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Abstract— In this paper, we propose wrapped boosting that
is extension of boosting algorithm for robust online action
recognition. Boosting algorithm is one of ensemble learning
algorithm and is also known as a feature selector. In our
previous work utilizing boosting, we achieved automatic feature
selection and robust model-based action classifiers which had
very small calculation cost based on posture information of
human body joints. However, which joints we should allocate
posture sensors to must be given by humans in advance. Our
new learning framework of wrapped boosting provides not only
automatic feature selection but also automatic sensor allocation
to proper joints of humans for target actions. We evaluated our
algorithm targeting gait motion based on motion data fetched
by motion capturing system. In consequence, wrapped boosting
was able to select proper joints to which limited sensors should
be attached, and to construct more robust classifiers compared
to constructing classifiers with all joints available. Classifiers
constructed only with existing boosting algorithm were subject
to overfitting to training data.

I. INTRODUCTION

Recognizing human actions online is siginificant for real-
ization of supporting humans by robots and of surveillance
system about suspicious individuals. In recent years, a num-
ber of researches on action recognition[1], [2], [3] have been
conducted introducing machine learning techniques such as
hidden Markov model (HMM)[4], support vector machine
(SVM)[5], conditional random fields (CRF)[6] in order to
realize robust action recognition.

These methods with machine learning techniques have
high recognition performance, but generally need many
parameters to enhance recognition performance. And these
parameters must be usually given by humans in advance. In
addition, calculation cost for recognition is large, and then it
is difficult to realize online motion recognition. Moreover,
the methods make humans design important features for
action recognition despite the designing such features is
difficult and bothers humans.

In order to solve these problems, we adopted boosting
algorithm[7] in our previous work[8]. Boosting generates
simple classifiers called weak learners in stages which trained
with the data. Each of weak learners is simple and low per-
formance for recognition. However, boosting algorithm con-
struct a robust classifier by joining together weak learners. In
the fields of image processing and natural language process-
ing, boosting algorithm has been introduced and has made
succesful results[9], [10] in terms of cognitive performance
and calculation cost in recent years. In our previous work,

Fig. 1. The wireless posture sensor device. The size is 20 x 20 x 5 [mm].
The weight is 1.5 [g]

online action recognition is constructed with model-based
method. Inspired by the above works of boosting, we design
elemental classifiers to classify by threshold processing of
certain motion features such as posture of human body joints.
Thereby each stage of the boosting process that constructs a
new elemental classifer can be viewed as a feature selection
process. That is to say, important features for recognition are
automatically selected in boosting process. In addition, each
elemental classifier has very small calculation cost because
it classifies by threshold processing .

In the above method，we assume that posture information
of human body joints is fetched from posture sensors.
And we have been developing tiny wireless posture sen-
sor devices[11] as shown in Fig. 1 and are planning to
applicate the method in the future. Sensor-attaching-based
recognition is free from problems of occlusion and changes
of illumination environment which become serious issues
in appearance-based method with camera vision. However,
attaching sensors to all body joints as shown in Fig. 2
(an example of wearing wired sensors) can cause strong

Fig. 2. An example for wearing wired sensors of motion capture system



constraint on daily life activities. Therefore the number of
sensors attached to human body should be small to reduce
the constraint. But it is challenging to decide automatically
which joints we should attach limited sensors to only with
existing boosting algorithm in our previous method.

Based on above discussion, we extend existing boosting
algorithm, and propose new learning framework wrapped
boosting for action recognition in this paper. Utilizing motion
data fetched from sensors on all joints as training data,
allocation of predetermined number of sensors is optimized
automatically in the proposed framework. Consequently, the
framework enables both automatic feature selection and
automatic sensor allocation for constructing robust action
classifiers.

This paper is organized as follows. Section II outlines
action recognition based on wrapped boosting algorithm.
Section III details construction of action classifiers with
boosting. Section IV explains about realizing automatic
sensor allocation with wrapped boosting framework. Section
V describes some experimental results, including a detailed
description of our experimental methodology. Finally section
VI contains a discussion of the proposed method and future
works.

II. OUTLINE OF ONLINE ACTION RECOGNITION WITH
WRAPPED BOOSTING

A. Input and Output for Action Recognition

Daily life actions have a different characteristic from
other actions, such as gesture and sign language. Actions
of gesture and sign language are exclusive in relationship
among these actions, that is, such actions hardly occur
simultaneously. However, daily life actions are not always
exclusive in relationship among these actions, in turn, several
actions may occur simultaneously. For example, humans can
recognize the two actions involved when observing someone
is standing and walking.

In order to realize the simultaneous recognition, our
method constructs multiple binary classifiers, each of which
is assigned to classify one specific action. The process of
each classifier runs in parallel with and independent of the
others.

Fig. 3 shows an example of input and output in our
method. Classifiers receive motion data xt as an input at
a time t, and output action labels (y(1)

t , y
(2)
t , · · · , y(M)

t ) for

Fig. 3. Input and output in proposed method

Fig. 4. Proposed framework for constructing binary action classfier

each of M kinds of actions. An action label y
(i)
t denotes

a label of i-th action at a time t, and y
(i)
t = +1 indicates

that the action is occurring, and y
(i)
t = −1 indicates not

occurring.

B. Framework for Constructing Binary Action Classifiers

In wrapped boosting framework, binary action classifiers
are constructed based on: 1) set of joint candidates to attach
posture sensors (ex. elbow, shin, shoulder), 2) motion data
labeled for each of target actions, 3) list of motion feature
candidates to be utilized for constructing classifiers (ex. each
component of posture matrix for each joint).(See Fig. 4.)
Joint candidates, motion data, and motion feature candidates
are common among all target actions.

Roughly speaking, there are two phases inside the frame-
work as follows.

• changing joints to be attached with limited sensors
In this phase, classifiers which are constructed in the

phase below are validated. Depending on the valida-
tion results, joints which we should attach sensors are
changed. (At first, the framework starts with certain
joint being attached with a sensor and go to the phase
below.)

• constructing binary classifiers for each action
In this phase, classifiers are constructed with nor-

mal boosting algrithm (ex. adaBoost[7], logitBoost[12],
madaBoost[13]) based on motion features related to the
selected joints in the above phase.

Iterating two phases above alternately realizes automaic
feature selection and automatic allocation of limited posture
sensors. (Automatic allocation of sensors is achieved with
the first phase, and automaic feature selection is enabled with
boosting algorithm in the second phase.)

As you may see, this framework wrappes existing boosing
algorithm. Therefore our framework is meta-extension of
exisiting boosting algorithm. Note that achieving automatic
decision about which joints we should attach limited sensors
is very difficult only with existing boosting algorithm.



Fig. 5. Configuration of binary action classifier

III. CONSTRUCTION OF BINARY ACTION CLASSIFIERS
WITH BOOSTING ALGORITHM

In this section, we describe how to construct binary action
classifiers with boosting algorithm based on motion features
related to limited posture sensors, corresponding to the part
(a) in Fig. 4.

A. Boosting Algorithm for Action Recognition

Boosting is one of ensemble learing algorithm[14], which
is utilized in the fieled of natural language processing and
image processing in recent years. The goal of the learning
algorithm for the i-th action is to construct a binary classifier
H(i)(x) based on given training data as below.

H(i)(x) = sgn
( K∑

k=1

α
(i)
k h

(i)
k (x)

)

where h
(i)
k (x) is a classifier producing ±1 and α

(i)
k is a

constant. The classifiers h
(i)
k (x) which we call elemental

classifiers are trained one-by-one on weighted training data.
The training procedure gives higher weight to data that are
currently misclassified. The suffix k denotes what number
the elemental classifier is constructed. And the constant α

(i)
k

is recognition confidence of k-th elemental classifier.
Then the final classifier H(i)(x) is defined to be sign of

linear combination of the elemental classifiers from each
stage (See Fig. 5). In this paper, α

(i)
k is decided with

adaBoost leaning algorithm[7], which is widely used and
typical algorithm in boosting algorithm. A detailed descrip-
tion of adaBoost for constructing action classifier is given
in Table I. In the rest of this paper, the term “boosting”
represents adaBoost learning algorithm.

B. Design of Elemental Classifiers for Action Recognition

In order to lessen calculation cost for recognition and to
avoid overfitting to trainig data, we should design elemental
classifiers to be simple. Therefore, we decide that elemental
classifiers classify by threshold processing of a scalar motion
feature. The elemental classifier for i-th action is described
as follows.

h
(i)
k (x) = sgn(φ(i)

k (x) − γ
(i)
k )

TABLE I
ADABOOST ALGORITHM FOR CONSTRUCTING EACH ACTION CLASSIFIER

0 Given as training data:
(x(i)

1 , y
(i)
1 ), . . . , (x(i)

n , y
(i)
n ), . . . , (x(i)

N , y
(i)
N );

x
(i)
n ∈ X , y

(i)
n ∈ {+1,−1}

if action occur, y
(i)
n = +1 otherwise y

(i)
n = −1

1 Initialize: D
(i)
1 (n) = 1

N
2 For k = 1, . . . ,K:

• Optimize elemental classifier h
(i)
k which mini-

mizes the error rate

ε
(i)
k =

N∑

n:h
(i)
k

(x(i)
n ) �=y

(i)
n

D
(i)
k (n)

• Update the weights:

D
(i)
k+1(n) =

D
(i)
k (n) exp(−α

(i)
k y

(i)
n h

(i)
k (x(i)

n ))

Z
(i)
k

,

where Z
(i)
k is a normalization factor.

3 Output the classifier:

H(i)(x) = sgn
( K∑

k=1

α
(i)
k h

(i)
k (x)

)
,

where α
(i)
k = 1

2 log
(

1−ε
(i)
k

ε
(i)
k

)
.

where φ
(i)
k is the function which extract a scalar motion

feature from motion data xt according to the given list of
feature candidates as mentioned above (See Fig. 4). And γ

(i)
k

is threshold of k-th elemental classifier of i-th action. φ
(i)
k

and γ
(i)
k are optimized to minimize error rate ε

(i)
k at k-th

round of learning process. This type of classifer is called
decision stump[15] which is one-level decision tree.

This design of elemental classifiers allows action classi-
fiers to select automatically scalar motion features and its
threshold γ

(i)
k in learning process. This learning process can

be viewed as the process of feature selection. In addition,
the parameter given by humans is only the number K which
denotes what number elemental classifiers are contained in
each action classifier.

Here lists the merits of our elemental classifiers: 1) cal-
culation cost for classification is very small. 2) boosting
process automatically selects important motion features for
classification. 3) the parameter given by humans is only
the number of elemental classifiers contained in each action
classifier.

IV. AUTOMATIC SENSOR ALLOCATION WITH
WRAPPED BOOSTING

In this section, we describe about the detail of wrapped
boosting algorithm, including the part (b) as well as (a) in
Fig. 4.



TABLE II
WRAPPED BOOSTING ALGORITHM FOR ACTION RECOGNITION

0 Given as joint candidates:
(1, j1), . . . , (l, jl) . . . , (L, jL); jl ∈ {+1, 0}
if a sensor is allocated to joint l, jl = +1

otherwise, jl = 0
Partition given training data {(x, y)} into
validation data and sub-training data

1 Initialize: jl = 0
2 For s = 1, . . . , S:

• Set Θ = {l|jl = +1}, Θ̂ = {l|jl = 0}
• Based on joints of Θ and ∃ l̂ ∈ Θ̂,

construct Ĥ(i)(x) via boosting algorithm
using sub-training data for each action

• Choose l̂ which shows the most improvement
on mean cognitive performance of all Ĥ(i)(x)
for validation data, and fix jl̂ = +1

3 Set Θ = {l|jl = +1}
Based on joints of Θ, construct H(i)(x) using orig-
inal training data for each action

4 Output the classifier H(i)(x) for each action

Wrapped boosting algorithm is inspired by wrapper
method which is known as one of feature subset selection
methods. Our algorithm starts with no joint allocated a sensor
to. The algorithm proceeds allocating sensors to the joints
one-by-one and running normal boosting algorithm with the
allocated joints for all target actions. Then fixed is the one
sensor which raise mean cognitive performance most for
validation data at current stage. This process repeats until
the number of joints to which sensors are allocated reaches
the number S given in advanced by humans. The algorithm
is detailed in Table II. And as an example, Fig. 6 shows a
sensor-allocating lattice for four joints in wrapped boosting.
Each node in the figure represents which joints are allocated
sensors to.

We will expain the process of sensor allocation using an
example. Assume that our goal is to allocate two sensors

Fig. 6. A lattice for four joints in wrapped boosting

Fig. 7. An example of sensor allocation process

to some appropriate joints. At first, the process starts from
the top node in Fig. 7. Then according to wrapped boosting
algorithm, 4 types of binary classifiers are constructed. They
are constructed via boosting algorithm based on motion
features related to any one of four joints. In this example,
the binary classifiers based on the third joint makes the most
improvement on cognitive performance for validation data,
so the thrid joint is chosen to be attached with a sensor. At
this point, the number of remaining sensors to allocate is
1. Subsequnetly, 3 types of binary classifiers with the third
joint and any one of three joints other than the third one are
constructed. Since the classifiers based on the first and third
joints are the most robust for validation data, the first joint is
chosen. Consequently, the first and third joints are selected
as a proper ones to be attached a sensor because the number
of chosen joints reaches the number 2 given preliminarily.

Wrapped boosting process selects joints which cause the
highest mean cognitive performance for validation data. And
classifiers for all target actions are constructed with any
motion features related only to the selected joints. In the
above exapmle, all classifiers are constructed with features
realted only to the first and third joints eventually.

Of course it is conceivable that predetermining the number
S may be difficult when various kinds of actions are targeted.
We assume that we should target about 20 to 30 kinds of
actions in the future to realize supports for human daily
life activities by robots. To deal with that case, it is an-
other possible solution that we determin a goal performance
value for intended application instead of the number S, and
wrapped boosting process continues until the mean cognitive
performance for validation data reaches the goal value.

V. EVALUATION EXPERIMENT

This section describes evaluation experiments for our
wrapped boosting algorithm. We demonstrate effectiveness
of the algorithm by comparing cognitive performance with
the case that we do not limit number of sensors and do
allocate sensors to all joints. Additionaly, we show an
example of classification result with the proposed algorithm.

A. Target Actions to be Classified

We selected walking and running as target actions to
be classified in the experiments. Daily life actions contain
actions without movements such as lying and sitting, and ac-
tions with movements such as walking and running. However
we target only actions with movements in the experiments.
This is because actions without movements have innate poses



TABLE III
MOTION DATA FOR EVALUATION EXPERIMENTS

# of frames set1 set2 set3 set4
total 2182 1930 2101 2058

Walking 529 421 494 441
Running 416 317 299 448

and actions with movements vary according to time and
then have not innate poses, and then we expect that actions
without movement is easy to be classified compared to
classification of actions with movements. Hence, if classifiers
based on the proposed method classify actions with move-
ments robustly, actions without movements are also classified
robustly.

B. Motion Data

The measured motion data for the experiments are se-
quential human motion data fetched by a magnetic motion
capturing system at 30[Hz]. The format of the data file is
BVH, a de-fact standard moition file format by Biovision
Coroporation. A BVH file contatins the structure of a human
as a linked joint model figure (See Fig. 8). We give the joints
of the model to wrapped boosting algorithm as candidates for
sensor allocation.

The actions included in the motion capture files are walk-
ing, running, standing still, and transition from an action to
another one. We annotate motion data per frame with walking
or not walking, and with running or with not running.

The motion data is divided into 4 sets and Table III shows
the number of frames in each set. 3 of 4 sets are utilized
as training data and 1 of 4 sets is utilized as test data, and
we evaluate the proposed algorithm by cross validation. As
described in section IV, training data sets are divided into 2
sub-training data sets and 1 validation data set.

C. Candidates of Motion Feaures

In the experiments, we give the following scalar motion
features of each joint to wrapped boosting framework:

• Vertical components of the joint’s posture matrix in
world coordinate sysytem

• Every component of relative posture matrix between
two joints

Fig. 8. Human model utilized in the experiments

TABLE IV
EXPERIMENTAL RESULTS OF WRAPPED BOOSITNG

test F-measure (%) selected
set Walking Running joint candidates
set1 93.2 96.2 both thighs, both shins
set2 93.2 93.4 both thighs, both shins
set3 95.0 94.5 both thighs, both shins
set4 95.6 95.2 both thighs, both shins

average 94.3 94.8 —–

TABLE V
EXPERIMENTAL RESULTS OF EXISTING BOOSTING ALGORITHM

test F-measure (%)
set Walking Running
set1 92.0 96.8
set2 94.6 97.2
set3 83.5 95.5
set4 74.5 91.9

average 86.2 95.4

• Temporal subtraction of each component listed above
As you can see, we utilize the motion features only about
posture of joints, not about position. This is because we
are planning to run our boosting framework with three-axis
acceleration sensors and three-axis geomagnetic sensors in
the future.

D. Evaluation Measure

For cognitive performance measure, we use F-measure.
F-measure is a harmonic average of recall rate rate and
precision rate. R, P, F denotes recall rate, precision rate, and
F-measure respectively. Then they can be defined as follows:

R =
Nc

Na
, P =

Nc

Nm
, F =

2RP
R + P

where Na indicates the number of frames which are anno-
tated as y

(i)
t = +1 by humans, Nm denotes the number of

frames which are labeled as y
(i)
t = +1 by classifiers, and Nc

denotes the number of frames labeled as y
(i)
t = +1 correctly

by classifiers.

E. Experimental Results

We run wrapped boosting to select 4 from 10 joints which
are corresponding to Head, Hips, RightShoulder, LeftShoul-
der, RightElbow, LeftElbow, RightThigh, LeftThigh, Right-
Shin, LeftShin in Fig. 8. Each action classifier is constructed
with 100 elemental classifiers in this experiment. Considering
lateral symmetric property of the target actions, we make
a condition that right-and-left joints (ex. RightThigh and
LeftThigh) must be selected or not selected all together.

Table IV shows the f-measure and selected 4 joints for
each test data set. For all the test data sets, wrapped boosting
select both thighs and both shins, and can construct robust
classifiers for both actions and every data set.



By way of comparison, we also evaluated classifiers
constructed only with exisiting boosting algorithm based
on motion features of all 10 joints. The results is shown
in Table V. While some classifiers are more robust than
ones constructed with wrapped boosting, we can find much
less robust classifiers. Existing boosting algorithm caused
overfitting to training data due to utilizing motion feature
of all the joins.

Both tables tell that our framework can allocate sensors
properly and is capable of constructing robust classifiers
more reliably.

F. Example of Classification with the Proposed Method

Fig. 9 and Fig. 10 show an example of recognition result
with wrapped boosting. Fig. 9 represents thumbnails of
human figures fetched every 5 frames (about 0.17 seconds)
in targeted sequential motion data file. In this motion data,
the subject stands still at first, then start running, and switch
to walking finally.

Fig. 10 represents recognition results by classifiers con-
structed with wrapped boosting. In the graph, horizontal thick
solid lines indicate the estimated action labels and vertical
lines indicate start or finish of actions. We used smoothing
filter for output labels of the classifers in this example. The
lines which have arrows on their edges indicates action labels
y
(i)
t = +1 annotated by humans. Fig. 10 shows that the

proposed framework can construct robust action classifiers
realizing automatic sensor allocation and automatic feature
selection.

VI. CONCLUSION

In this paper, we proposed wrapped boosting algorithm to
construct robust action classifiers for online daily life action
recognition. We premised the model-based action classifiers
working independently and in parallel, and these classifiers
were constructed based on boosting which is an ensemble
learning algorithm and is also known as a feature selector.

Extending existing boosting algorithm, we proposed a
learninig framework which provide not only automatic fea-
ture selection but also automatic sensor allocation to proper
joints of humans for target actions.

We evaluated our algorithm by applying it to recognition
for gait motion; walking and running. The motion data
was fetched by motion capturing system. In consequence,
wrapped boosting was able to select proper joints to which
limited sensors should be attached, and to construct more
robust classifiers compared to constructing classifiers with
all joints available. Classifiers constructed only with existing
boosting algorithm were subject to overfitting to training
data.

Future works are 1) to propose the method that takes
account of interdependencies of output action labels in order
to construct classifiers which are strong for noise and lack
of motion data and 2) to realize online action recognition
utilizing wireless sensor devices which consist of accelera-
tion sensors and geomagnetic sensors applicating wrapped
boosting algorithm.
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Fig. 9. Thumbnails of the motion data example

Fig. 10. Recognition results for the motion data example


