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Abstract— In this paper, we propose a margin-based query
learning algorithm for action recognition to reduce a laborious
work on annotating action labels of time-series motion. The
annotation is an inevitable task for designers of recognition
systems with supervised learning techniques. Query learning
is a kind of compensation approach for this, and can also be
categorized into interactive learning. Our algorithm is a natural
extension of maximum margin learning; a.k.a. support vector
machines. Thanks to the theoretical analysis of the optimal
condition of the maximum margin learning, the algorithm runs
with a single and simple criterion. To prevent poor performance
of the classifier learned with very few size of labeled motion
data set, the algorithm exploits cluster information of massive
unlabeled motion dataset. In contrast to the previous margin-
based query learning methods, the algorithm has superiority in
terms of stability. The empirical evaluation using real motion
and synthetic dataset shows that our algorithm can achieve both
drastic reduction of annotation cost and making robust classifiers.

I. INTRODUCTION

Recognizing human action is one of essential foundations
to achieve smooth communication between intelligent systems,
especially robots, and human. It is also a key technical element
in achieving analysis and surveillance of human activity by in-
telligent systems. Traditionally, researchers have tried to build
robust and feasible action recognition systems by borrowing
statistical machine learning techniques. One of the pioneers
of this research field is proposed by Yamato et al. [1]. This
trend continues in the current century [2], [3]. We also built
a recognition algorithm and system for human daily life ac-
tion [4] based on kernel methods [5]: an approach of statistical
learning. Kernel methods are known as not only theoretically
robust but also robust techniques in recent machine learning
community. A well known supervised kernel-based learning
called maximum margin learning [6] is applied to various
fields of pattern recognition communities [7], [2]. We have
also adopted the maximum margin learning to obtain high
accurate action classifiers [4].

However, there exists a critical problem of the maximum
margin learning. It is a well known fact that the supervised
learning requires fully annotated dataset. Thanks to this result,
a designer of recognition systems must annotate action labels
to whole motion sequences when using supervised learning.
This is very laborious when massive instances are available.
Ironically, the accuracy tends to be higher than poor dataset.
This is a dilemma in supervised learning. Hence, it is a
critical challenge for researchers to reduce cost of annotation.

Specifically, researchers in the field of action recognition must
pay attention to this topic because it is much easier to capture
human motions than to annotate action labels to the motions.
In other words, someone must assign labels to time-series
motion at a couple of thousands times even if a couple of
minutes of motions are captured.

In machine learning community other than action recogni-
tion research, there already exists an idea for effective learning
called query learning [8]. The process of the query learning
is as follows (see Fig. 1): As a preparation a classifier
should be learned with small size dataset a priori. Then the
classifier iterates active sampling, querying, and re-learning.
Specifically, the active sampling is a process to select actively
a instance which would effectively makes the classifier smart.
In the querying process, the classifier queries the selected
sample to human, and then the sample is annotated by human.
In re-learning process, the classifier is re-optimized with the
annotated dataset that includes the newly annotated sample.

Fig. 1. Process of query Learning is shown.

In this paper, we design a novel query learning method,
which is related to the maximum margin learning. Specifi-
cally, we propose a new learning method that leverages the
property of margin. There already exists margin-based query
learning [9], however, this algorithm retains a critical problem
on stability. The proposed algorithm solves this problem.

The rest of this paper proceeds as follows. Next section
outlines a scheme of action recognition and, describes its
configuration and formulation. Section III introduces a concept
of query learning and a property of the margin, which is impor-
tant for the proposed query learning. Next, section IV outlines
the proposed algorithm and describes the superiority to the
previous research works. Section V explains the experimental
result to validate the proposed method. We conclude in the
last section with some directions for future research.



II. ONLINE ACTION RECOGNITION
AND MAXIMUM MARGIN LEARNING

A. Scheme of Action Recognition and its Configuration
As a basis of our action recognition, we introduce a scheme

of online action recognition proposed by Mori et al. [4].
This scheme can tackle the multi-label [10] problem of action
recognition with simple approach. The multi-label problem is
also known as the problem of simultaneous recognition. A phe-
nomenon that some action often occurs with another action at
the same time: e.g. waving hand while standing is an example
of this. This must be firstly considered to develop a recognition
system for daily actions. Mori et al.’s proposed the parallel and
independent framework of multiple binary classifiers. Because
this is very simple and empirically works well, we also take
on quite similar scheme for action recognition (see Fig. 2).
In other words, each binary classification discriminates input
motion to annotate (yes) or (no).

Fig. 2. Configuration of our action recognition scheme is shown.

B. Kernel-Based Action Classification
In each binary action classifier, we leverage kernel meth-

ods [5]. The kernel in this context represents a similarity metric
between motions. Specifically, the kernel given for the action
classifier K can be denoted as K(x, x̃) : X ×X → R, where
x and x̃ denote input motion features and X is an arbitrary
collection of the motion features that can be computed from
a time-series measured motion data. Height of head is an
example of the motion feature. The classifiers do not have
any concerns with what the variable x should be. The classifier
works to discriminate the motion only via similarity score K .

In this paragraph, we define the formulation of the kernel-
based action classification. Specifically, the classifier can be
categorized into the non-parametric classification algorithm.
The action classifier can be formulated as the following
discriminative function g(·):

g(x) =
N∑

n=1

{α}ny(n)K(x, x(n)) + b (1)

where D = {x(n), y(n)}Nn=1 represents a collection of the
annotated motion dataset with N frames. y(n) ∈ {±1} denotes
an annotation for the n-th motion samples x(n). If y is
equal to +1, then corresponding motion x is judged as target
action occurs. The N dimensional vector {α}n ≥ 0, (n =
1, . . . , N) depicts the weighting parameter of the classifier.
The classification rule with this function is ŷ = sgn(g(x)).
The operator sgn(·) represents a step function as

sgn(t) =

{
+1 t > 0
−1 t ≤ 0 .

C. Maximum Margin Learning for Making Action Classifier

We employ an optimization method called maximum margin
learning [6] for adjusting the weighting parameter α. This is
also known as support vector machines (SVMs). This adjusts
α to maximize the degree of the separation between two
classes in feature space. The degree of separation is called
margin. As a result, the maximum margin learning results
in the following quadratic programming (QP) with linear
constraints:

minimize : W (α) =
1
2
αTGα− 1T

Nα

subject to :

⎧⎪⎨
⎪⎩

N∑
n=1

{α}ny(n) = 0

0 ≤ {α}n ≤ C, n = 1, . . . , N

,
(2)

where square matrix {G}i,j = y(i)y(j)K(x(i), x(j)) contains
a product by label and similarity between motion samples. The
positive constant C > 0 is a regularization factor to smooth
the classification boundary. The benefit of the maximum
margin learning is that the learning can avoid local minima
which often occurs in traditional back propagation neural
networks [11].

Thanks to the Karush-Kuhn-Tucker (KKT) condition [12],
which is the necessary condition for the optimality in the QP
problem, we can find an interesting and important property of
the classifier optimized by the margin based learning. From
(2), all the motion samples must satisfy the following relations
under optimality:

yif(xi)

⎧⎨
⎩

> 1, αi = 0
= 1, αi ∈ (0, C)
< 1, αi = C

. (3)

This implies that a part of the motion samples contributes
discrimination rule, whereas the rest motion samples that
satisfy y(n)g(x(n)) > 1 never contribute the classification.
The relevant motion samples in the discrimination are called
support vectors.

III. PROBLEM FORMULATION OF QUERY LEARNING
AND PROPERTY OF THE MARGIN-BASED LEARNING

This section formulates a problem setting of the query
learning, and then explains the property of the margin-based
learning that is important for the query learning.

A. Formulation of Query Learning

Before mentioning the detail explanation, we introduce no-
tation utilized in the proposed algorithm. Let N be the size of
the dataset about time-series motion X = {x(1), . . . , x(N)}. In
the variable X , the annotations themselves are not contained.
In dataset X , there exists L (L� N ) annotated samples and
the rest N − L un-annotated dataset. Let I be the set for
the IDs of the annotated dataset, DI be the collection of the
annotated samples. This means DI = {x(i), y(i)}i∈I , where y
represents the labels. Another variable with the suffix \I , X\I

represents the un-annotated motion samples, and XI depicts



the annotated motion1. If the number L, which is size of the
collection I , is equal to N , we give alias of this variable for
DI as DALL = DI . The query learning in this paper is a
process with the following procedures:
1) Initial phase: First, a part of motions in X is selected,
and then annotated to build the annotated dataset DI and the
collection of index I . In this phase, a classifier is learned with
this dataset DI .
2) Main query phase: The following 3 steps are iterated
to reach some conditions. First, some motion instances are
actively sampled from X\I , and I are updated. Second, the
selected motion are queried to human and given the annotation
to update DI , and X\I . Third, the classifier re-learns with the
updated DI .
3) Validation phase: After a certain number of the iteration in
the main query process, the performance validation and checks
for the termination of the query learning process are executed
utilizing a part of motions in X\I .

The main goal of the query learning processes is to build
gDI (·) ≈ gDALL(·) so as to keep the size |I| to N small where
a function gDI (·) represents a discriminative function learned
with DI .

B. Property of Classifiers Optimized by Maximum Margin
Learning

The KKT condition of the margin-based learning provides
us cues to make a simple query criterion in the maximum
margin learning. Here we show a simple example of this. Let
gDI (·) be the discriminative function learned from DI , let
DI\† be a collection where x† are removed from the collection
DI , and DI∪∗ ← {D ∪ [x∗, y∗]} be a collection in which the
newly data x∗, y∗ are added to the collection DI . Given an
assumption: the removed sample x† is not a support vector in
gDI (·) and gDI (x∗)y∗ > 1, it satisfies

gDI\†(x) = gDI (x) = gDI∪∗(x), ∀x ∈ X . (4)

This result implies that a discriminative function gDI (·) would
not change when a sample in the outside of the margin area
is added to or removed from the dataset DI . This means that
there is room to improve the discriminative function gDI (·)
only if there exist samples in the margin area. In other words,
the prospect of the query learning: making DALL with small
L would gain high, if instances in the margin area are actively
sampled. This is because the selected motions should be
support vectors in the final form of the discriminative function
and the score of the QP problem would improve when such
kind of samples are added.

IV. MARGIN-BASED QUERY LEARNING EXPLOITING
GLOBAL SIMILARITY OF MOTION

A. Outline of the Algorithm

The proposed algorithm can be divided into the following
three phases. The way of deviation is the same to the process
in the previous section.

1The variable XI itself does not contain the annotations

Initial phase : The algorithm requires at least one motion
sample annotated positive label (|I| = 1). Next, the algorithm
searches the index that satisfies i∗ = argmini�∈I{r∗}i, then
selects i∗ and x(i∗) is annotated by human. i∗ is added into
the I . In the above equation, r∗ represents a global similarity
vector. This can be calculated from the following query vector
q:

{q}i∈I = 1, {q}i�∈I = 0. (5)

The vector r∗ depends on the indices of the annotated data
I , and represents similarity from the annotated dataset. This
means that higher the element in r∗ is, higher the similarity
between the corresponds motion sample and XI is. The detail
explanation of the computation of global similarity will be in
the next subsection. This procedure is executed iteratively to
reach the size of indices |I| be nb. This procedure reduces
the risk of DI be biased: DI contains a couple of motions
extremely similar to the other data.
Main query phase : By borrowing the property of the
margin and the idea mentioned in the previous section, the
criterion of the margin-based query learning is to utilize the
absolute value of the output of the discriminative function
gDI (·). Specifically, the algorithm have to sample a motion
x(j) in X\I that satisfies |gDI

(
x(j)

) | ≤ 1. The proposed
algorithm utilizes the following retrieval criterion to improve
the efficiency of the query:

j∗ = argmin
j �∈I

∣∣∣gDI (x(j))
∣∣∣ . (6)

This strategy is adopted from our heuristic. Intuitive interpre-
tation of this retrieval provides that the selected motion sample
x(j∗) would stabilize and improve the classification boundary
because x(j∗) is closest to the decision boundary. The motion
sample closest to the decision boundary can be assumed as a
hardest motion to be recognized.

This procedure iterates until there are no samples that
satisfies |gDI (x)| ≤ 1, where x ∈ X\I . Then the validation
phase starts in the algorithm. It is because it is probable that
there exists a sample x that satisfies s |gDI (x)| > 1 even if
incorrect classification result ygDI (x) < 1 occurs.
Validation phase : Similar to the sampling idea in the initial
phase, the algorithm selects a motion sample to validate from
X\I by leveraging the concept of the global similarity and the
query vector q defined in (5).

Specifically, the algorithm samples r∗ corresponding global
similarity is the smallest in X\I and validates the performance
of the discriminative function with human annotation. Then
the selected motion is added to I and q is updated. The
procedure in which the selection, annotation, validation, and
updating the indices are executed iterates nv times, only if
the discriminative function correctly classifies the selected
motions, otherwise, the algorithm returns to the main query
process.

The idea of this phase is that the algorithm should validate
the performance with unlabeled data unrelated to the annotated
or known dataset, because it is natural that the classifier gains



TABLE I
PROCESS OF THE MARGIN-BASED QUERY LEARNING

Setting: Preparing motion dataset D that includes x with positive
label (the number of this kind of samples is a) and N − a motions
without labels, kernel K, parameters α, then making index I , calcu-
lating transition matrix S in (9), and setting initial query: q in (5)

1 Initial phase: Calculating global similarity r∗ in (12), then selecting
i∗ = argmini{r∗}i, then updating (I ← I ∪ i∗, q by (5), and DI )
until |I| < nb

2 Main loop : Making action recognizer by SVM from DI and then
selecting most significant data xi∗ that satisfies (6) until unlabeled
samples exist in margin area of gDI

(·). Finally, updating I and DI

and returning to 2
3 Validation phase : Calculating global similarity r∗ in (12), then

select i∗ = argmini{r}i, then updating (I ← I ∪ i∗ and DI ), then
returning to 2 if the classifier fails to classify, else if the classifier
never fails to classify nv times, terminating the algorithm

high classification accuracy for the validation data extremely
similar to the known dataset DI . The proposed algorithm can
be summarized in TABLE I.

B. Computing Global Similarity

In this subsection, the procedure of computing the global
similarity utilized in the initial and the validation phase of
the proposed algorithm is described. The vector r∗ is a tuple
of similarities between samples in X and the dataset XI .
It is noteworthy that the vector r∗ does not represent the
tuple of similarity between each motion sample in X and
a motion sample in XI . This leads to that this procedure
requires a cluster assumption of the motion dataset. Hence
this value requires an alternate procedure other than the
computing kernel, which represents a local similarity between
two samples.

Considering cluster information of the dataset is similar to
the estimation of density information of the motion dataset.
The simplest way to compute the density estimation is to
utilize some parametric probability densities such as Gaus-
sian mixture distributions [13]. But they require the model
selection problem; what the number of the clusters should be.
Furthermore, this strategy collapses if x can not be written in
a vector data but be a time-series data. Hence, the procedure
of computing the global similarity in this research should be
alternate to the traditional parametric approaches and should
be useful for the arbitrary data types x.

The propose algorithm adopts a non-parametric similarity
metric computation related to the Google PageRank algo-
rithms [14] and the spectral learning methods [15]. The PageR-
ank algorithm is utilized in search engines for WWW. The
proposed global similarity computation requires the following
processes: 1) making a local similarity metric matrix and its
normalization, 2) the computation of the global similarity with
the query vector q and the normalized local similarity matrix.
These procedures are described in the following paragraphs.

1) Making Local Similarity Matrix and Normalization: Let
A(x, x̃) be the local similarity between two motion data x, x̃.
This can be written as

A (x, x̃) = exp
(−λ2d2(x, x̃)

)
, (7)

where d(x, x̃) ≥ 0 denotes some distance metric and λ is
a positive value. This definition leads to the local similarity
should be in [0, 1] and high value of A(·, ·) represents that
the data x is similar to the other data x̃. The distance metric
d(·, ·) can be derived from the kernel defined priori,

d2(x, x̃) =
∣∣∣∣ φ(x)
|φ(x)| −

φ(x̃)
|φ(x̃)|

∣∣∣∣
2

= 2− 2K (x, x̃)√
K(x, x)K(x̃, x̃)

,

where a function φ(·) should satisfy K(x, x̃) = φ(x)Tφ(x).
This definition leads to the different value with respect to the
types of the kernels; however, we can utilize kernel function
directly as the local similarity value A(·, ·) if the kernel
leverages exponential function exp(·), such as radial basis
functions kernels and Mahalanobis kernels.

Next, the procedure makes a matrix depicted by W that
contains where each element is calculated from A(·, ·). This
matrix is called local similarity matrix. Specifically, this matrix
can be derived as

{W }i,j = (1− δij)A
(
x(i), x(j)

)
, (8)

by using X = {x(1), x(2), . . . , x(N)}. The algorithm normal-
izes this matrix as

S = D−1/2WD−1/2, (9)

where D ∈ R
N×N is a diagonal matrix where i-th row and

i-th column element represents sum of i-th row vector of W .
This is equivalent to {D}i,i =

∑N
j=1{W }i,j .

An element of S defined at i-th row and j-th column
represents the probability of transition from the state in i-th
vertex to the j-th vertex, when it assumes that all the points
are connected as a graph [16]. Hence, we can interpret each
element of S represents similarity value in probabilistic form.

2) Computing Global Similarity with Query Vector: Here,
the procedure of computing r∗ exploiting S and q is de-
scribed. In the algorithm, the following linear dynamics as-
sociating to the global similarity r is designed.

rt = αSrt−1 + (1− α)q (10)

where rt represents the state vector at “time” t and the constant
α ∈ [0, 1). At the initial setting, the state vector at time t = 0 is
set as r0 = 0. This dynamical systems affect the state vector r
with respect to the similarity between a motion sample and the
collection XI . This can be seen as a diffusion operation of the
particles on XI . An element of r corresponding to X\I would
be smaller than that in XI . Given that the dynamics comes to
stable at time t→∞ and r converges, the following equation
satisfies:

r∞ = αSr∞ + (1− α)q. (11)

This assumption makes us solve r∗ analytically as

r∗ ∝ (I − αS)−1q. (12)

We utilize the above equation as the implementation of the
algorithm.



3) Improving Efficiency of Computation for Global Simi-
larity: The procedure of obtaining the global similarity in
(12) takes the cost in the order of O(N2) in terms of the
memory and O(N3) in the issue of the computation thanks to
the inversion of (I − αS). In the case of action recognition,
the size of dataset for the training is assumed to be from 103

to 104, hence, it is a critical matter for us to run the algorithm
in the standard PCs, even when their computational power and
their resource grows dramatically in recent years. Hence, the
algorithm utilizes some approximation to calculate the global
similarity vector.

The idea of the approximation is based on the incomplete
Cholesky factorization technique [17]. This technique assumes
the factorized matrix that contains the local similarityA(·, ·) as
a Gram matrix of radial basis function kernels. Each element
of the Gram matrix contains a kernel value of the pairs.
Specifically, the algorithm approximates a square matrix Â
with orthogonal matrix R ∈ R

N×M (M � N ) as

Â ≈ RRT, (13)

where {Â}i,j = A (
x(i), x(j)

)
. Hence the inverse computa-

tion of I − αS can be derived as

(I − αS)−1 = (I − αD−1/2WD−1/2)−1 (14)
= D1/2(D − αW )−1D1/2 (15)
= D1/2(D + αL− αÂ)−1D1/2 (16)
≈ D1/2(C − αRRT)D1/2. (17)

In the above equations, diagonal matrices L, C ∈ R
N×N

satisfy L = Â − W and C = D + αL. Thanks to the
Woodbury’s formula [18], this approximated result can be
rewritten as

(I − αS)−1 ≈ D1/2C−1D1/2 + αD1/2C−1R (18)
(I − αRTC−1R)−1RTC−1D1/2.(19)

Due to the fact that D and C are diagonal matrices, and
the size of the multiple of the matrices satisfies RTC−1R ∈
R

M×M and RTC−1D1/2 ∈ R
M×N , this approximation

reduces the memorial cost to the level of O(MN). This
approximation technique allows us to adjust the accuracy on
factorizing Â. The relation between the accuracy of the ap-
proximation and size M depends on the local similarity metric
A(·, ·), however, the empirical result implies the algorithm
requires only M = 102 to relative to the N = 104, when
we set |Â−RRT|2 ≈ 10−3.

C. Related works on Margin-Based Query Learning

There already exists several margin-based query learning
methods. One is proposed by Campbell et al. [9] where the
query criterion is quite the same with our heuristic. However,
there is a critical difference between this method and our
algorithm. The method of Campbell et al. sometimes fails to
obtain globally optimal classifiers or the efficiency of the main
query process is not good thanks to the quality of DI . This
is because the method of Campbell et al. makes sometimes
biased DI due to the fact that the algorithm randomly selects

the motion samples. This critical problem is also reported in
a recent research [19].

The superiority of the proposed methods relative to the
method proposed by Campbell et al. is that leveraging the
density information of X stabilizes the algorithm at the initial
phase and the validation phase.

V. EXPERIMENTAL RESULTS

As for the validation of the proposed method in this paper,
we execute two kinds of experiments. One is to validate
the effectiveness thanks to the query learning. Another is to
evaluate an impact of leveraging the global similarity.

A. Effectiveness of the Query Learning

Because the main objective utilizing query learning scheme
is to reduce the annotation cost for the motion dataset,
we evaluate the efficiency of the proposed query learning.
Specifically, we calculate the performance of the classifier
with a couple of dozens of queries and re-learning, and
then estimate how many queries L = |I| would make the
classifier gDI (·) reach the performance of the classifier with
fully annotated dataset gDALL(·). In this experiment, we ignore
the impact of exploiting the global similarity at the initial and
the validation phases. This means we evaluate the performance
of the classifier with respect to the number of the queries.
Action Dataset: In this experiment, a motion dataset: ICS
Action Database [20] are utilized. This is an annotated motion
capture dataset designed for evaluating the performance of
action recognition. This contains over 100 motion capture files
where an actor behaves dozens of daily actions. Specifically,
in this dataset, human motions are annotated with 25 action
names such as sitting, lying and folding arms in frame-wise.
Annotations for each action category are executed separately.
An annotation file for some target action contains human’s
judgment for of the corresponding action per frame by three
degrees (yes, neutral and no). The label neutral represents
ambiguous recognition result by human.

In this experiment, the label of each action symbol is re-
assigned as y = +1 if the label is yes and y = −1 when
the label is neutral or no. In this experiment three action
symbols, such as lying, standing, and sitting are selected as
target actions to be recognized.
Evaluation Method: As a performance criterion in this
experiment, F-measure [21] is utilized. F-measure is a kind
of performance criteria often utilized in the researches of
information retrieval (IR). This indicates the performance with
a single value that combines the performance of recall and
precision. The recall is a ratio of counting ŷ(n) = +1 when
y(n) = +1 with respect to the total size of motions where
y(n) = +1. Similar to the measure of recall, the precision is
a ratio of counting y(n) = +1 when ŷ(n) = 1 with respect to
the counts of ŷ(n) = +1. The definition of F measure can be
denoted as

F =
1

1
(β+1)R + β

(β+1)P

, (20)



where R represents the recall, P depicts the precision, and
the positive constant β > 0 is an adjustable parameter. The
parameter β weights relative importance of the precision to the
recall. When the constant β is equal to 1, this is a harmonic
average of the recall and the precision. In this experiment, we
set the parameter β as β = 1. From the definition of the F-
measure, higher F-measures is, higher the performance of the
classifier is. We calculate F-measures of gDI (·) at each query
step, by comparing the performance of gDALL(·) and evaluate
the number of the queries where gDI (·) reaches and saturates.
In this experiment, the initial dataset DI is prepared according
to the initial phase of our algorithm.

Condition and Parameters: In this experiment, the dataset
from ICS Action Database are divided into 5 subsets, then
each subset is utilized as the training dataset (N ≈ 2000). We
calculate maximum, average, and minimum of the F-measure
with respect to the size |I|. The kernel used in this experiment
is radial basis function. Even though motion feature selection
problem and the adjustment of the kernel parameters is one of
the open problem of kernel-based machine learning techniques
for the pattern recognition researchers, we borrow the idea of
the heuristic but practical approach of this problem from our
past work [4]. Even though the performance of the classifi-
cation cannot achieve highest quality, our decision-making in
this experiment is valid. This is because the motivation of this
experiment is to clarify the usefulness of the query learning
with respect to the standard maximum margin learning. The
constants required in the algorithm in section IV are set as
α = 0.99, nb = 10, nv = 10.

Result: The experimental result shows that the classifier in
every action, lying, standing, and sitting, reaches the per-
formance of the classifier gDALL(·) within about 100 times
queries. Fig. 3 shows that the F-measure of the classifier
of sitting with respect to the size of I . In this figure, the
symbol plus represents the average value of F-measure. The
dotted lines covering the average F-measure represents the
maximum and the minimum of the F-measure, respectively.
From this result, it can be found that the classifier obtains as
high classification performance as the gDALL(·) within only
50 queries. This result implies the algorithm be beneficial in
terms of the cost of the annotation process because the total
number of motions samples: N is over a thousand.

Fig. 3. Annotated size |I| vs. F-measure of recognizer

B. Impact of Leveraging Global Similarity
In this experiment, we validate the impact of leveraging

the global similarity r∗ at initial phase of the learning.
Specifically, this experiment clarifies the impact of the global
similarity by comparing the performance of the method of
Campbell et al. In this experiment, we obtain the performance
of the classifier learned from DI of both methods and then
show the difference of the two methods. Next, we discriminate
the two methods to visualize the difference of the random
sampling technique adopted in [9] and the sampling technique
using the global similarity by using 2 dimensional synthetic
dataset.

1) Issues on Classification Performance:
Action Dataset, Evaluation Method, and Condition : This

experiment also utilizes the same dataset as in the previous
experiment and also utilizes F-measure for the evaluation
criterion. As a condition of the experiment, we set nb = 10,
which is the same in the previous experiment. As for the
procedure of random sampling for the initial phase of the query
learning, the algorithm is given 1 positive sample selected
priori and randomly extract nb−1 instances. The target actions
are the same as the previous experiment.

Result: The experiment result shows that the performance
of the proposed method at the stage |I| = 10 achieves
88.9%, meanwhile the compared method utilizing the random
sampling method achieves only 85.9%. This result implies that
leveraging the global similarity makes the algorithm stable.
In addition, the random sampling method sometimes fails to
obtain the initial classifier, because the random sampler fails
to draw any negative instances within nb − 1 times hence
the learning of SVM cannot be executed. We neglected these
failures to calculate the F-measure. The proposed algorithm
cannot hedge completely the risk to occur these failures,
however, the probability is much smaller than the random
sampling. This is because the algorithm tends to select the
negative samples on |I| = 2, thanks to incorporating the
density information of the dataset.

2) Visualization to Impact of Global Similarity on 2-
dimensional Synthetic Dataset::

Dataset: A mixture of Gaussian distributions whose com-
ponent is 5 is utilized and draws 200 points in 2-dimensional
feature space. The drawn 200 points are utilized as X .

Result: As the first step, the global similarity in case
of |I| = 1 is shown in Fig. 4. The circle represents the
annotated sample, i.e. XI . The square represents the un-
annotated samples whose size is proportional to the global
similarity. Larger the square is, larger the global similarity
is. Fig. 4 shows that the global similarity declines gradually
with respect to the distance between sample and the annotated
sample. The more important things shown in this figure is that
the global similarity in the isolated cluster (the right-bottom
of this figure) is much smaller than the others. This result
implies the algorithm tends to select the negative instance
within |I| = 2.

Next, the result of the random sampling on nb = 5 is
shown in the right side of Fig. 5. The circles correspond



Fig. 4. Visualization of global similarity on two dimensional synthetic dataset
when |I| = 1

to the DI in the initial phase. Due to the fact that random
sampling ignores the cluster assumption of the dataset, it often
occurs that the sampler extract instances where each of them
is extremely similar position. In contrast to the naive method,
the proposed method extracts instances where each of them
distributes broadly and the result of the sampling is relatively
stable (see the left side of Fig. 5). This result also shows that
the impact of using the global similarity is quite valuable to
stabilize the learning at the initial phase.

Fig. 5. Sampling results on the initial phase of the query learning for two
dimensional synthetic dataset via our method (left) and Campbell et al. algo-
rithm (right) is shown. In each figure, small size circles represent X, (red)
large size and bold circles represent XI , respectively.

VI. CONCLUSION

This paper introduces a margin-based query learning al-
gorithm for making action classification to reduce laborious
cost on annotating action label to motion samples, which is
inevitable for making robust action classifier with supervised
learning. The proposed algorithm provides us tremendous ben-
efits in terms of practicality. Firstly, an user has only to design
a kernel and prepare at least one annotated motion whose
label is positive (y = +1). Second, the proposed algorithm
leverages the single and simple criterion to search instance
to be queried. In contrast to the traditional query learning,
the algorithm leverages global similarity of motion dataset
to improve the stability and accuracy of the method. The
global similarity is a kind of graph-driven similarity metric

of the local similarity matrix. Empirical evaluation results in
that our algorithm is proven to reduce the annotation cost
drastically for practical action recognition learning. Exploiting
information of the global similarity helps the algorithm to be
stable and effective on real and synthetic data classification.

Our suggestion for future work is to unify the criteria used
in the proposed algorithm; query heuristic, maximum-margin
learning, sample selection on initial and validation phase based
on global similarity computation.
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