
Fast Online Human Pose Estimation via 3D Voxel Data

Yuichi Sagawa, Masamichi Shimosaka, Taketoshi Mori and Tomomasa Sato
Graduate School of Information Science and Engineering, The University of Tokyo
{sagawa, simosaka, tmori}@ics.t.u-tokyo.ac.jp, tomomasasato@jcom.home.ne.jp

Abstract— In this paper, a novel approach is proposed to
recover human body pose from 3D voxel data. The use of voxel
data leads to viewpoint-free estimation, which benefits in that
reconstruction of a training model is needless in different multi-
camera arrangements. Other notable aspects of our approach
are real-time ensuring speed (up to 30[FPS]), flexibility towards
various complex motions, and robustness. These are provided
by an example based approach, which constructs human
posture candidates beforehand from a large motion capture
database. The most appropriate posture is estimated per frame
by comparing the likelihoods between posture candidates and
3D voxel data. The evaluation is formulated by introducing
a histogram-based feature vector that represents the 3D shape
context of human body. In addition, a fast near-neighbor search
metric is installed prior to the evaluation process, which reduces
computational cost and ensures real-time processing. Estimation
stability is also improved by a graphical model of motion,
which adds a smoothing effect to the motion sequence. We
demonstrate the effectiveness of our approach with experiments
on both synthetic and real image sequences.

I. INTRODUCTION

Recently, expectation towards robotic systems which en-
ables daily life assistance are rising. Among many, researches
on home environment with distributed sensors and affluent
databases are active, and believed to offer practical applica-
tions. Aware Home [1] and Sensing Room [2] are examples
of such systems. These projects intend to intelligently un-
derstand and analyze human action for future use.

For efficient human action analysis, a rich representation
of human condition is necessary. One idea is to represent it in
motion capture data format, but we believe that devices prone
to wear are unnecessary for practical home use. So instead
of using wearable devices, digital cameras are selected as
sensing devices. Therefore, our goal is set to estimate human
posture and construct an image-based simple motion capture
interface.

In this paper, at first, our approach is briefly introduced and
compared with conventional approaches. Then, significant
phases are extracted from the whole process, and provided
with detailed information. In the end, experimental results
are presented with evaluation.

II. IMAGE-BASED HUMAN POSE ESTIMATION

Image-based human posture analysis has been a hot trend
in the computer vision domain, but difficulties still remain
such as 1) vagueness due to monocular image processing
2) viewpoint dependency 3) offline processing due to
huge computational cost. Past researches were usually
based on a generative approach which typically modeled the

human body with a joint distribution, using the observation
likelihood or the cost function [3], [4]. These approaches
had flexibility towards complex and unknown motions, but
inference involved complex search over state space, which
lead to iterative 3D human model sampling or use of non-
linear optimization methods. These arguments motivated the
study of discriminative approaches [5], [6], which model
and predict state condition directly from observation. These
approaches require large training data for modeling, and
difficulty has been suggested in assuring sufficiency in a
mapping between observation and state condition. Although
these problems exist, easier model construction and speed-
up of the inference process are notable characteristics. For
an example, approaches based on fast nearest-neighbor re-
trieval [7], [8], [9] and multiple image integration [9], [10],
[11] has been worked on, and suggested difficulties are
partially being improved.

We propose a discriminative approach mainly based on the
ideas listed below, which provides a complete solution to the
suggested difficulties. The main contribution of this approach
is speed, which ensures real-time processing up to 30[FPS].
Other notable aspects are flexibility towards various complex
motions, robustness, and reusability of training models. The
whole process flow is presented in Fig. 1. Offline and online
process respectively corresponds to model construction and
human pose inference.

• Multiple Image Integration
Vagueness is associated with silhouette-based monoc-
ular image processing. Integration of information ex-
tracted from multiple silhouette images lead to reduction
of vagueness.

• 3D Voxel Reconstruction
3D voxel reconstruction is possible through multiple
silhouette image integration. This leads to viewpoint-
free estimation, which benefits in that reconstruction of
a training model is needless in different multi-camera
arrangements.

• Computational Cost Reduction
Human posture candidates are defined beforehand from
a large motion capture database. This policy is so-called
an example based approach [7], [8], [9], which reduces
the computational cost compared to random sampling or
non-linear optimization methods. Instead of searching
entirely through the state space, inference is simplified
to a comparison of likelihoods between human posture
candidates and 3D voxel data. Furthermore, a fast near-

neighbor metric [7] is installed prior to the evaluation
process, which additionally reduces the computational
cost.

Client

Server

Offline Online

Motion Capture Data

Posture Clusters

Posture Labels

Graphical

Model

Estimated Label

Clustering

Considering Yaw Rotation

Considering

Label Transition

Maximum Accumulated

Likelihood Estimation

Artificial Voxel

Generation

Voxel

Intersection

Camera

Image

Background

Image

Feature Extraction

Similar

Feature Vectors

Likelihood

Calculation

Candidate

Feature Vectors

PSH Hash

Functions

Query

Feature Vector

Voxel

Intersection

PSH

Training

Fig. 1. Flow of Human Pose Estimation

III. CONSTRUCTION OF POSTURE CANDIDATES

Generally, human postures are treated as a continuous
quantity, but we treat it as a discrete one, which en-
ables defining posture candidates preliminarily. This possibly
causes a sparse inference result, which is an arguable point,
but increase in posture candidate numbers would lead to
denseness of human posture state. Thus, example-based
inference can be considered as a sufficient approximation
of continuous inference methods [8]. Motion capture data
downloaded from www.mocapdata.com (Walk, Jump, Sit
Down, Throw, and other complex motions are included), and
a human model with 19 joints and 5 end-points (60 DOF
configuration, consisted of root coordinates and Euler angles
of joints) are used in later experiments.

In a 3D human pose estimation task, the yaw rotation of a
human body must be considered appropriately (see Fig. 5).
For example, clustering using motion capture data containing
postures with different yaw rotation will induce unstable
results. Therefore, we construct posture candidates based
on a two-stage clustering process, using posture clusters,
which are defined as clusters consisted of posture candidates
corresponding to a basis yaw rotation.

In the initial stage, about a few thousand posture clusters
are extracted from a motion capture database. For efficient
motion data use, each frame is rotated and adjusted to
the basis yaw rotation before being passed to the K-means
method [12]. Likelihood in the K-means method is formu-
lated as the Euclidean distance dX between 72-dimensional
position vectors X, X̃ ∈ R

72 (coordinates of joints and
end-points are concatenated, {X}i : i th element of vector
X).

dX(X, X̃) =

√√√√ 72∑
i=0

{X}i{X̃}i (1)

In the second stage, posture candidates are constructed
by rotating posture clusters at intervals of a step degree Θ.
Posture candidates are managed with corresponding index
values, which are defined as posture labels. The number of
posture labels Nl is a multiple of posture cluster counts Nc

and rotation resolution rθ, which will result in about a few
ten thousands.

Θ = 360[deg]/rθ (2)

Nl = Ncrθ (3)

Additionally, a directed graphical model of motion, which
represents first order Markov property is constructed (see
Fig. 2). Motion sequences are scanned, and each frame is
referenced with a posture label y(t). During the scanning
process, transition probability Ti,j between the previous
label i and current label j is accumulated to eventually form
a whole graphical model. In order to prevent getting caught
into a local solution, Ti,j is binarized as 0, 1.

.

.

.

.

.

.

.

.

.

)1(−ty)(ty)1(+ty

i, jT i, jT

Posture

Labels

Fig. 2. Constructing a Graphical Model

IV. VOLUME INTERSECTION BASED ON

FAST PARALLEL CALCULATION

The volume intersection method is a method for re-
constructing 3D object shape from multiple silhouette im-
ages (see Fig. 3). The output is an assembly of a voxel, which
represents a bin of the divided 3D space. At first, silhouette
images are obtained from a background subtraction process.
Specifically, background subtraction is applied individually
to 3 channels of HSV color space, and then combined
as a single image through logical addition. Thresholds are
determined from the Otsu’s Algorithm [13], but the values
are decreased for the purpose of suppressing the voxel
loss to the minimum. Nonetheless, final voxel outputs will
not receive large influence, because the voxel intersection
method is robust to image noise. Then, silhouette pixels
are back-projected per image to form multiple visual hull
regions (intrinsic / extrinsic camera parameters are calcu-
lated beforehand). In the end, 3D voxels are integrated by
extracting voxels that intersect in all visual hull regions.
Implementation is done based on the policies listed below
for speed-up.

• Speed-Up of Back-Projection Calculation
Under the assumption that extrinsic camera parameters
are invariant, projection from 3D voxels to 2D pixels
are calculated beforehand. The reference relation from
pixel to voxel are stored in look-up table format [11]. By
doing so, voxels are acquired by just scanning through
silhouette pixels and referring the look-up table.

• Cut Down of Network Traffic
A voxel condition is possibly represented in binary
format (exist / non-exist). Therefore, data of 1[byte]
can represent 8 voxel conditions. By applying this rule,
network traffic can be suppressed to the minimum.
Moreover, voxels are grouped into proximity regions,
limiting data transfer to regions only where voxels exist,
and eventually reducing more network traffic.

A volume intersected result using 8 cameras are shown
in Fig. 4. Two images in the left show reconstructed voxels,
while 16 images in the right show original and silhouette
images of 8 cameras. For speeding up the rendering process,
only surface voxels are rendered (approximately 1500 voxels
are rendered).

Visual

Hull

Camera Origin

Silhouette

Image

Voxels

Fig. 3. Voxel Intersection Method

Fig. 4. Reconstructed 3D Voxels

V. LIKELIHOOD EVALUATION BASED ON

FEATURE EXTRACTION

A. Histogram-Based Feature Extraction

In our approach, a feature with a position invariant prop-
erty is desired. Kortgen et al. proposed a position and rotation

invariant feature for 3D objects named 3D Shape Contexts,
and applied the metric to 3D object matching [14]. This
feature is easily extracted from voxel data, but in our
approach the rotation invariant property is redundant and
leads to higher computational cost. Huang et al. used a
simplified 3D Shape Context feature for a gesture recognition
application [15]. We extended their approach to extract a
histogram-based feature from voxel data. Extracting proce-
dures are listed below and an outline illustration is presented
in Fig. 5.

1) 3D Voxel data is reconstructed from the voxel inter-
section method, and a central axis is set to the center
of gravity.

2) Based on the central axis, 3D space is divided into
rz height divisions, rr radius divisions, and rθ angle
divisions. The total resolution will be rzrrrθ, and a
corresponding 1D array of the same size is prepared.
When the index values of height, radius, and angle
divisions are respectively defined as iz, ir, iθ, index
I of the array is calculated from (4).

I = iθ + irrθ + izrθrr (4)

3) When a voxel v is included in the region of bin bI ,
the distance from the central axis dv is added to the
corresponding array element. After this operation is
applied to every voxel in the effective range, each array
element is normalized by dividing it with a dv total.
The result array is defined as a query feature vector
q(xt) (see (5)). This weighting operation, has an effect
to weaken the influence of voxels near the central axis,
eventually increasing robustness.

{q(xt)}I =

∑
v∈bI

dv∑
v dv

(5)

The effective range of this feature extraction process is
provided by the subject’s height h, which means a scaling
problem will not occur. Furthermore, as a result of normal-
ization, the final inference result will not depend on the
resolution of voxel space or the subject’s position. These
properties offer high reusability of training models.

Radius

Direction

Height

Direction

Angle

Direction

Bin

Voxel Data

Yaw

Rotation

Fig. 5. Extracting a Histogram-based Feature from Voxel Data

B. Artificial Voxel Data Generation

Likelihoods between posture candidates and 3D voxel
data are calculated with histogram-based feature vectors.
Because posture candidates are represented in human body
joint angle format, some kind of transformation is necessary
for direct evaluation. Histogram-based feature vectors of
posture candidates are extracted from joint angle format data
through artificial voxel data generation. Artificial voxel data
is generated by approximating body links as a cylinder or
an ellipsoid (approximated radii are configured manually).
At first, joint angle format data is reflected to the human
model. Then, voxels included in the approximated region of
each body link is extracted to configure a voxel data (see
Fig. 6, artificial voxel data in the right are generated from
the human model in the left). In this way, candidate feature
vectors Q are generated from posture candidates.

Fig. 6. Artificial Voxel Data Generation

C. Likelihood Evaluation

Likelihood evaluation is based on the Bhattacharyya Co-
efficient [16]. Likelihood between a candidate feature vec-
tor qj ∈ Q of label j and a query feature vector q(xt) is
calculated from the equation below.

φt(j) = BC(qj , q(xt)) =
rzrrrθ∑
r=0

√
{qj}r{q(xt)}r (6)

VI. NEAR-NEIGHBOR SEARCH FOR

COMPUTATIONAL COST REDUCTION

A. Parameter Sensitive Hashing (PSH)

When a naive nearest-neighbor search algorithm is com-
bined with the likelihood evaluation process, the computa-
tional cost will be proportional to the number of posture
labels. In order to reduce this computational cost, a fast
near-neighbor search metric named Parameter Sensitive
Hashing (PSH) [7] is introduced. PSH is an extended
version of a similar metric named Locality Sensitive Hash-
ing (LSH) [17], and it’s introduction drastically decreases
the likelihood calculation frequency to a few percent, which
enables real-time processing.

In PSH, a query feature vector q is given to trained hash
functions G for input, and similar labels S are obtained
as output. Specifically, L hash functions G are constructed
through training, and each hash function gl(q) ∈ G outputs
an index value for both q and a candidate feature vector
qj of label j. When the index values are the same value, j
will be an element of S (allows duplication). The actual

implementation uses a look-up table which maps posture
labels based on index values, where the index value of q is
used as a query. Therefore, there is no need to calculate index
values for Q during the search process. Hash function g(q)
consists of concatenated K decision stumps hk(q) (see (7)),
and hk(q) is a binary function which is defined by function
ψo(q) and threshold Td (see (8)). We define ψo(q) as a
function that returns the o th element of q, which suggests
that the purpose of PSH training is to extract sensitive
functions and optimal Td values.

g(q) = [h1(q), h2(q), · · · , hk(q)]T (7)

hk(q) =
{

1 if ψo(q) ≥ Td,
0 otherwise. (8)

B. PSH Training

The sensitiveness of ψ(q) is defined as the likelihood of
outputting same values for similar data pairs compared to
dissimilar data pairs. Therefore, sample pairs labeled with
similar or dissimilar labels are used for PSH training. Label
z for a sample pair (q, q̃) will be resolved, based on the
Euclidean distance dX in parameter space (position vector
space ∈ R

72) and not in input space (feature vector space ∈
R

rzrrrθ). Threshold R is an application-dependent value, and
parameter ε is set to 0.5.

z =

⎧⎨
⎩

+1 if dX(X, X̃) < R/(1 + ε),
−1 if dX(X, X̃) > R,
not defined otherwise.

(9)

Sample pairs are constructed through scanning of motion
capture data (a position vector X is extracted per frame).
Similar sample pairs are configured with pairs of X and
a most similar posture label that fulfills zm,n = +1, while
dissimilar sample pairs are configured with pairs of X and a
randomly selected posture label that fulfills zm,n = −1. By
adding noise to sample pairs in this phase, an improvement
in inference robustness can be expected. In (9), a gray zone
exists where labels are not defined, but pairs that fall under
this zone would not be used in the training process. Hash
functions constructed using these sample pairs will assure
that (10) would be fulfilled between query and output data in
high probability (This property is called locality-sensitive [7],
[17]). LSH assures a locality-sensitive property in input
space, while PSH assures it in parameter space, which is
why PSH is named this way.

dX(X, X̃) < R (10)

In the initial stage of training, sensitive decision stumps
H are obtained. Sensitiveness is evaluated from score so (the
lower, the higher sensitivity is), which is defined as a
ratio of false positive counts Nfp and false negative counts
Nfn to total sample counts N (see (11)). Nfp, Nfn and
Td that minimizes so will be derivable through two loop
calculations [7]. After constructing a decision stump hk(q)
for each feature vector element, decision stumps that fulfill
(11) (Ts : threshold) will be registered to H.

so =
(Nfp + Nfn)

N
> Ts (11)

In the second stage of training, KL decision stumps are
randomly selected from H (allows duplication), to form
L hash functions of K bit size. Generally, a large K
increases precision and decreases query ratio, while a large
L increases query ratio and decreases precision. Thus, K and
L are significant parameters that drastically effect the overall
performance.

C. Extension of PSH

The fundamental idea of PSH is to combine weak discrim-
inators to configure a precise discriminator. Simply applying
PSH to a human pose estimation task will result in failure,
because no matter how you combine weak discriminators, it
is impossible to sufficiently cover the whole posture param-
eter space. Therefore, we propose an approach that divides
parameter space, and constructs discriminators individually
in each partial parameter space. We specifically propose
a divisional strategy based on human yaw rotation, which
divides parameter space into rθ partial parameter spaces.
Sample pairs are individually prepared for each yaw rotation,
which will be used to construct corresponding hash func-
tions. This approach not only has an advantage in precision,
but also in memory consumption in that look-up table size of
hash functions will decrease due to registering posture label
number reduction.

Moreover, a same value is set to human yaw rotation
resolution and histogram radius resolution. This enables
simple mapping between a yaw rotation index value and a
decision stump index value o (there is correspondence be-
tween a yaw rotation index value and iθ). Posture candidates
are constructed by simply rotating posture clusters, which
means that hash functions for the basis yaw rotation can be
appropriately operated to form hash functions in other yaw
rotation steps. As a result, only sample pairs for the basis
yaw rotation will be needed, and training time will drastically
be reduced.

VII. INFERENCE BASED ON

A GRAPHICAL MODEL OF MOTION

Likelihood φt(j) is calculated between a query feature
vector q(xt) and a candidate feature vector qj , which corre-
sponds to similar labels S (j ∈ S). Inference is possibly
done per frame, by selecting label y(t) that outputs the
maximum value among likelihood φt(j).

y(t) = argmax
j

φt(j) (12)

However, not making consideration of first order Markov
property leads to improper transition and inference oscil-
lation. Thus, a graphical model of motion is embedded
to provide a smoothing effect. Smoothing algorithms such
as Viterbi decoding[12] are unsuitable because the optimal
sequence cannot be computed until the entire input has been
observed. Thus, based on maximization of posterior prob-
ability, label y(t) that outputs the maximum value among
accumulated likelihood pt(j) is selected per frame during

the inference process.

pt(j) =
{

φt(j) (t = 0)
maxi(pt−1(i)Ti,j) + φt(j) (t �= 0) (13)

y(t) = argmax
j

pt(j) (14)

VIII. EXPERIMENT ON IMAGE-BASED

HUMAN POSE ESTIMATION

We performed experiments on image-based human pose
estimation. The target motion was designed to walk around in
the first half, and perform stretching exercises in the second
half. Experiments were performed on 3 occasions, 1) No
PSH : a nearest-neighbor approach was applied instead of
PSH 2) PSH + Graphical Model : proposed approach 3)
No Graphical Model : a graphical was not embedded in
the inference process. The main idea of these experiments
were to confirm the effectiveness of PSH and a graphical
model of motion. The advantage of PSH, which is mainly
speed, was expected to be confirmed between experiments 1)
and 2). Although the final result of 1) would have possibly
been more accurate than 2), the accuracy reduction rate
was expected to fall in the acceptable range. The effect
of embedding a graphical model is motion sequence stabil-
ity (exclusion of unnatural transitions), which was expected
to be confirmed between experiments 2) and 3). Specific
experiment conditions are listed below and results are shown
in Fig. 7.

• Multi-Vision Environment / Volume Intersection
8 cameras (Point Grey Research IEEE 1394 Digital
Camera Dragonfly2) and 4 server PCs (Dell Precision
690, Intel Xeon Processor 5060 3.20 GHz × 2, 4GB
Memory) were prepared, and 2 cameras were connected
to each server PC. Cameras were completely synchro-
nized during capture, and intrinsic / extrinsic camera
parameters were calculated beforehand. Furthermore,
a client PC was prepared in the same specification,
which was designed to handle the integration process
in volume intersection and the main posture infer-
ence process. In addition, 3D space was divided into
120×120×60 resolution as a 35mm size cubic voxel.

• Posture Labels
161520 frames of motion capture data (captured in 30
FPS) were used in clustering to extract 1106 posture
clusters (clusters were estimated as Gaussian distribu-
tions of equal covariance). Yaw rotation resolution rθ

was set to 12 (Θ : 30[deg]), which resulted in 13272
posture labels (see (3)).

• Histogram-Based Feature Vector
The effective range of feature extraction was defined
by height and radius values. The height limit from the
ground level was set to 1.3h, while the radius limit from
the central axis was set to 0.5h (h : subject’s height).
The dimension of the histogram-based feature vector
was set to 384 (8×4×12).

• PSH
Motion capture data was scanned and 239534 sample
pairs for the basis yaw rotation were created (there were

119767 pairs for both similar and dissimilar pairs). Ts

was set to 0.675 which resulted in 54 sensitive decision
stumps H out of 384. K and L were respectively set to
12 and 30, so that the query ratio would approximately
satisfy 1 ∼ 3%. Consequently, the total number of hash
functions became 360.

The results show flexibility towards complex motions and
robustness towards voxel noise. Comparison between results
of 1) and 2) indicate the high performance of PSH in that
precision reduction is limited to the minimum. The effect
of a graphical model can also be confirmed by comparing
results of frame 433 and 434. Moreover, inference in frame
476 has failed due to occlusion, but a comeback can be
seen afterwards in frame 499, which means that the use of a
graphical model does not lead to getting caught into a local
solution. Inference failure in frame 1514 has been caused
by posture candidates, which did not contain appropriate
candidates. Therefore, posture parameter space has not been
completely represented by posture candidates, which is a
future task.

Average process times per frame and precision evaluation
results on synthetic data sequences have been arranged in
Table. I. The total process time of the proposed approach is
shorter than the image capture interval time in 30[FPS] (in-
dicates high speed-up performance of PSH), which assures
real-time processing. Synthetic evaluation has been done
using 6229 frames of motion capture data that were not
used in training. Input data was created from Euler angle
format data through an artificial voxel generation process.
Precision was based on the Euclidean distance dX between
an estimated posture and the true posture (considered a
success when (10) was satisfied). Judged from the results,
effectiveness of PSH and a graphical model of motion can
be confirmed in synthetic data sequences as well as in real
image data sequences.

TABLE I

PROCESS TIME AND PRECISION EVALUATION

PSH No No Yes Yes
Graphical Model No Yes No Yes
Background Subtraction 20[ms] 20[ms] 20[ms] 20[ms]
Volume Intersection 1[ms] 1[ms] 1[ms] 1[ms]
Network Transfer 2[ms] 2[ms] 2[ms] 2[ms]
Server Side Total 23[ms] 23[ms] 23[ms] 23[ms]
Volume Intersection 1[ms] 1[ms] 1[ms] 1[ms]
Voxel Rendering 1[ms] 1[ms] 1[ms] 1[ms]
Main Inference Process 80[ms] 110 [ms] 1[ms] 2[ms]
Client Side Total 82[ms] 112 [ms] 3[ms] 4[ms]
Total Process Time 105[ms] 135[ms] 26[ms] 27[ms]
Image Capture(30[FPS]) 33[ms] 33[ms] 33[ms] 33[ms]
Precision 0.856 0.869 0.832 0.849

IX. CONCLUSION

A novel approach to recover human pose from 3D voxel
data has been proposed. Experimental results show that
real-time processing up to 30[FPS] has been achieved by
introducing an example-based approach and a fast near-
neighbor search metric. In this paper, other notable aspects

of the proposed approach such as motion stability, flexibility
towards various complex motions, and robustness towards
noise have also been presented. Future works are improve-
ments in precision, representation of human posture space,
and robustness towards occlusion.

REFERENCES

[1] Cory D. Kidd, Robert Orr, Gregory D. Abowd, Christopher G. Atke-
son, Irfan A. Essa, Blair MacIntyre, Elizabeth Mynatt, Thad E. Starner,
and Wendy Newstetter. The Aware Home: A Living Laboratory for
Ubiquitous Computing Research. In Proc. CoBuild, pp. 191–198,
1999.

[2] Taketoshi Mori, Hiroshi Noguchi, Aritoki Takada, and Tomomasa
Sato. Sensing Room: Distributed Sensor Environment for Measure-
ment of Human Daily Behavior. In Proc. INSS, pp. 40–43, 2004.

[3] Masanobu Yamamoto, Akitsugu Sato, Satoshi Kawada, Takuya Kondo,
and Yoshihiko Osaki. Incremental Tracking of Human Actions from
Multiple Views. In Proc. CVPR, pp. 2–7, 1998.

[4] Kameda Yoshinari, Minou Michihiko, and Ikeda Katsuo. Dimensional
Pose Estimation of an Articulated Object from its Silhouette Image.
In Proc. ACCV, pp. 612–615, 1993.

[5] Greg Mori and Jitendra Malik. Estimating Human Body Configura-
tions Using Shape Context Matching. In Proc. ECCV, pp. 666–680,
2002.

[6] Cristian Sminchisescu, Atul Kanaujia, Zhiguo Li, and Dimitris
Metaxas. Discriminative Density Propagation for 3D Human Motion
Estimation. In Proc. CVPR, Vol. 1, pp. 390–397, 2005.

[7] Gregory Shakhnarovich, Paul Viola, and Trevor Darrell. Fast Pose
Estimation with Parameter Sensitive Hashing. In Proc. ICCV, Vol. 2,
pp. 750–757, 2003.

[8] Leonid Taycher, Gregory Shakhnarovich, David Demirdjian, and
Trevor Darrell. Conditional Random People: Tracking Humans with
CRFs and Grid Filters. In Proc. CVPR, Vol. 1, pp. 222–229, 2006.

[9] Liu Ren, Gregory Shakhnarovich, Jessica K. Hodgins, Hanspeter
Pfister, and Paul Viola. Learning Silhouette Features for Control of
Human Motion. ACM Transactions on Graphics, No. Vol. 24, No. 4,
pp. 1303–1331, 2005.

[10] Ivana Mikic, Mohan Trivedi, Edward Hunter, and Pamela Cosman.
Human Body Model Acquisition and Tracking Using Voxel Data.
International Journal of Computer Vision, No. Vol. 53, No. 3, pp.
199–223, 2003.

[11] Roland Kehl, Matthieu Bray, and Luc Van Gool. Full Body Tracking
from Multiple Views Using Stochastic Sampling. In Proc. CVPR,
Vol. 2, pp. 129–136, 2005.

[12] David J. C. MacKay. Information Theory, Inference, and Learning
Algorithms. Cambridge University Press, 2005.

[13] Nobuyuki Otsu. A Threshold Selection Method from Gray-Level
Histograms. IEEE Trans. Syst. Man and Cybern, Vol. SMC-9, No. 1,
pp. 62–66, 1979.

[14] Marcel Kortgen, Gil-Joo Park, Marcin Novotni, and Reinhard Klein.
3D Shape Matching with 3D Shape Contexts. In Proc. WSCG, 2003.

[15] Kohsia S. Huang and Mohan M. Trivedi. 3D Shape Context Based
Gesture Analysis Integrated with Tracking using Omni Video Array.
In Proc. CVPRW, Vol. 3, p. 80, 2005.

[16] Thomas Kailath. The Divergence and Bhattacharyya Distance Mea-
sures in Signal Selection. IEEE Trans. on Comm. Technology, Vol. 15,
pp. 52–60, 1967.

[17] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity Search
in High Dimensions via Hashing. In Proc. VLDB, pp. 518–529, 1999.

Image

Frames 476 499 780 1316 1514 1731433 434

Voxels

No

PSH

PSH +

Graphical

Model

No

Graphical

Model

 Graphical Model Effect Estimation Comeback

Fig. 7. Human Pose Estimation

