, the AER is equivalent to a binary classifier.

2.3.1 Classification rule in AER

This section explains formulation of classification rule of
AER as binary kernel classifier. We denote by x the time
series of input motion. {xi, yi}l

i=1 are the input-output pairs
in total l frames, where xi represents i th frame temporal
template motion and its corresponding reference binary(e.g.
“yes” or “no”) signal by yi. We can write by αi the coeffi-
cient whose value is proportional to importance of the mo-
tion template. Similarity value between the input motion and
one template motion is represented by Kernel K(x, xi). The
mapping between the input and the output of the binary clas-
sifier in the AER f can be written as

f(x) = sgn

(
l∑

i=1

αiyiK(x, xi) + b

)
, (1)

where b depicts offset and the function sgn(·) is a step func-
tion where the relation of input-output is represented as

sgn(t) =
{

+1 if t > 0
−1 if otherwise .

Learning process in the binary classifier of AER tunes the
coefficients(α, b) from the training data. The detailed expla-
nation of the learning process is mentioned in section 3 and
section 4.

2.3.2 Deriving kernels: combination of kernel values
per expression

The proposed method derives the kernel value in the clas-
sifier as the products of all the kernel values corresponding
to the similarity in each expression about target action. Con-
cretely speaking, the kernel value which corresponds to the
similarities in j th expression Kj(·, ·) can be written as

Kj(ϕj(x
(j)
i ), ϕj(x(j))),



where x(j) denotes the selected input motion attribute, such
as height of head, and bentness of hips in the j th expression,
and ϕj(·) represents the converter from the selected attribute
to the input feature.

When the numbers of the expressions in the target action is
d, the kernel value in the target action K(·, ·) can be written
as

K(xi, x) =
d∏

j=1

Kj(ϕj(x
(j)
i ), ϕj(x(j))).

3 Statistical learning incorporating
prior knowledge in kernel classifier

3.1 Classifying and learning with probabilis-
tic models

3.1.1 Classification rule of input motion

The classification process is based on posterior conditional
probability p(y|x, D, Xv,H), where x depicts input motion
to be classified, y = ±1 represents the code as recognition
result. We write by D dataset of real input output pairs. Xv

denotes dataset of the virtual motion and H represents quali-
tative prior knowledge about action. Virtual motion means
the artificial motion data generated and projected into the
motion input feature space. H works as label assigner for
virtual motion. Because the code of the label is binary, the
classification rule can be derived as

ŷ = sgn
(

ln
p(y = +1|x, D, Xv,H)
p(y = −1|x, D, Xv,H)

)
, (2)

where ŷ denotes the estimated label.

3.1.2 Formulation of distribution

Before detailed explanation of the posterior distribution
used in this paper, some variables used in the distribution are
introduced. Dataset X = {xi}n

i=1 contains motion data in
total n frames. In related to X , Y = {yi}n

i=1 represents the
collection of labels. D is equivalent to D = {xi, yi}n

i=1.
Dataset Xv = {x̃j}m

j=1 contains virtual motion in total m
frames. In related to Xv, Yv = {ỹj}m

j=1 denotes the collec-
tion of probabilistic labels for virtual motion. The variable
z ∈ R depicts a latent variable corresponding to x. We write
by Z = {zi}n

i=1 dataset of latent variables corresponding to
X . Zv = {z̃j}m

j=1 represents latent variables corresponding
to Xv. These latent variables serve as indicators of the bi-
nary output codes. The poster distribution for classification
rule can be derived as

p(y|x, D, Xv,H)

=
∫

p(y, Yv, z, Z, Zv|x, D, Xv,H)dYvdzdZdZv

=Ep(Yv ,z,Z,Zv |x,D,Xv ,H)[p(y|z)], (3)

where operation written by Eq[f ] represents expectation of
function f with distribution q. Reason why we adopt latent
variables is that this decomposes complicated probabilistic

models to combination of simple distributions. This fac-
torization technique is used in the generic Gaussian process
classification [8]. Roughly speaking, output codes and input
motions is independent if latent variables are conditioned.
The conditional distribution of latent variables z, Z, Zv by
input motion x, X, Xv is described as Gaussian process.
Eq.(3) can be decomposed as

p(Yv, z, Z, Zv|x, D, Xv,H)
∝ p(Y |Z)p(Yv|Zv, Xv,H)p(z, Z, Zv|x, X, Xv). (4)

The graphical model for the proposed probabilistic modeling
is shown in Figure 2. Alphabets in circle and square repre-
sent observed and latent variables, respectively. Alphabets
in doubly square represent are given priori by human knowl-
edge. Especially S represents the virtual motion sampler for
compensating the sparse area of training motion. The de-
tailed explanation of S is mentioned in section 4. H rep-
resents qualitative prior knowledge that serves as a part of
label assigners for virtual motion. Each distribution which
appeared right hand side of Eq.(4) is defined as follows.

Figure 2: Graphical model of the Gaussian process classifier with
embedding prior knowledge

Conditional distribution of output codes

• Related to real motion
We assume samples of Z , Y generate in i.i.d. In other
words, the conditional distribution of Y with Z can be
decomposed as

p(Y |Z) =
n∏

i=1

sig(yi, zi),

where operation written by sig(y, z) represents

1/(1 + exp(−β−1yz)),

and β represents any positive value.

• Related to virtual motion
We also assume the samples of Yv, Zv, Xv can be ac-
quired as i.i.d. Then the distribution can be decomposed
as

p(Yv|Zv, Xv,H) =
m∏

j=1

p(ỹj|z̃j , x̃j ,H).



We design this distribution of probabilistic labels as
product of belief distribution by qualitative prior knowl-
edge H and distribution of sigmoid shapes sig(·, ·). The
embedding of prior knowledge intervenes from the be-
lief distribution p(ỹj |x̃j ,H). Thus the distribution of
probabilistic label for virtual motion using prior knowl-
edge is defined as

p(ỹj |z̃j , x̃j ,H) ∝ p(ỹj |x̃j ,H)sig(ỹj , z̃j).

The distribution for embedding of prior knowledge is
defined as

p(ỹj |x̃j ,H) = h(x̃j)
1+ỹj

2 (1 − h(x̃j))
1−ỹj

2 ,

where function h(x̃) denotes belief of action occurring
and is designed with prior knowledge about action. The
range of output of h(·) is 0 ∼ 1. The brief introduction
of design method of h is mentioned in section 3.2.

Conditional distribution of latent variables

As mentioned above, Gaussian process is used as the dis-
tribution for input and latent variables

p(z, Z, Zv|x, X, Xv) = N (0, G + σ2I),

where N (µ, Σ) denotes Gaussian distribution with mean
vector µ and covariance matrix Σ. G represents gram ma-
trix [3] as

G =


 Ψ

kr

kv

kt
r kt

v K(x, x)


 ,

{kr}i = K(xi, x)
{kv}i = K(x̃i, x)

Ψ =
(

Krr Krv

Kt
rv Kvv

)
,
{Krr}ij = K(xi, xj)
{Kvv}ij = K(x̃i, x̃j)
{Krv}ij = K(xi, x̃j)

.

The positive parameter σ represents a scatter parameter that
keeps the covariance matrix positive definitive.

3.1.3 Learning with optimized latent variables

Learning to determine optimized parameters can be de-
rived as follows. Because we use distribution of output label
with latent variables as p(y|z) = sig(y, z), the classification
rule based on posterior probability is equal to

z (p(y = +1|x, D, Xv,H) − 0.5) > 0.

Herbrich [9] proved that the optimized latent variable is de-
rived from

ẑ =
(
Ẑt, Ẑt

v

)
Ψ−1 (kr, kv) ,

where Ẑ, Ẑv denotes the optimized latent variables. When
function g(·) can be written with weighing parameters

ν̂t =
(
Ẑt, Ẑt

v

)
Ψ−1

as

g(x) =
n∑

i=1

ν̂iK(xi, x) +
m∑

j=1

ν̂j+nK(x̃j , x), (5)

the classification rule in Eq.(2) is equivalent to ŷ =
sgn(g(x)). This clearly specifies the proposed method is
a kind of kernel classification algorithm defined as Eq.(1).
The derivation of latent variables Ẑ, Ẑv, the essential param-
eters for estimating weighting coefficients ν̂, is based on the
right hand side of Eq.(4). Markov chain Monte Carlo [10]
or Laplace’s approximation [8] can be applied for estimat-
ing Ẑ, Ẑv. This paper uses latter technique because of its
efficiency. Laplace’s method approximates the distribution
at peak point with second order Taylor’s expansion. The
Newton-Raphson technique is applied for searching the peak
point. We call the proposed Gaussian-based probabilistic
model incorporating qualitative prior knowledge via virtual
motion as VPK GPC(embedding Virtual Motion with Prior
Knowledge Gaussian Process Classifier). VPK GPC allows
any parameterization of prior knowledge.

3.2 Belief computation
This subsection describes the design method of belief

computation h(·) for virtual motion x̃. The design method-
ology in this paper is based on Mori et al.’s technique [1].
It utilizes fuzzy inference technique. The inference rules
are derived from the description about action hand-written
by human. In this technique, the belief is the production of
each fuzzy membership function per description. Each fuzzy
membership function output the value from 0 ∼ 1 as the be-
lief that the target action occurs.

For example, we show the procedure of belief computation
for standing. When standing can be described as “head to be
high” and “hips are not bent”, then the height of head and an-
gle between upper and lower body are selected as the gazed
relevance motion features. As a fuzzy membership function,
the belief “head to be high” corresponding to height of head
is designed as monotonic increase function. The belief “hips
not to be bent” is also described by monotonic decrease func-
tion. The calculation flow of belief computation is shown in
Figure 3.

4 Generating / implanting virtual mo-
tion

Because virtual motions are assumed to be given priori and
used in VPK GPC, it is important to design how to gener-
ate and implant virtual motion into VPK GPC. This section
explains the procedure of generating and implanting virtual
motion data. As mentioned above, the motivation using vir-
tual motion is to compensate sparseness of the training data.
In order to build proper virtual motion technique, 1) defini-
tion of the sparse area, 2) selection and implant of the gener-
ated virtual motion in the sparse area are important problems.



Figure 3: Processing flow of calculating belief with fuzzy mem-
bership function as prior knowledge

4.1 Definition of “sparse” feature space
In machine learning community, there are some interest-

ing techniques similar to the concept of sparseness of the
data. One is outlier detection framework [11]. Another is
one-class classification framework [12] which classifies the
input datum whether the known category draws or not.

In this paper, the sparse concept is set as extension to out-
lier detection framework, then we define the sparse area with
probabilistic density as follows. As first step of defining the
sparseness, the density of the training data X = {xi}n

i=1 is
estimated with mixture of Gaussian distributions as p̂N (x).
The estimation procedure is done with Expectation Maxi-
mization(EM) algorithm [13]. Then we define the sparse
feature space S as

{∀xu ∈ S| ln p̂N (xu) ≤ r}, (6)

where xu denotes any input motion data. Threshold r is de-
fined as

r = Ep̂N [ln p̂N (x)] − k · Vp̂N [ln p̂N (x)] , (7)

where Vq[f ] represent variation of f with distribution q, pos-
itive parameter k denotes the adjustable parameter for decid-
ing the sparseness. Tendency that the new motion is discrim-
inated as motion in sparse feature space will increase when
we set k small.

4.2 Strategy for implanting virtual motion
This subsection introduces how to generate and implant

virtual motion in the sparse area mentioned in 4.1. We think
virtual motion worth to be implanted is based on correction
or clarity of belief computed with prior knowledge. We also
have to care computational efficiency of the implanting. As
consideration of clarity of belief, s, the candidate virtual mo-
tion to implant, must satisfy

min{h(s), 1 − h(s)} < c, (8)

where c > 0 denotes the adjustable parameters to determine
whether h(s) is clear or not.

In order to realize efficient implanting of virtual motion,
we adopt the following strategies. In this context, the com-
putational efficiency means that the correction power into
VPK GPC via virtual motion. In other words, the correction
power means the power of repair of improper classification
boundary of recognizer in sparse area via a virtual motion
with prior knowledge. Thus we pay attention to the feature
space that satisfies following properties.

• Unclarity of posterior probability is large.

• Difference between posterior probability and belief
computation by prior knowledge is large.

In other words, the former area represents neighborhood of
classification boundary and the latter means the recognizer
output misclassified result which does not fit into human
common sense. As an implementation step, we define the
unclarity with entropy concept as

A(s) =
∑

y=±1

−p(y|f(s)) ln p(y|f(s)), (9)

where s denotes candidate of virtual motion to be implanted,
function f represent the function of AER classifier appeared
in Eq.(1), and we set p(y|f(s)) as sig(y, f(s)). We also
define the difference D with Kullback-Leibler Divergence as

D =
KL(h||q) + KL(q||h)

2
, (10)

where distribution q represents sig(y, f(s)).

4.3 Sequential learning algorithm
Inconveniently, some recognition classifier including

VPK GPC is assumed to be priori given in the strategy men-
tioned in 4.2. Thus we create a sequential learning algorithm
in order to build VPK GPC with proper virtual motion with
probabilistic label automatically.

Concretely speaking, the sequential algorithm starts with
null virtual motion and builds VPK GPC without virtual mo-
tion, i.e. Xv = φ. Then, the algorithm automatically gen-
erates and selects virtual motion as mentioned in 4.2. Next,
the algorithm groups together the selected virtual motion into
Xv , then the algorithm refines VPK GPC classifier. This
procedure is iteratively done until the change of classifica-
tion boundary is small or the volume of sparse feature space
to be worth generating proper virtual motion is very small.
Table 1 shows the procedure of the sequential learning al-
gorithm. We set the range of the parameters in Table 1 as
γ, ε is 0 < γ, ε � 1.

5 Performance evaluation
We validate the proposed algorithm in two perspective: 1)

the recognition performance for motion similar to the train-
ing data, 2) proper recognition result for novel motion dis-
similar to the training data. As the former aspect, we evaluate



Table 1: Procedure of sequential learning algorithm
Setting: Motion Dataset with labels D, Kernel K , Prior
Knowledge h(·)

0 Setting virtual motion data set Xv as null, then normalizing
and estimating density of the real motion data setX

1 Generating f in Eq.(5) by VPK GPC after integrating D and
Xv

2 Generating uniform random vectors {s}n
i=1: in input space

3 Selecting virtual samples in “Sparse” area(Eq.(6), Eq.(7)) as
ss from s

4 Selecting sc from ss which satisfies Eq.(8)
5 Selecting sv from sc which satisfy A(sc) > a,

D(h(sc), p(y|f(sc))) > e, (a, e > 0)
6 Terminating if num. of sv is less than γn
7 Selecting εn samples from sv based on A,D
8 Adding selected samples to Xv and Returning to 1

the interference of the VPK GPC by virtual motion and prior
knowledge. As the latter aspect, we evaluate advantage of in-
corporating prior knowledge via virtual motion by observing
behavior of the proposed recognizer for novel motion. In
the following sentences, motion used in the experiments are
explained.

5.1 Motion used in the experiments
In the experiments of this paper, we use ICS action

database [14] containing 25 actions such as lying, sitting, or
running. This is the collections of motion data with reference
action name labels. The 25 actions are stored in the database
at least five times. Each motion data in this database con-
tains a motion capture data and its reference files per each
target action. One reference file contains human’s judgment
for the a certain assigned action per frame by three degrees
(“yes”, “neutral” and “no”). The label “neutral” represent
ambiguous recognition result by human. In this experiment,
we transform the label as y = +1 if the reference in the
database is labeled as “yes”, else y = −1.

The specification of the motion and labels of the database
is listed as Table 2. BVH [15], the format of motion capture
data, is a de-facto standard in computer graphics by the Bio-
vision Corporation. A BVH file contains the structure of a
human as a linked joint model(figure) and the motion of the
figure per frame.

Table 2: Specification of ICS action database
D.O.F. 36(11 Articulation)
Measurement Magnetic(Ascention MotionStar)

Posture and Position
Actor a male in 20s
Format Biovision BVH and its label
Num. of Files 125 (Avg. 3.2[sec.])

5.2 Performance for motion similar to the
training data

In order to verify the proposed algorithm ensure the ro-
bust performance for recognizing motion data similar to the
training data, we compare the performance of the proposed
algorithm, SVM classifier, Gaussian process classifier, and
Mori et al.’s knowledge-based algorithm [1]. The last one is
also served as belief calculator in VPK GPC.

In this experiment, we select three basic action cate-
gory lying, sitting, and standing as the target action names.
The performance is evaluated by using like cross validation
scheme. Concretely speaking, we run over the calculation
of the performance by 1000 frames training motion data and
the other 11000 frames testing motion data in recall/ preci-
sion aspect. The number of the repetition for training with
1000 frames and evaluating with 11000 frames is 20. Finally
we acquire the mean and variance of accuracy in each action
name by each recognition method.

5.2.1 Parameter settings of learning algorithms

As preparation, we adjust the parameters of knowledge-
based recognition algorithm for fitting the input motion and
the recognition result. All the kernel based technique, SVM,
Gaussian process classifier, and the proposed method uses
same type of kernel and exact same parameters. The used
type is Gaussian kernel. When dimension of the total feature
input into the kernel function is fd, we tried to set the kernel
parameters σ in the Gaussian kernel as

σ/
√

fd = {0.25, 0.5, 1.0, 1.5}.

The penalty factor C in SVM which also represents the
maximum value of the Lagrange variables is selected from
10, 100, 1000 and is determined through 5-fold cross valida-
tion.

The parameters used in the proposed algorithm is set 90%
hypothesis testing. Concretely speaking, the parameters ap-
peared in Table 1, Eq.(6), Eq.(7), Eq.(8) is set as k = 1.645,
c = 0.05, a = 0.18, e = 2.49, ε = γ = 0.01.

5.2.2 Result

Table 3 shows the result of the performance for all the
recognition algorithms when we give the condition men-
tioned above. In the table, SVM, GPC, Hyp, and Prop
represents the performance by support vector classification,
Gaussian process classification, knowledge based recogni-
tion, and the proposed algorithm, respectively. In kernel
based classification, the performance written in the table rep-
resents average performance of all over the kernel parameters
mentioned above. The r with brackets represents classifica-
tion error in recall perspective. Concretely speaking, (r) rep-
resents the percentage of samples which are misclassified as
−1, meanwhile the true labels for these samples are +1. On
the other hand, (p) represents error rate in precision aspect.
In particular, (p) shows the percentage of the samples with
label −1 when the classifier estimates the codes of them as
+1.



Table 3: Error recognition rate in each method
Action SVM GPC Prop Hyp

Lying (r) 0.5 ± 0.1 0.7 ± 0.2 1.2 ± 1.0 4.5 ± 0
(p) 1.3 ± 0.1 1.3 ± 0.1 1.3 ± 0.1 1.9 ± 0

Sitting (r) 1.3 ± 0.3 1.2 ± 0.3 1.3 ± 0.3 1.6 ± 0
(p) 1.6 ± 0.4 1.4 ± 0.3 1.4 ± 0.3 3.8 ± 0

Standing (r) 0.5 ± 0.0 0.6 ± 0.1 0.8 ± 0.1 3.0 ± 0
(p) 1.2 ± 0.1 1.0 ± 0.2 0.7 ± 0.1 0.2 ± 0

This result implies that the performance of the proposed
algorithm for motion similar to input motion is guaranteed
even if the knowledge based algorithm is roughly appropriate
but is subtly different exact classification boundary.

The demonstration of sequential learning algorithm for ly-
ing conditioned as σ = 1.0

√
fd (in this case, fd = 2) is

shown in Figure 4. Horizontal and vertical axis represents
normalized height of head and hips. In Figure 4, the algo-
rithm selectively implants virtual motions in feature space
of “head to be low and hips to be high”. This area satisfies
the sparseness of the training data, the unclarity of classifica-
tion output without prior knowledge, and difference between
prior knowledge and classifier’s result.

By taking the strategy mentioned in 4.2, the sequential
learning algorithm needs small virtual motion data to be im-
planted. In this example, the proposed sequential training
algorithm terminate with 4 th iteration. In almost case, the
number of iteration of the proposed sequential algorithm is
about only 3 to 5 times.

Figure 4: Process of iterative learning and infusing virtual samples
for lying recognizer is shown. “Lying” and “not lying” motions are
represented as circle and cross points. ∗ points represents virtual
motion. The color map and curves of these thumbnails represent
output of Eq.(5) and its zero points. The color gets lighter, the
value is higher. The figure in each thumbnail represents the number
of the iteration.

5.3 Application for novel motion
We observe the behavior of the recognizer for lying with

or without prior knowledge for hand-standing motion, in or-
der to verify the proposed algorithm can embed proper prior
knowledge about action.

5.3.1 Setting

Because the action database used for training does not
contain a kind of hand-standing action, we utilized BVH
file(measured at 30 Hertz, 7 sec.) named CELEB2 which
contains hand-standing like motion from Biovision Motion
Collection’s CD-ROM. The thumbnails of the motion in this
BVH file is shown in Figure 5.

Figure 5: Thumbnails of “CELEB2.BVH” from Biovision Motion
Collection CD where a male stands by hand are shown. The figure
shown in the left-top side of each thumbnail indicates seconds from
the starting time.

In this experiment, we observe the recognizer learned by
the same conditions mentioned in section 5.2. The learning
data is selected randomly from all the motion data and we
iterate this process 30 times.

5.3.2 Observation result

In the case of Gaussian process classification without prior
knowledge, misclassification occurs in 8 times of 30 trials. In
this context, misclassification means the recognizer classifies



input hand-standing motion as lying. The longest frames of
misclassification is 12 frames, i.e. 0.4 sec.

On the other hand, the misclassification for hand-standing
motion never happens in the proposed recognizer with prior
knowledge. This result implies guarantee of proper embed-
ding of prior knowledge for the recognizer.

6 Conclusion
The main contribution of this paper is to make a solution

to prevent the recognition system from the improper per-
formance for novel motion dissimilar to the training data.
This paper proposes new learning and classification algo-
rithms which incorporates prior knowledge via virtual mo-
tion in sparse area in order to compensate inaccuracy classi-
fication for novel motion in Bayesian kernel methods. The
algorithm is called as VPK GPC. We also developed new
sequential learning algorithm. The sequential algorithm au-
tomatically and efficiently generate and select virtual motion
into VPK GPC iteratively.

The experimental result shows that the proposed recog-
nition algorithm does not face excessive interference by the
virtual motion data and prior knowledge even if the quali-
tative prior knowledge is roughly appropriate but is subtly
different from exact classification boundary. We also vali-
dated the proper embedding of the prior knowledge by ap-
plying hand-standing motion as novel motion to recognizer
for lying. Even if simple Gaussian process classifier fails to
recognize hand-standing motion, the proposed method never
fails to recognize.

The future work of this research is to make new robust
algorithm to determine sparse area, because the mixture of
Gaussian and its EM algorithm is depended on initial param-
eters and the boundary of the sparse area is imbalance. We
also plan to make new algorithm that automatically deter-
mines some priori given parameters in the proposed sequen-
tial learning algorithm.
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