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Abstract— In this paper, we propose a novel kernel com-
putation algorithm between time-series human motion data
for online action recognition. The proposed kernel is based on
probabilistic models called switching linear dynamics (SLDs).
SLD is one of the powerful tools for tracking, analyzing and
classifying human complex time-series motion. The proposed
kernel incorporates information about the latent variables in
SLDs with simplified designing approach called marginalized
kernels. The empirical evaluation using real motion data
shows that a classifier using SVM with our proposed kernel
has much better performance than the classifier with some
conventional kernel techniques. Another experiment using
walking around motion shows that a classifier with the
proposed kernel can properly segment the start and the end
of the target action.

Index Terms— Mixed-State Dynamics, Probabilistic Prod-
uct Kernel, Complex Motion, Motion Capture Data

I. INTRODUCTION

Recognizing human action is one of essential founda-
tions to achieve smooth communication between intelligent
systems, especially robots, and human. It is also a key
technical element in achieving analysis and surveillance
of human activity by intelligent systems. We have built
a recognition algorithm and system for human daily life
action [1]. This is based on a statistical learning algorithm
using kernels [2] that compute similarity between the mo-
tions. The approach using kernels has several advantages
in the following aspects. The systems with kernels can
use robust learning algorithms such as those that support
vector machines and Gaussian processes. The recognition
processes in the system can be unified because the kernels
can absorb the difference between several type of data
structures.

In general, it is well known that the performance of a
classifier using kernel is very dependent on kernel itself.
If a kernel cannot reflect the property of target input data,
the machine fails to attain desirable performance. In the
area of action recognition, the property of motion must be
studied because action is a symbol of time-series motion.
In example of action walking, the feet motion pattern must
be addressed. Thus, we must incorporate the following
property to model the motion data. The first property to
be incorporated is symbolization scheme because action
should be handled with symbols so as to manipulate or
interpret of motion easily. The second property is variation
of time-series motion in time and space, because time-

series motion such as walking and running has wide variety
of motions.

Although hidden Markov model (HMM) is one of the
good probabilistic models to satisfy the above properties
and is also used by many action recognition researchers
[3], [4], HMM has shortage in the following aspect. The
main weak point of HMM is that it is hard for HMM
itself to handle both dynamic property of human motion
and measurement error at the same time. This is because
HMM is originally designed for discrete dynamics and their
observation is independent at each time. Modeling dynam-
ical actions, such as raising hand and walking, requires
properties of both dynamics and measurement error.

Recently, a flexible probabilistic model as an alternative
for HMM, called switching linear dynamics (SLDs) has
been studied [5], SLDs incorporate both intuitive symbolic
representation, Markov property and dynamics property of
motion, linear dynamics. At this time this approach looks
to have the potential to solve the problem of HMM for
recognizing dynamical actions, because dynamical action
like walking has strong non-linearity and the property of
the dynamics changes drastically with times. It is natural
to incorporate SLDs with kernel methods for recognizing
dynamical action such as walking and running. To the best
our knowledge, there are two types of kernel computation
algorithm with SLDs. The first technique is based on Monte
Carlo methods [6] and the second is based on the Fisher
score derived from the Markov chain in SLDs [7]. Both
methods have deficiencies in case of online use. The first
technique requires a very large amount of computation
to optimize the parameters of SLDs and Monte Carlo
integration. The second lacks the capability of handling
dynamics property.

In order to realize a novel kernel computation that is bet-
ter than the conventional techniques, we need to focus on
the following properties. Our first concern is that the com-
putational cost per kernel must be very small. Our second
concern is that kernel be able to incorporate the property
of dynamics of motion. Based on these considerations, we
propose a novel kernel that can use and adopt techniques
of general design policy with latent probabilistic models
called marginalized kernels [8]. This is because SLDs can
be categorized into latent probabilistic models. And the
marginalized kernels have the following good properties.
The marginalized kernels have very high tolerance for noisy



data. The marginalized kernels allow a designer of kernels
to make new kernel between complex structured data with
combination of simple and robust kernel instead of making
a new complex kernel.

There are several kernel computation methods based on
probabilistic model without restriction for specific models.
But all of them are difficult to apply for SLDs. The Fisher
kernel [9] is a simple and natural framework for any
probabilistic models. The Fisher kernel has an advantage
because of automatic derivation once the probability model
is assigned, however, “curse of dimensionality” may occur
in SLDs case. This is because the number of the parameters
of SLDs is very large with dimension equal to the Fisher
score. There are some smart kernel methods computed with
integral operation [10], [11], however, the difficulties on
integrating some parameters in SLDs will arise. Smola
et al. [12] derives an elegant closed-formed kernel for
dynamics, especially linear dynamics (LDs), however, this
kernel cannot run in online action recognition. This is
because the start or end point of the two time-series motion
cannot be clearly given a priori in online action recognition.

II. SWITCHING LINEAR DYNAMICS AND

MARGINALIZED KERNELS

In this section, SLDs and marginalized kernel, the basis
of the proposed kernel, are introduced briefly. Details of
these basic components are in Ref. [5], [8], [13].

A. Switching Linear Dynamics: SLDs

Formulation as Stochastic Process: SLDs are stochas-
tic processes and can be interpreted as combination of
HMM and LDs. The system can be described using the
following set of state-space equations for the physical
system and symbolic transition with Markov chain.

p(X ,Y,S) = p(y1|x1)p(x1|s1)p(s1)
TY

t=2

p(yt|xt)p(xt|xt−1, st)p(st|st−1),

p(yt|xt) = N (Cxt, V ) , p(st|st−1) = sT
t Πst−1,

p(xt|xt−1, st) = N (Axt−1 + Dst, W ) ,

p(x1|s1) = N (D1s1, W1) , p(s1) = sT
1 ı.

The meaning of the variables is as follows: yt ∈ R
m

denotes measured vector in time t, st ∈ R
L represents

symbolic hidden state, xt ∈ R
d is continuous state space

vector in dynamics. For example, position of head or foot
can be a candidate for x. Although st is a vector, this serves
as a symbol. If discrete state is at symbol i, {st}j = δij .
Parameters A, W, W1, C, V are the typical parameters in
LDs. The state initialization vector and its transition matrix
in Markov chain are written with π, Π. Parameters D, D1

serves as a driving force converter from symbols to LDs.
Variables X = {x1, . . . , xT }, Y = {y1, . . . , yT }, S =
{s1, . . . , sT } represent the sequences with length T . We
denote θ as a whole set of parameters in SLDs, i.e.
θ = {A, C, D, D1, W, W1, V, π, Π}. The graphical model
of SLDs is shown in Fig. 1.

Fig. 1. Graphical model of switching linear dynamics

Estimating Hidden State Space and Parameters:
When we use hidden variables X ,S as cues to compute
similarity, the conditional posterior probability p(X ,S|Y)
must be estimated. There are two types of the approx-
imation estimation method for the posterior probability.
One is based on sequential Monte Carlo methods, some-
times called CONDENSATION [14]. The other is based
on the factorized method with variational parameters [5].
The last technique estimate the probability by factorizing
p(S,X|Y) ≈ Q(X )Q(S). The parameters in SLDs are
optimized with an expectation maximization (EM) algo-
rithm [15]. This algorithm can be formulated as an iteration
of the following parameter updating until parameters θold

converge as

θold ← argmax
θ
EX ,S

[
ln p(X ,S,Y; θ)|Y; θold

]
, (1)

where operation E denotes expectation as Ex [f(x)|z] =∫
p(x|z)f(x)dx. In case of SLDs, the expectation in (1)

is computed with Q(X )Q(S) because the conditional
posterior probability cannot be acquired analytically. The
parameters updating is iteratively executed in the same way
as in LDs and HMM.

B. Marginalized Kernels

The marginalized kernel proposed by Tsuda et al. [8] is
a general design framework of a kernel for data modeled
with a latent (hidden) variable probabilistic model. In the
marginalized kernel, the similarity between x, x̃ can be
formulated as follows.

K(x, x̃) =
∫

p(h|x)p(h̃|x̃)Kz(z, z̃)dhdh̃ (2)

where h denotes a hidden variable of the model and z =
{x, h} is a joint variable of the model which can be called
complete data in EM algorithm. Function Kz(z, z̃) is
called a joint kernel. The role of joint kernel is similar to the
complete data probabilistic function of latent probabilistic
model. Thus, a joint kernel is often designed by combining
a simple kernel function.

As Tsuda et al. proves, a Fisher kernel in a latent
variable probabilistic model is a special case of a marginal-
ized kernel with the same probabilistic model. Automatic
derivation for the Fisher kernel is a desirable property but
the dimension of the Fisher score of SLDs is too large to
obtain good performance from the data. Instead, there is
a room for the designer of a kernel to make a simple and
efficient kernel with a joint kernel Kz .



III. MARGINALIZED BAGS OF VECTORS KERNELS

This section describes the details of our proposed kernel
computation algorithm. First, we define the marginalized
kernel on SLDs. Next, a simple kernel computation using
a bags of vectors representation is introduced as a core
component in the joint kernel. Finally, we derive the
formulation of our proposed kernel.

A. Definition of Marginalized Kernel with SLDs

When two time-series motion Y = {y1, y2, . . . , yT },
Ỹ = {ỹ1, ỹ2, . . . , ỹT̃ } can be modeled with SLDs, the
marginalized kernel can be formulated as

K(Y, Ỹ)=
∫ ∑

S,S̃
Q(X ,S)Q(X̃ , S̃)KZ(Z, Z̃)dXdX̃ . (3)

In this paper, we take notice of the symbolic state in SLDs
and design joint kernel KZ(Z, Z̃) as a combination of LDs
in the following formulation as

KZ(Z, Z̃) =
k∑

l=1

nlñlK
(l)
Z (Z, Z̃), (4)

where nl denote the ratio of time when symbol l occurs
in T frame: nl =

∑T
t=1 δ(st = l)/T . K

(l)
Z (Z, Z̃) de-

notes a similarity value between data in symbol state l,
[Y(l),X (l),S(l)] via unimodal LDs of symbol l. This design
policy enables us to concentrate on designing kernels on
unimodal LDs instead of designing kernels of SLDs.

B. Bags of Vectors Kernels via LDs

Design Policy of the Kernels: why Bags of Vectors?:
For online recognition, it is difficult to use an alignment
technique such as dynamic time warping [16], because
the alignment technique requires the start, end, or a cor-
responding point between two time-series data and these
point in input motion cannot be clearly given a priori in
online action recognition case. In case of simple dynamic
time warping, the role of reference motion and input motion
is clearly different, while the role of reference and input
is handled equally in kernel computation. In addition to
this, the time series motion may be input intermittently
in the online tasks. The features of the time-series motion
should not depend on its length, because the length of two
time-series motions is usually not the same. Fisher score
can resolve this problem but in doing so produces a hard
problem; the curse of dimensionality.

To avoid these problems we adopt a bags of vectors
(BoV) representation proposed by Jebara [17]. BoV is
a natural extension of the bags of words (BoW) repre-
sentation, a well-known classical feature representation in
text domain. Similarity between data denoted by BoV is
derived from its frequency and probability density function,
similar to BoW. The reason why BoV can avoid the above
problems is that BoV neglects the order and the length of
the data.

Fig. 2. The bag of vectors represent the data of the linear
dynamics. The tuples q·, e· represent differential information
such that, qt = xt−Axt−1−d, et = yt−Cxt. The distribution
of q, e has information of the data.

Derivation of Bags of Vectors Kernels: When Y,X
and Ỹ, X̃ can be acquired in a unimodal linear dynamics,
we derive the kernel function with BoV representation as
follows. At first, we assume that the time-series data are
approximately generated from the following systems,

p(xt|xt−1) = N (Axt−1 + d, W )
p(yt|xt) = N (Cxt, V ).

In the above settings, qt = xt−Axt−1−d and et = yt−
Cxt are approximately generated fromN (0, W ), N (0, V )
at each time. In reality, the set of q and e differ slightly
from the ideal zero mean Gaussian. This difference serves
as a cue to computing similarity between two time-series
data. Thus we derive the similarity between two time-series
motion via unimodal LD using the set of q and e, the bags
of vectors. The image of BoV is shown in Fig. 2.

We can compute the similarity between data represented
with BoV by using information from its probability density
function. We adopt probability product kernel (PPK) [6],
the kernel technique with probability density function,
because this kernel computation was originally designed
for a natural settings for BoV representation. Especially,
PPK can be formulated as

K([X ,Y], [X̃ , Ỹ]) =

Z (
pD(q)pO(e)p̃D(q)p̃O(e)

”ρ

dqde.

where the probability density function of q and e can be
written as pD(q), pO(e) in time-series data X ,Y , also
p̃D(q), p̃o(e) in X̃ , Ỹ , and the parameter ρ > 0 serves
as an adjustable coefficient.

The most important things when we use PPK is selecting
the model for probability density function pD, pO . In this
paper, we adopted the Gaussian distribution pD(q) =
N (ζ, W ), p̃D(q) = N (ζ̃, W ), pO(e) = N (η, V ),
p̃O(e) = N (η̃, V ) because of its simplicity. In general,
we can write the PPK between Gaussian distributions as

K(p, p̃) =
(

(2π)1−2ρ

ρ

) γ
2

|Σ†| 12 |Σ|− ρ
2 |Σ̃|− ρ

2

exp
(
−ρ

2

[
µTΣ−1µ + µ̃TΣ̃−1µ̃− µ†TΣ†µ†

])
,

where p and p̃ denotes the Gaussian probability density
function p = N (µ, Σ), p̃ = N (µ̃, Σ̃) and γ represents
the dimensionality of µ, i.e. µ, µ̃ ∈ R

γ , Σ, Σ̃ ∈ R
γ×γ .

The other parameters Σ†, µ† can be written as Σ†−1 =
Σ−1 + Σ̃−1, µ† = Σ−1µ + Σ̃−1µ̃. When we set Σ = Σ̃,



the kernel value can be written as

K(p, p̃) = (2ρ)−
γ
2 |2πΣ| 1−2ρ

2 exp
“
−ρ

4
MDΣ(—, —̃)

”

where operator MDΣ(·, ·) denotes the Mahalanobis dis-
tance as MDΣ(µ, µ̃) = (µ − µ̃)TΣ−1(µ − µ̃). Thus the
kernel between two time-series motion via a unimodal LDs
with BoV representation can be written as

K
(l)
Z (Z, Z̃) = (2ρ)−

d+m
2 |2πW | 1−2ρ

2 |2πV | 1−2ρ
2

exp
(
−ρ

4
Df(ζl, ζ̃l, ηl, η̃l)

)
, (5)

where Df(ζl, ζ̃l, ηl, η̃l) ≡ MDW (ζl, ζ̃l) + MDV (ηl, η̃l),
the mean parameters ζl, ηl can be defined as

ζl =
1
nl

T∑
t=2

δ(st = l) (xt −Axt−1 − dl) ,

ηl =
1
nl

T∑
t=2

δ(st = l) (yt − Cxt) , (6)

and dl represents l-th column of D.

C. Marginalizing Bags of Vectors Kernels

Following from (3), (4), (5), (6), our proposed
marginalized kernel can be written as K(Y, Ỹ) =∑L

l=1 νlν̃lK
(l)(Y, Ỹ) , where νl =

∑T
t=1 p(st = l|Y)/T

and the component kernel K(l)(Y, Ỹ) can be derived from
K

(l)
Z (Z, Z̃) by marginalizing with Q(X ), Q(S). Because

of the difficulty in marginalizing with Q(X ), we derive
the marginalized value K(l)(Y, Ỹ) by approximating the
distribution of 〈q〉, 〈e〉, the marginalized value with Q(S)
and Q(X ), as Gaussian distribution. Then the value is
computed as

K(l)(Y, Ỹ) = (2ρ)−
d+m

2 |2πW | 1−2ρ
2 |2πV | 1−2ρ

2

exp
(
−ρ

4

(
Df(ξl, ξ̃l, ϕl, ϕ̃l)

))
, (7)

where the mean parameters ξl, ϕl can be acquired with
knowledge of Q(X ) =

∏T
t=1 Q(xt) and Q(xt) =∏T

t=1N (x̂t, Σ̂t) as

‰l =
1
νl

T∑
t=2

p(st = l|Y)(x̂t −Ax̂t−1 − dl),

ϕl =
1
νl

T∑
t=2

p(st = l|Y)(yt − Cx̂t). (8)

D. Practical Consideration

Generally, online recognizers estimate current status of
action from the history of input motion in certain intervals.
In this section, some practical considerations for online
recognition tasks with the proposed kernel are described.
Specifically, we explain how to segment the (endless) time-
series motion for our proposed kernel, because the length
of time-series motions; T and T̃ , are given explicitly in
(3). In other words, (3) requires the input motions to be
segmented a priori. Simplest way to realize the online
recognition is that we set T = T̃ = constant at each frame.
This approach seems to be very simple and not to consider

anything about alignments of the two motions. However,
the inner state information about the SLDs; p(S,X|Y),
p(S̃, X̃ |Ỹ) provides a certain level of the alignment of input
motion. In this paper, we modify subtly the formulation of
our proposed kernel in order to realize not only preserving
context of global motion pattern but also improving the re-
sponse for the drastic change of input motion. Specifically,
we calculate p(X ,S|Y) not from Y but from YL whose
length is much longer than Y . This means the estimating
the inner state of the SLDs performs before segmenting
the input motion with T . This modification provides the
kernel the context for global motion pattern even if T is
very short.

IV. EXPERIMENTAL RESULTS

In this section, we illustrate the performance of marginal-
ized BoV kernel in recognition experiments using real
human time-series motion data. The recognition task for
this experiment was to classify motion whether walking
or not in frame wise with support vector machines [2]. In
a real recognition system, a combination scheme such as
one vs. one and one vs. all of SVMs to handle multi-class
classification can be used. But we don’t ask for such a
recognition task. This is because there is a large difference
between designing classification tasks and designing ker-
nels itself. In order to concentrate on evaluating the kernel
itself, we give only simple tasks.

Motion Data: In the following sentences, we il-
lustrate the training and testing of motion data used in
this experiment. The motion data contains human skeletal
configuration and its time-series of joints angles acquired
by a magnetic motion capture system with 30 Hertz. The
skeletal configuration in the experiments has 36 degrees
of freedom. Specifically, the format of the motion data is
BVH. The number of the BVH files is 60. The total time
is 183.6 sec. (avg. 3.1 sec.).

The number the motion capture file used in this experi-
ment is 60. They include 19 files with walking only, 20 files
with running only, 5 files with lying, 5 files with standing
still, 5 files with sitting, 5 files with transitional motion
from standing to sitting, a file with transitional motion
where walking motion is observed in part. The tempo
of walking in the experiment ranges from slow-moving
walking to brisk walking. Fig. 3 shows the thumbnail of
motion used in this experiment. Lying, sitting, standing still
motion is very stillness. The time length of the transitional
motion that contains walking motion is about 15 seconds.
The frame-by-frame labels to be given for classifier are
tagged as follows. The value +1 is tagged when walking
motion occurs and -1 is tagged when walking motion does
not occur. When it was ambiguous to classify motion, we
tagged it as non-walking.

Evaluation Method: Next, we describe the method
for evaluating the performance. The criterion of the perfor-
mance we used in this experiment is F-measure. F-measure
with adjustable positive parameter β is defined as

Fβ =
(β + 1)RP

βR + P
, β > 0,



Fig. 3. Action categories used in this experiment

where R denotes recall and P denotes precision perfor-
mance. Because F-measure can be interpreted as a har-
monic mean of the recall and the precision, a higher F-
measure indicates the higher performance of the classifier.
In order to make a fair evaluation of the performance from
a statistical view point, we used a cross validation type
method. Specifically, the training and testing data were
randomly divided from the motion data noted above. The
amount of the training data was set as 30% compared to
whole dataset. The training and testing phase was itera-
tively done in 20 times for every condition. The adjustable
parameter in F-measure, β, was set at 1.0.

In order to clarify the quality of the proposed kernel,
we compare two kinds of conventional kernel techniques.
One kernel, that was proposed by Shimosaka et al. [1],
uses spectrum information of gazed input motion in order
to capture repetitive motion. Specifically, the similarity
can be written as K(yt−WF +1:t, ỹt̃−WF +1:t̃) = K(f t, f̃ t̃)
from two motion yt−WF +1:t, ỹt̃−WF +1:t̃ spanning WF

frames, where f t can be computed by Fourier analyzer
from yt−WF +1:t.

The second method to be compared uses history of input
motion. The classifier with this kernel can be interpreted
as an auto regressive model. If we use a non-linear kernel,
the classifier can be interpreted as a nonlinear regression
models. Specifically, the input feature for kernel, gt =[
yT

t , yT
t−1, . . . , y

T
t−WR+1

]T
, can be transformed from WR

frames of motion. Then the similarity value is written as
K(gt, g̃t̃).

Parameters and Conditions: In the following, we
describe the specific parameters used in this experiment.
We designed the topology of symbol transition for walking
and select the continuous state vectors. Specifically, the
symbol state architecture of the SLD is set as a cyclic
state transition architecture because walking can be viewed
as a repetitive motion. We also manually set the position
and the velocity of the both feet as the hidden continuous
state vector xt ∈ R

4. In response to the setting for x,
the observed time-series data yt ∈ R

2 represents the
frontal (back) position of left and right feet relative to
the hip. Parameters of the SLD was optimized from the
walking motion by the EM algorithm. Parameter ρ in the
marginalized BoV kernel is set to 4 and 8. The time
window size is set to 16 frames. The SLDs used in this
experiment represents walking motion and are optimized
from the walking motion.

The parameters of the compared kernel are set as in
[1]: i.e. WF = 64. This is the minimal number to capture
sufficient resolution of frequency for walking because the
frequency of stable human walking ranges from 0.5 to 1.5

TABLE I

CLASSIFICATION PERFORMANCE IN EACH KERNEL

Type Parameter C F1 Rate
of kernel of the kernel in SVM measure of SV

M.BoV Kernel ρ = 4 C = 100 95.7 11.6
M.BoV Kernel ρ = 4 C = 1000 95.8 10.0
M.BoV Kernel ρ = 8 C = 100 95.6 11.1
M.BoV Kernel ρ = 8 C = 1000 95.6 9.6

Freq+RBF σ = 1.5
p

df C = 100 92.4 29.9
Freq+RBF σ = 1.5

p
df C = 1000 95.1 17.4

Freq+Linear ∅ C = 100 90.2 31.7
Freq+Linear ∅ C = 1000 90.3 30.5
Regr+RBF σ = 1.5

p
df C = 100 84.3 63.1

Regr+RBF σ = 1.5
p

df C = 1000 91.2 36.2
Regr+Linear ∅ C = 100 NaN NaN
Regr+Linear ∅ C = 1000 NaN NaN

Hertz. The observed value of the regression like kernel
is the same as the proposed kernel, both feet position.
The time span to represent time-series motion, WR, is 16.
The kernel used in the two types of kernels is linear and
RBF kernel. RBF kernel can be written as KRBF(a, b) =
exp(−σ−2||a − b||2), where σ > 0 is a adjustable pa-
rameters. In this paper, we took the parameter σ from the
dimensionality of the input features to the kernel df from
[1]. In each kernel, we select some positive constant values
for the regularization parameter of SVM. Specifically, we
gave C = 100, 1000 for SVMs.

Result: The performance for each condition of each
kernel is shown in Table I. In Table I, the M.BoV Kernel
represents the proposed marginalized BoV kernel, Freq+·
denotes a spectrum based method and Regr+· denotes
regression like technique. Parameter C means the regu-
larization variables of SVM. The marginalized BoV ker-
nels achieve high F-measure in every condition. Although
Freq+RBF achieves high performance to a certain degree,
the score is worse than the worst value in the marginalized
BoV kernel. In addition, the rate of the � of the support
vectors (� of support vectors / � of training samples) in the
proposed method is much smaller than for the other meth-
ods. The rate of number of the support vectors indicates
the generalization error of the SVM. For example, the rate
in the proposed method is about 10% of support vectors
in contrast with 17 % of support vectors in Freq+RBF
technique. This empirical result shows that much higher
performance of our proposed method for capturing walking
motion data than the other methods. Table I also clarifies
that classifiers using linear kernel fail to achieve high
classification performance. Especially, we cannot calculate
F-measure in case of Regr+Linear because the precision
rate cannot be computed. This means the classifiers in that
case never detect walking motion.

Classification Performance for Walking around
Motion: Finally, we demonstrated the performance of
the classifiers obtained from the previous experiment in
reaction to the novel walking around motion. Specifically,
the actor walks in 4 ∼ 5 steps and turns. The thumbnail of
the input motion is shown in Fig. 4. The mapping between
input and binarized output of SVM with marginalized BoV
kernel and Freq+RBF kernel is shown in Fig. 5. This result
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Fig. 4. Thumbnail of walking around motion is shown. The figures, for example, 1415, indicate frame from the start.
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Fig. 5. Walking around motion, the corresponded output of SVM
with the proposed kernel and the conventional kernel.

shows that the proposed kernel can almost detect walking
motion. There are some “mistaken” result around frame
1420, however, we do not think this is particularly bad. This
is because the actor around this time takes one step to turn
and the next for walking and the classifier judges them both
as walking. We think it is hard even for a human to judge
this kind of motion as walking or not. When you think this
motion should not be categorized as walking, the question
can be resolved by using static information such as forward
movement of hip into another kernel. On the other hand,
the result of Freq+RBF oscillates very high. This does not
fit into human intuition. What is worse, detection of the
end point of walking in Freq+RBF method is delayed.

V. CONCLUSION

In this paper, we propose a new kernel computation for
online action recognition. The proposed kernel incorporates
switching linear dynamics with the technique of marginal-
ized kernels. Specifically, our kernel is a combination
of kernels using unimodal linear dynamics with bags of
vectors representation. We call the proposed kernel as
marginalized Bags of Vectors (BoV) kernel.

In order to evaluate the performance of our marginalized
BoV kernel, we gave it the task of classifying whether
walking or not per frame. Using various types of real
motion capture data, the experimental works show that the
proposed kernel has excellent power to classify the target
time-series motion.

Our suggestion for future work is as follows. At first,
we have plans to evaluate versatility of our marginal-
ized BoV kernels through applying for several types of
dynamical actions, such as raising hand and getting up.

Second suggestion is about interdependency of output from
the recognizers. Because simple support vector machine
(SVM) does not incorporate label interdependencies in
conceptual aspect, the output of the SVM is sometimes
shaky and oscillatory even if using the our proposed kernel
easily enables us to make a great performing classifier.
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