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Abstract— In this paper, we propose a robust recognition
and segmentation method for daily actions with a novel Multi-
Task sequence labeling algorithm called Multi-Task conditional
random field (MT-CRF). Multi-Task sequence labeling is a
task of assigning input sequence to sequence of multi-labels
that consist of one or multiple symbols in single frame. Multi-
Task sequence labeling is essential for action recognition, since
motions can be often classified into multi-labels, e.g. he is folding
arms while sitting. The MT-CRFs: extensions of conditional
random fields (CRFs), incorporate jointly interaction between
action labels as well as Markov property of actions, to improve
the performance of the joint accuracy: the accuracy for whole
labels at specific time. The MT-CRFs offer several advantages
over the generative dynamic Bayesian networks (DBNs), which
are often utilized as Multi-Task sequence labelers. First, the
MT-CRFs allow relaxing the strong assumption of conditional
independence of observed motion, which is used in DBNs.
Second, the MT-CRFs exploit the power of non-Markovian
discriminative classification frameworks instead of generative
models in DBNs. With deep insight of the problem Multi-Task
sequence labeling, the inference process of the classifier gains
more efficiency than the previous Markov random fields that
tackle Multi-Task sequence labeling. The experimental results
show that classifiers with MT-CRFs have better performance
than cascaded classifiers with a couple of CRFs.

I. INTRODUCTION

Recognizing human action is one of essential founda-
tions to achieve smooth communication between intelligent
robotics systems and human. It is also a key technical
element in achieving analysis and surveillance of human
activity by intelligent systems. In action recognition, input is
time-series human motion. Thus, it is interesting to formulate
action recognition as a statistical sequence labeling problem
where the output is a sequence of labels rather than a single
label, as well as POS tagging in computational linguistics,
function analysis in bioinformatics, and speech recognition.
In mobile robotics, a sequence of range scan data and state
of robots can be an input and an output of this problem.

There exist common factors for realizing robust sequence
labeling in various domains. One is to leverage Markov
assumption. In action recognition, this is related to the time-
dependency problem or segmentation, which specifies the
start and end points of action, because human requires a
certain time interval to behave that action. This is also known
as chunking in computational linguistics. Another important
factor is to design good label-observation mapping: a map-
ping problem. For example of this for speech recognition,
specific frequency of sound serves as a cue for estimating
the specific phoneme.
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Another factor to realize robust sequence labeling in prac-
tical problems is to incorporate multi-label problems [14].
Multi-label is a tuple of labels where the number of the
symbols is variable where it is important to consider the
pair of labels interact with each other. This is an essential for
daily action recognition, since motions can be often classified
into multi-labels, e.g. he is folding arms while sitting. In
other words, it’s not always true that all the labels to be
annotated are exclusive such as pair of standing and sitting.
Instead, it often occurs that there are non-exclusive pair of
labels: sitting on chair, and sitting or showing hand and
standing. In this paper, we call the sequence labeling problem
where the output in a single frame is a multi-label as Multi-
Task sequence labeling.

In order to incorporate the properties mentioned above,
statistical approaches are proposed in many research works.
Popular approach in this framework is to use dynamic
Bayesian networks (DBNs) [8], such as hidden Markov
models (HMMs) and their extensions [3]. Because of their
systematic formulation, they have achieved privilege in ac-
tion recognition domain [16]. However, there is a critical
restrictions in the generative approach: strong assumption of
conditional independence of observed motion. This restric-
tion is related to the mapping problem. In action recognition,
relevant motion features vary widely with the target actions.
In DBNs, it is common to use a single or mixture of
Gaussians to compute likelihood of labels from the observed
motion. In case we want to classify actions regardless of
actions ranging from dynamic action to static postures of
human in systematic manner, DBNS limits a designer of
labeling algorithms to utilize flexible motion cues.

As a resolution for the inflexibility of mapping design of
DBNs, some researchers recently proposed flexible Markov-
based models that allow observations to be represented
as arbitrary overlapping features, e.g. conditional random
fields (CRFs) [5]. They are not generative but their inference
is in discriminative manner. This approach seems to be very
good for us, and drive researchers to make a novel action
recognition methodology [12], because they allow us to
exploit motion cues or several non-Markovian discriminative
method [1] as a mapping from motions to action.

In this paper, we propose an extention of CRFs to tackle
the Multi-Task sequence labeling. It is possible to cascade
CRFs for the Multi-Task sequence labeling. However, errors
on early processing influence through the chain and cause
errors in the final output. To attain higher joint accuracy: the
accuracy for whole labels in single time, it is natural to
couple CRFs systematically. In natural language processing,



Fig. 1. Input and output of daily action recognition is shown. Input: time-
series of human motion. Output: chunked recognition results in synchro-
nization with input motion. It often occurs that multi-labels are annotated,
like he is sitting (specifically sitting on chair) and looking away at t = 30.

an extetion of CRFs called a factorial CRFs [13]: a system-
atic Multi-Task sequence labeler, is already proposed and
achieves higher performance than the traditional cascaded
CRFs. But their inference process based on a loopy belief
propagation [9] lacks the efficiency in action recognition.
Hence, we propose an efficient alternative inference based
on variational approach to focusing on the influence related
to the interaction in multi-labels would be smaller than the
interaction in Markov and the mapping property,

The rest of the paper proceeds as follows. Section II
outlines action recognition framework with complicated se-
mantics and the formulation of it as a Multi-Task sequence
labeling problem. Section III introduces definition, labeling
procedure and learning process of our new labeling model,
MT-CRFs. Section IV presents results of several experiments
about multiple-task sequence labeling. We conclude in sec-
tion V with some directions for future research.

II. TIME-SERIES DAILY ACTION RECOGNITION AS
MULTI-TASK SEQUENCE LABELING

The input of action recognition is time-series data of
motion features and output of the recognition is a sequence
of multi-labels that consist of one or multiple action sym-
bols (see Fig. 1).

A. Graphical representation of Multi-Task sequence labeling

In this subsection, we model the time-series action recog-
nition problem with graphical model representation, which is
suitable for the Multi-Task sequence labeling. The structure
used in this paper is shown in Fig. 2. This modeling can
incorporate all the properties for robust action recogni-
tion: mapping property, Markov property, symbol interaction
within a single frame. The variables for this problem is as
follows: input data at time t is depicted by xt ∈ X , where
X means arbitrary motion data structure. Let yt ∈ Y =
{Y1 ⊕ · · · ⊕ YK} be a tuple of labels at time t, where Yk

represents set of symbols for k-th tasks. yt,k corresponds to
the label of k-th task at that time. X = x1:T ∈ SX denotes a
input sequence with length T and Y = y1:T ∈ SY indicates
the corresponded label sequence. Collection SA represents
a set of sequences of set A. Let Yk = y1:T,k ∈ SYk

be a
sequence of labels for k-th task.

Fig. 2. Graphical model for Multi-Task Sequence Labeling. Circles
represent hidden probabilistic variables and Squares denote observed non-
probabilistic variables. In Multi-Task sequence labeling, a label is influenced
by input data x and interacts with the other labels.

B. Semi-Hierarchical Representation of Actions

The above models and setting seems to provide us sub-
stantial information to implement recognizers, however, it
remains an important issue to be solved before implementa-
tion. The issue is how to set Yk.

The most primitive approach in this setting defines each
task as a binary classification e.g. “sitting” vs “non-sitting”.
This means the number of the symbols in each task is
2: |Yk| = 2. This means that a sequence labeler integrates the
outputs of non-Markovian binary classifiers of single action
symbol. However, this approach is too naive because the
number of the tasks K grows linearly when the number of
the target action increases. In addition, the complexity of the
label interaction in single frame drastically increases. Hence
another designing approach Yk must be proposed.

To take deep insight of semantics of action symbols,
there are some obvious relations of actions: 1) hierarchical
representation, e.g. “sitting on chair” is a kind of “sit-
ting”, 2) exclusive relation, e.g. “standing” never occurs
when human is “lying,” 3) some relation that can be depicted
by rule but has influence label assignment, e.g. “standing”
does not influenced by “folding arms,” however, “folding
arms” never occurs when he is lying.

To incorporate the insights of action semantics for de-
signing the set Y and Yk , we adopt a semi-hierarchical
structure of actions. An example of the structure of semantics
of action is illustrated in Fig. 3. In this framework, there are
several groups of action categories. For example, a group
of action categorized by gazing full-body posture, what we
call root group, contains “standing”, “lying”, “sitting”, and
“on four limbs”. Another group called sitting group contains
“sitting on chair” or “sitting on floor”, lying group that treats
lying actions and the rest group treats actions determined
by arms posture. This structure provides us information of
hierarchy, exclusiveness, the other relations between actions.
For example this structure tells that sitting on floor is a kind
of sitting, “lying” never occurs when “sitting” and “folding
arms” may occur when “sitting” occurs. The reason why we
adopt this categorization scheme is that this can make the
Multi-Task sequence labeling with small number of tasks K
and relatively compact size of Yk. Instead of using the semi-
hierarchical structure, we can handle hierarchical structures
with “flat” symbol space. However, the symbol space grows



Fig. 3. Relation between Actions. It contains semi-hierarchical structures
of actions.

very large when the layer of hierarchy grows. Put it all
together, inference for action recognition in this paper can
be formulated as integration of the results of couple of
interdependent multi-class classifiers.

III. MULTI-TASK CONDITIONAL RANDOM FIELDS

In this section, we introduce a probabilistic model to
annotate Multi-Task sequence labeling. At first, we introduce
conditional random fields as a basis of our model, then
we propose and define the Multi-Task Conditional Random
Fields, and illustrate the process of their inference and
learning from the data.

A. Conditional random fields: CRFs

Conditional Random Fields (CRFs) [5] are undirected
graphical models that encode a conditional probability using
a set of given feature templates. Originally, standard CRFs
are developed as alternatives of hidden Markov models. In
this paper, we call original CRFs as standard CRFs. In
standard CRFs, a first-order Markov assumption is made on
the label variables, and the number of the tasks is 1.

CRFs are defined as follows. The output of CRFs for
X = x1:T is Y = y1:T . In order to incorporate first-
order Markov assumption, local feature templates should
be defined as f(X, yt−1, yt, t). For example, i-th feature
template of f(X, yt−1, yt, t) is {f(X, yt−1, yt, t)}i = �yt =
“walking′′��yt−1 = “walking′′�, where �b� returns binary
result of boolean value b. Furthermore, local feature tem-
plates can be freely designed with X . For example, i′-th fea-
ture template of f(X, yt−1, yt, t) is {f(X, yt−1, yt, t)}i′ =
�yt = “walking′′��vt > θi′�, where vt denotes some motion
information such as, forward velocity of hips. Informal
interpretation of this template is “walking makes human move
forward”. A parameter θi is a kind of adjustable threshold.
Then a standard CRF can be defined with a probability
distribution as

p(Y |X) =
1

Z(X)
exp

(
wTF (X, Y )

)
(1)

where F (X, Y ) =
∑

t f(X, yt−1, yt, t) is global feature
vector of the sequence. The parameter w denotes a set of
real weights and Z(X) is a normalization factor of the dis-
tribution that satisfies Z(X) =

∑
Y exp

(
wTF (X, Y )

)
.In

standard CRFs, probability of label sequence p(Y |X) and
Z(X) can be analytically solved via generalized forward and

backward algorithm similar to that of HMMs [5] once input
sequence X is given.

B. Model representation

Following from the definition of the Multi-Task sequence
labeling problem in the previous sections and borrowing the
sense of standard CRFs, we formulate Multi-Task CRFs as

p(Y |X) =
1

Z(X)
exp

(
w̆TF̆ (X, Y ) +

∑
k

wT
k Fk(X, Yk)

)
, (2)

where Z(X) =
∑

Y exp
(
w̆TF̆ (X, Y ) +

∑
k wT

k Fk(X, Yk)
)

.

A “feature” template F̆ (X, Y ) provides cues of
mapping from input X to Y where each task is
interdependent to the other tasks, and can be defined
as F̆ (X, Y ) =

∑
t f̆(X, yt−1, yt, t). For example

of this feature template, i′′-th feature template
{f̆(X, yt−1, yt, t)}i′′ = �yt,k = “lying on side′′� · �yt,k′ =
“lying′′�. Another feature template Fk(X, Yk) provides cues
of mapping from input X to labels of k-th task Yk, and can
be denoted as Fk(X, Yk) =

∑
t fk(X, yt−1,k, yt,k, t). This

factorized representation means Fk depends only on the
labels of the k-th task. The model parameters are a set of
real weights w = {w1, . . . , wK , w̆}. The weight parameter
indicates how correct the feature template is for sequence
labeling.

C. Inference in a MT-CRF

Unlike inference of standard CRFs, the inference cannot
be solved analytically in a MT-CRF, because the Multi-Task
sequence problem is a inference problem of the graphs with
loops (see Fig. 2). Gibbs sampling for sequence labeling is
very useful and easy to be implemented, however, the com-
putational cost for the sampling is very expensive. Another
major approach for this problem is to use loopy belief prop-
agation (Loopy BP) [9] algorithms. This can be viewed as a
general form of forward and backward algorithms of HMMs,
and approximately estimates the posterior distribution of the
label sequence. This method is known to be empirically
successful for the inference in the graph with loops, however,
naive implementation of Loopy BP makes the inference very
slowly. Dynamic CRFs [13] utilized an efficient version of
Loopy BP [15], however, some heuristics are inevitable to
run this. Thanks to the result that the interaction in a multi-
label would be smaller than the interaction in Markov and the
mapping property, an alternative efficient inference method
should be investigated.

In this research, we adopt structured variational approx-
imation [2] as an alternative. The procedure of the in-
ference is as follows. First, we approximate p(Y |X) by
some simple distribution Q(·) for inference. We factorize
Q(·) = QX(Y ; ν1:K) parameterized with auxiliary functions
ν1(Y1), . . . , νK(YK) as QX(Y ; ν1:K) =

∏K
k=1 q(k)(Yk; νk),

to divide the Multi-Task labeling problem with a MT-
CRF into a couple of Single-Task problems. Kullback-
Leibler (KL) divergence is leveraged as the measure of the



similarity between p(Y |X) and QX(Y ; ν1:K) so as to get
appropriate QX(Y ; ν1:K). KL divergence can be written as

KL(Q(Y ; ν1:K)||p(Y |X))
= 〈ln Q(Y ; ν1:K) − ln p(Y |X)〉Q(Y ;ν1:K) (3)

where 〈f(A)〉p(A) represents the expected value of f(A)
over a distribution p(A). Then we minimize KL divergence
between QX(Y ) and p(Y |X) with respect to ν1:K . We
make an alias for approximated posterior distribution as
q(k)(Yk) := q(Yk; νk) so as to keep the notation simple.
In this research, we formulate the factorized approximated
posterior distribution for k-th task, q(k)(Yk), as

q(k)(Yk) =
1

Zk(X)
exp

(
w̆Tνk(Yk) + wkFk(X, Yk)

)
, (4)

where Zk(Yk) =
∑

Yk
exp

(
w̆Tνk(Yk) + wkFk(X, Yk)

)
.

The benefit with such a model factorization is that we
can acquire exact q(k)(Yk) and ln Zk(X) efficiently, once
ν(k)(Yk) is given and if ν(k)(Yk) can be written with
first-order Markov assumption. This is because q(k)(Yk) is
equivalent to standard CRFs. With the formulation of q(k)

and a result of the stationary point of KL divergence, we
can acquire the optimal auxiliary function ν∗

k as

ν∗
k(Yk) =

∑
k′ �=k

∑
Yk′

q(k′)(Yk′ )F̆ (X, Y ) (5)

This result leads to the intuitive interpretation: ν∗
k is the

expected function of the feature templates F̆ (X, Y ) by all
the approximated distributions q(k′)(Yk′ ) except k-th task.

If we can assume the KL divergence is close to 0, then
the log of the normalize factor of the MT-CRF can be
approximated as ln Z(X) ≈ ln Z̃(X)

ln Z̃(X) ≡ w̆T
〈
F̆ (X, Y )

〉
QX (Y )

+
K∑

k=1

(
ln Zk(X) − w̆Tλk

)
, (6)

where λk = 〈ν∗
k(Yk)〉q(k)(Yk). In this inference, we must

initialize the distribution q(k)(Yk) and iteratively optimize the
distribution q(k)(Yk) with fixed-point iteration method until
ln Z̃(X) converges. This is because the optimal auxiliary
function νk depends on the approximated distribution for
the other tasks. In this paper, we initialize the distribution
q(k)(Yk) ∝ 1. Thus our inference algorithm with variational
approximation is summarized in Table I.

D. Parameter estimation in a MT-CRF

The parameter estimation problem is to find a set of
parameter vectors w = {w̆, w1, . . . , wK} given the training
dataset DX,Y = {X(n), Y (n)}N

n=1. More specifically, we
find the optimal parameter w by MAP estimation. From
Bayes’ theorem, the following relation satisfies

p(w|DX,Y ) ∝ p(w)
N∏

n=1

p(Y (n)|X(n)), (7)

TABLE I
INFERENCE ON MT-CRFS

0 Setting the approximated distributions q(k)(Yk) ∝ 1 for ∀k,
given input motion sequence X

1 Iterating k to update the approximated distribution q(k)(Yk)
and calculate ln Zk(X) by using forward and backward
procedure of standard CRFs. Before updating the distribution,
the auxiliary function �k(Yk) can be calculated by the other
approximated distributions as in (5).

2 Computing pseudo log of the normalization factor of MT-
CRFs: ln Z̃(X) as in (6).

3 When ln Z̃(X) does not converge, returning to 1, otherwise,
terminating the inference and outputting approximated distri-
bution p(Y |X) ≈ QX(Y ; �1:K) =

QK
k=1 q(k)(Yk)

hence, the optimal parameter can be defined as
w∗ = argmaxw p(w)

∏N
n=1 p(Y (n)|X(n)). In this

research, we use Gaussian (normal) distribution as the
prior distribution of w: p(w) = N (w|0, I/C) with
C > 0 for simplicity. N (·) represents Gaussian distribution
as N (a|µ, Σ) ∝ exp

(
− 1

2 (a − µ)T Σ−1 (a − µ)
)

.
MAP estimation under the above condition is equal to
the following numerical optimization problem: w∗ =
arg maxw J(w), where the target function J(w) satisfies
J(w) =

∑N
n=1

(
wTF (X(n), Y (n)) − ln Z(X(n))

)− C
2 |w|2.

This optimization problem can be simply solved by several
gradient-based methodsod because J(w) is convex. In
the implementation of the MT-CRFs, we use a limited
memory version of BFGS update in quasi-Newton
optimization algorithm [6]. The gradient of the MAP
function w.r.t. w is ∇J(w) =

∑N
n=1 F (X(n), Y (n)) −∑N

n=1

〈
F (X(n), Y (n))

〉
p(Y (n)|X(n))

− Cw. J(w) requires
ln Z(X) and its gradient requires expectation over the
distribution p(Y |X), however, both of them cannot be
acquired analytically. Hence, we must replace ln Z(X(n))
by ln Z̃(X(n)), and

〈
F (X(n), Y (n))

〉
p(Y (n)|X(n))

by〈
F (X(n), Y (n))

〉
QX (Y (n);ν1:K)

from (6).

IV. EXPERIMENTAL RESULT

In this section, we illustrate the performance of the MT-
CRFs in sequence labeling problem with synthetic and real
time-series motion dataset.

A. Classification task evaluation with synthetic dataset

In this experiment, we evaluate the validity of MT-CRFs
with synthetic dataset. The goal of this experiment is to
clarify the tractability of the variational inference proposed
in this paper, and to clarify the impact of leveraging graph-
ical models represented in Fig. 2. Hence, we compare the
performance of several types of CRFs.

a) Dataset: In this experiment, the task of inference
is to annotate character sequences xt ∈ {A, B, C, . . . , Z} by
multiple labels as yt,1 ∈ {a, b, c}, yt,2 ∈ {d, e, f}. Here,
the number of the tasks K is 2. We use multiple hidden
Markov models to generate a synthetic data. To simulate
the interaction between tasks, we must carefully design the
rule of generation. Specifically, we design a basic Markov
process for yt,1 and the other three complementary Markov
models for yt,2. The complementary processes are influenced



Fig. 4. Graphical model with parallel (left) and cascaded (right) style Multi-
Task sequence labeling. In cascaded style of sequence labeling, estimated
labels for 1st Single-Task problem ŷt,1 is used and equally treated as input
xt for 2nd Single-Task sequence labeling yt,2.

by the output of the basic model. The basic Markov process
is designed with a ring topology to generate yt,1 = {a, b, c}.
We design one of the complementary Markov models gen-
erates yt,2 = {e, f} when yt,1 = a. The others generates
yt,2 = {d, f} when yt,1 = b, yt,2 = {d, e} when yt,1 = c.
Thus the combination such as yt,1 = a and yt,2 = d never
happens in this dataset. The parameters of these generators
are described in the following sections.

b) Evaluation method: In order to clarify the validity
of capability to incorporate the interaction between tasks, we
evaluate the performance of MT-CRFs where the number of
the tasks is 2, and compare the performance of the multiple
standard CRFs. Specifically, we prepare three types of CRFs.
First model to be compared is called parallel CRFs. In this
model, the multiple tasks are factorized and executed in
parallel and independently (see Fig. 4). Second model to
be compared is called cascaded CRFs. In this model, the
multiple tasks are factorized and executed in sequence. This
model can tightly incorporate the relation between tasks,
however, the model of accuracy will be poor when the
performance of the task for the basic Markov process is
poor (see Fig. 4). The final one is called flat CRF. This is a
standard CRF where the number of the labels is 6, because
we can convert the dataset with 2 tasks as a Single-Task
sequence labeling problem with 6 states.

The evaluation criteria we used in this experiment are
frame-wise accuracy: the count of the matches between
the estimated result ŷt,k and yt,k for k = 1, 2, and the
joint accuracy: the count of the matches ŷt and yt. The
performance is calculated via 20 times of training and testing.

c) Parameters and condition: In the basic Markov
process, we set the transition probability to the other state
is 0.1. We set the start probability distribution as flat. In
the complementary Markov processes, the state is initialized
when the state in the basic Markov process changes with flat
probability. The transition probability to the other state is set
0.2. The emitter functions are attached to the complementary
processes. They are designed to output xt = A, B, C with
probability 20/83 and the others with probability 1/83 when
the combination of labels is as yt,1 = a, yt,1 = e. The
others are designed in same way. This setting of emitter
functions leads to analytical result of the performance of non-
Markovian local classification algorithms. The local classifier
would achieve the accuracy 81.9 % and the joint accuracy
75.9 % respectively. The length of each sequence is set about

TABLE II
ACCURACY IN EACH METHOD FOR SYNTHETIC DATASET

Parallel Cascaded Flat MT-CRF
A 87.9 ± 0.5 86.9 ± 0.6 88.1 ± 0.6 89:7 ˚ 0:2
JA 79.6 ± 0.7 79.7 ± 0.8 82.2 ± 0.8 83:9 ˚ 0:4

50 to 60. The dataset for training and testing is randomly
generated and the number of each dataset is 100.

As for all the CRFs, we set the parameter of the prior
distribution of w as C = 20.0. We prepare the following
feature templates: simple emitter functions that correspond-
ing to p(xt|yt,2) in HMMs, start features corresponding to
p(y1,·), edge features p(yt,·|yt−1,·). As for MT-CRF, we
utilize inter-label emitter functions that corresponding to
p(xt|yt,1, yt,2). As for the variational inference in MT-CRFs,
we set the terminal condition as the difference of ln Z̃(·)
through iteration is less than 10−3.

d) Result: The performance in each model obtained of
this experiment is summarized in Table II. Abbreviation A
and JA in Table II represents accuracy and joint accuracy,
respectively. From Table II, MT-CRF outperforms the other
models. In other words, MT-CRF improve the performance
the parallel CRFs model. It can be found that the cascaded
model realized few improvement of joint accuracy compared
to the parallel CRFs. The flat CRF achieves high performance
than the parallel models, however, the performance is not so
high as that of MT-CRF. From our qualitative analysis of this
result, the result comes from that the flat CRF requires much
more state transition parameters than the MT-CRF and the
competitive result of the flat CRF relative to the MT-CRF
requires larger size of the dataset. From another perspective
of validating the proposed model, we calculated the number
of iteration for variational inference. In this experiment, the
pseudo log likelihood ln Z̃(·) in (6) converges through 5.4±
1.4 times of iteration.

B. Classification task evaluation with real motion data

In this experiment, we evaluate the performance of action
recognition based on MT-CRFs and compare the perfor-
mance of the parallel and the cascaded CRFs.

At first we design the semantics of action: yt. In this
experiment, we utilize the structural semantics as in Fig. 3.
Specifically, we set labels as yt,1 ∈ { “lying”, “on four
limbs”, “sitting”, “standing”, “other”}, yt,2 ∈ {”lying on
back”, “lying on face”, “lying on side”, “other”}, yt,3 ∈
{“keep down”, “sitting on chair”, “sitting on floor”, “other”},
yt,4 ∈ {“stand still”, “walking”, “running”, “other”}, yt,5 ∈
{“fold arms”, “showing hand”, “other”}. This means the
number of annotated actions at one frame is from 0 to 3,
and the total number of action labels is 15.

Next we design local features from motion observation.
It’s important to remember that we target dynamical and
posture action simultaneously in this experiment. This sit-
uation prevents us from utilizing a naive hidden Markov
models because of the variety of relevant motion features. In
this experiment, a discriminative classifier optimized support
vector learning [11] is utilized as a strong cue for the label-
observation mapping. There are several approaches to use



binary discriminative classifiers for multi-class or multi-label
problems, we adopt one vs. the other approach. Specifically,
we optimize a binary classifier that discriminates whether
some action occurs or not. In this experiment, we transfer
the output of the classifier hlk(c)(xt) for c-th action in k-th
task lk(c) so as to interpret probability value

plocal(yt,k = lk(c)|xt, hlk(c)) =
1

1 + exp
(−σhlk(c)(xt)

) (8)

hlk(c)(xt) =∑
n,t(n)

α
(n)

t(n)sgn
(
y
(n)

t(n),k
= lk(c)

)
K
(
xt, x

(n)

t(n)

)
+ b, (9)

where K(·, ·) : X × X → R represents a kernel function
which computes similarity between motions. Specifically,
K
(
xt, x

(n)

t(n)

)
represents similarity between input motion

at t frame and the reference motion x
(n)

t(n) at t(n) frame
in n-th sequence. Function sgn(·) returns +1 if an input
is true, otherwise, returns −1. α and b represents real
values optimized by support vector learning. This is similar
idea of logistic regression. The parameter σ is optimized
via maximum a posterior estimation with cross validation
techniques [10]. Then we build feature templates for the
CRFs as {f(X, yt−1, yt, t)}i = �yt,k = lk(c)� · plocal(yt,k =
lk(c)|xt, hlk(c)).

e) Dataset: In the following sentences, we illustrate the
training and testing of motion dataset used in this experiment.
We utilize ICS Action database [7]. This is a collection of
annotated motion capture data. In the database, the motion
sequences are annotated with 25 daily actions, such as
walking and showing hand per frame. All the target actions in
the experiments are involved in them. The motion data in the
database contain human skeletal configuration and its time-
series of joints angles acquired by a magnetic motion capture
system. Specifically, the format of the motion data is BVH.
The specification and the quantum of the motion data used
in this experiment is as follows. An actor of this dataset is a
20s male. The number of degree of freedoms of the motion
is 36. The Posture and position of the motions are measured
by magnetic motion capture systems sampled at 30 Hz. The
number of the files is 125. Total time of the files is about
400 sec. (avg. 3.2 sec.). It contains 5 sub-datasets. In each
sub-dataset, an actor behaves similar actions, such as getting
up, sitting on chair, and lying down. In this experiment, we
utilize 5-fold cross validation: an iteration to execute the
learning of CRFs and SVMs from 4 sub-datasets and evaluate
the performance of the classifiers with the rest sub-dataset.

f) Evaluation method: At first, we compute the perfor-
mance of the non-Markovian local kernel classifiers as the
baseline performance of the sequence labeler. Specifically,
we compute the joint accuracy of the training dataset as the
performance of the classifier. As in the case of the experiment
with synthetic dataset, we compare the performance of the
several types of Multi-Task sequence labeler based on CRFs
with the performance of the MT-CRFs. In this experiment,
the number of the tasks of MT-CRFs is 5.

The first compared model is called parallel CRFs. These
are 5 standard CRFs running independently. The second
model is called cascaded CRFs. We cascade CRFs focusing
on the hierarchical structures of actions. Hence, the inference
procedure is done in the standard CRF for yt,1, then the
classifier independently infers the labels of yt,2, yt,3, yt,4

leveraging ŷt,1. This type would lead poor performance when
the performance of inference for yt,1 is poor. The final model
to be compared is called flat CRF. Because the hierarchical
structure of actions can be transformed into flat symbol
space. Specifically speaking, we can set the symbol space
for yt,1:4 to the flat space with 13 symbols. Then we set
parallel type CRFs for the new flat symbol space and for
yt,5.

g) Parameters and condition: In this experiment,
we utilize edge features that correspond to the transition
probability of HMMs, and feature templates based on the
local kernel classifiers. To build local kernel classifiers,
we design kernels with two strategies. One is for posture
action such as sitting and lying. For these actions, it is a
natural idea to utilize motion features to be recovered posture
information and to calculate similarity from the features.
Thus we select motion features for the input of kernel:
posture and position of the specific body parts. Specifically,
we selected the orientation of hips and height of hips, and
the positions of head, hands, and foots with respect to the
frame of hips. In this setting, a input feature xt can de
depicted by a vector of 18 dimension. Next, we set radial
basis functions (RBF) as the kernel function K(·, ·). This
can be written as K (x, x̃) = exp

(
− |x−x̃|2

σ2

)
, where σ is

an adjustable positive parameter, and in our setting, x is
a 18 dimensional vector that contains the selected motion
features noted above. In this experiment, we optimize the
local classifier a priori. In this optimization procedure, the
parameter σ in RBF kernel is set as σ = 0.80.

Another strategy to design kernels is for dynamic action
such as walking and running. Because the posture of such
actions varies from time to time, thus we exploit dynamics
property of gait motions. Specifically speaking, we utilize
the foot motions w.r.t. the frame of hip as a motion feature
and assume these motions are driven by linear dynamics.
We compute similarity between the sequence of the motion
features from the probability product kernels [4]. As for
support vector learning [11], we set the max of α as 500.

As for all the CRFs, we set the parameter of the prior p(w)
as C = 100. The setting of terminal condition in variational
inference is the same with the experiment with synthetic
dataset. We also design inter-label feature templates. We
set this with focusing on hierarchical structures. In this
experiment the template is designed as {f̆ (X, yt−1, yt)}i =
�yt,k = lk(c)��yt,k′ = lk′(c′)�plocal

(
yt,k = lk′(c′)|xt, hlk(c)

)
,

where k′ represents child or parental category, and k repre-
sents k’s parent or child category.

h) Result: The performance of the baseline: the result
of local kernel classifiers is averaged 87.6 ± 4.9. In this
experiment, the goal is to show the superiority of MT-CRFs



TABLE III
RELATIVE PERFORMANCE OF CRFS FOR ACTION RECOGNITION

Parallel Cascaded Flat MT-CRF
JA Error reduction −10.8 0.97 −2.97 +5:32

to the others. Thus we calculate the relative performance
of the CRFs. Specifically, we calculate the rate of error
reduction. The error is Joint Accuracy error. The largest
error reduction score is equal to the best performance of
the classifier. The average of the relative performance of the
CRFs is shown in Table III. This result shows the proposed
MT-CRF is superior to the other CRFs. Unlike the result
of the experiment with synthetic dataset, the performance of
the flat CRF is relatively poor. This would come from the
number of the state: 13 is much larger than the other CRFs,
and the quantum of the dataset is not enough to acquire the
sufficient performance.

Fig. 5 shows a classification result of the sequence labelers
built on this experiment for motion from sitting on floor (with
keeping down shortly) to standing. Parallel CRFs output
conflicted results at around t = 50 as “he is not sitting
but keeping down.” Cascaded version does not detect “keep
down” even if the output of the corresponding SVM is high.
Relative to these models, MT-CRF can output reasonable
results for this motion. It is important to make mention that
non-Markovian classifier mistakes to output the yt=100,4 =
“walking′′ because the output of the SVM is quite large and
the classifier ignores the output in successive frames. On the
other hand, all the CRFs do not output mistaken result.

V. CONCLUSION

In this paper, we propose a robust action recognition
framework with Multi-Task conditional random fields (MT-
CRFs) that can treat multi-labels problem, hierarchical struc-
tures of action semantics, label-label interaction, and flexible
designing framework of label-observation mapping. This
model can be great extention of conditional random fields
proposed by Lafferty and factorial dynamic Bayesian net-
works. To make efficient inference for this model, we made
an efficient structured variational inference with smaller
heuristics than the previous works. The experimental results
using synthetic and real motion capture data show that our
model outperforms the Multi-Task labeling frameworks with
cascaded or parallel connected standard CRFs. It also clears
that the convergence of variational inference of the model is
very fast and stable.
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