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Abstract— In this paper, we present a novel framework
to recover human body pose on multi camera systems. Our
framework leverages 3D voxel data, which are reconstructed
from multi-camera systems. The use of voxel data leads to
viewpoint-free estimation, which benefits in that reconstruction
of a training model is needless in different multi-camera
arrangements. Other notable aspects of our approach are
real-time ensuring speed (up to 30 fps), flexibility towards
various complex motions and environments. We treat the pose
estimation problem as estimating human pose label from the
voxel features and tackle this by example based approach. To
ensure the real-time speed and to improve precision of pose
estimation, a newly fast and robust near-neighbor search metric
is installed prior to the evaluation process, what we call CSI-
PSH. We demonstrate the effectiveness of our approach with
experiments on both synthetic and real image sequences.

I. INTRODUCTION

In recent years, researches on home environment with
distributed sensors and affluent databases are active, and
believed to provide practical applications. Aware Home [1]
are examples of such systems. These projects intend to
intelligently understand and analyze human action for future
use. For efficient human action analysis, a rich representation
of human condition is necessary. One idea is to represent it
in motion capture data format, but we believe that devices
prone to wear are unnecessary for practical home use. So
instead of using wearable devices, suits or markers, we em-
ploy marker-less motion capture framework on multi-camera
systems. Multi-cameras are able to lighten the ambiguity
in human pose estimation compared to monocular camera
approaches. Especially, 3D voxel reconstruction, which is
possible through multiple silhouette image integration, leads
to viewpoint-free estimation.

Inspired by the success of example-based monocular view
pose estimation [2], we treat the pose estimation problem as
retrieval of most likely human pose label from the voxel.
Human pose codebook is constructed beforehand from a
large motion capture database, and the most appropriate
posture codebook is retrieved per frame by comparing the
likelihoods between 3D voxel feature and posture candidates.

In general, precise pose estimation requires the increase
of number of examples. The number of the examples is
directly related to the total computational cost. This trade-off
between precision and computational cost must be carefully
considered. The main contribution of the paper is to improve
both efficiency and quality of example-based pose estima-
tion framework. We overcome this dilemma by introducing
a newly proposed fast near-neighbor search metric called
CSI-PSH. This metric highly reduces codebook candidates

during the matching phase and then leads to reduction
of computational cost. CSI-PSH is a natural extension of
a previously proposed algorithm called PSH (parameter
sensitive hashing) [2]. CSI-PSH has an advantage over
basic PSH in memory consumption, level of narrowing, and
stability. The system with CSI-PSH will be able to deal with
more than 300,000 examples with 432 dimensional feature
vector in real-time performance of 30 fps where PSH-based
systems [3] cannot handle.

A. Related works

Image-based human pose estimation has been a hot trend
in the computer vision domain. Estimation approaches can be
classified to generative (or model based) and discriminative
approaches. In generative approaches [4], [5], an explicit
model which is similar to the target is usually designed and
an error measure between model and observation is defined
and minimized at each frame. Generative approaches are
well known to be flexible and accurate towards complex and
unknown motions, but also computationally expensive. They
also require a good initialization (mostly manual) and few of
them can recover from tracking failures. On the other hand,
discriminative approaches model and predict state condition
directly from observation. Difficulty has been suggested in
assuring sufficiency in the mapping between observation and
state condition, but easier model construction and speed-up
of the estimation process are notable characteristics. More-
over, discriminative approaches can be further classified into
regression and example based approaches. Regression based
approaches [6], [7] directly estimate human body joint angles
and are known to be precise, but are also unstable to large
training data. In contrast, example based approaches [2], [8]
output discrete human pose, and it’s precision is inferior to
regression based approaches in some occasions. However,
this approach is able to deal with large training data, and
speed-up can be easily achieved due to the simplicity of the
framework.

II. FRAMEWORK OF EXAMPLE-BASED HUMAN POSE
ESTIMATION FROM 3D VOXEL

A. Basic concept

Our framework of human pose estimation is based on
the example based approach. In the human pose estimation
phase, 3D voxel data v(t) is designed to be the input data. On
the other hand, instead of outputting human body joint angle
data θ(t) in continuous quantity, output data θy(t) is designed
to be discrete. y(t) indicates the estimated label of time t,
which represents one of the Ny posture codebook {θj}Ny

j=1 ≡



Y that are calculated beforehand. This configuration possibly
causes a sparse inference result, which is an arguable point,
but increase in posture candidates would lead to denseness
of human posture state. Thus, example based inference can
be considered as a sufficient approximation of continuous
inference methods [8].

In this framework, inference is simplified to a comparison
of likelihoods between 3D voxel data v(t) and human
posture candidates Y . For likelihood calculation, a feature
vector q(t) is extracted from v(t) via function Q(v).

q(t) = Q(v(t)) (1)

On the other hand, posture candidate θj ∈ Y is preprocessed
into artificial voxel data vj via function V (θ), which enables
feature vector qj to be extracted.

vj = V (θj) (2)
qj = Q(vj) = Q(V (θj)) (3)

In this way, q(t) (query feature vector) and {qj}Ny

j=1 ≡
Q (candidate feature vectors) are extracted. And then, likeli-
hoods {φj(t)}Ny

j=1 between v(t) and Y is evaluated through
function S(q, q̃).

φj(t) = S(q(t), qj) (4)

Inference per frame is possible by selecting the label y(t) that
outputs the maximum value among likelihoods {φj(t)}Ny

j=1.

y(t) = argmax
j

φj(t) (5)

However, not making consideration of Markov property
leads to improper transition and motion oscillation. Thus,
a graphical model of motion is embedded to provide a
smoothing effect. First order Markov property is represented
by a directed graphical model of motion. Motion sequences
are scanned, and each frame is referenced with a posture
label. During the scanning process, the transition frequency
between previous label i and current label j is accumulated,
and used to eventually derive the transition probability Ti,j .
In order to prevent getting caught into a local solution, Ti,j

is binarized as 0, 1. The graphical model of motion is
preprocessed after constructing posture candidates, and used
in the online inference process like Viterbi decoding [9].
The maximization of posterior probability, label y(t) that
outputs the maximum value among accumulated likelihoods
{pj(t)}Ny

j=1 is calculated as

pj(t) =

{
φj(t) (t = 0)
max

i
(pi(t − 1)Ti,j) + φj(t) (t �= 0) (6)

y(t) = argmax
j

pj(t). (7)

The estimation scheme mentioned above is summarized as
Fig. 1. The key to success for real-time estimation is to
reduce matching calculation φj(t). This will be described
in next section III. The creation process of 3D voxel data,
posture codebook, feature extraction, and similarity calcula-
tion will be presented in the following.
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Fig. 1. Outline of the Human Pose Estimation Process

B. Preliminaries of the framework

1) Making voxels via volume intersection: The volume
intersection method [10], [11] reconstructs 3D object shape
from multiple silhouette images. 3D shape will consist of an
assembly of voxels, which represent cubes of the divided 3D
space. 8 cameras are used to capture multiple VGA images.
Voxel size is set to 35mm, and 3D space is divided into a
120×120×68 resolution.

2) Construction of pose codebook: Posture codebook is
constructed using a large motion capture database. Represen-
tative candidates are extracted through a clustering process.
We use a kind of agglomerative hierarchical clustering
(distance between clusters is defined based on the group
average method) [9]. This makes it possible to acquire a
more uniform and dense distribution in human posture space.
Motion capture data downloaded from www.mocapdata.com
are used (motion data include large body rotations, complex
motions, and self occlusions), and resulted in a total of
322,992 posture codebook.

3) Feature extraction from voxel and pose codebook: To
calculate the similarity between voxel and pose codebook,
functions Q(v) and V (θ) must be clarified. For Q(v),
we use simple histogram-based feature called cylindrical
histogram feature [3] (see Fig. 1). In this feature, 3D space
is divided into multiple bins based on a central axis set to
the center of gravity of voxel data (3D space is divided in
angle, height, and radius directions). Voxels are voted to
the corresponding bins, and the resulting histogram will be
normalized. Resolution of angle, height, and radius directions
are set to 18, 8, and 3. Thus the dimension of the feature
vector became 432.

For V (θ), artificial voxel data is generated by approximat-
ing body links as a cylinder or an ellipsoid (approximated
radii are configured manually). At first, joint angle format
data is reflected to the human model. Then, voxels included
in the approximated region of each body link is extracted to
configure a voxel data.

4) Likelihood Evaluation Based on Feature Vectors:
Likelihood evaluation is based on the Bhattacharyya coef-
ficient [12]. Likelihood between a query feature vector q(t)
and a candidate feature vector qj ∈ Q of label j is calculated



from the equation below (q ∈ R
rq ),

φt(j) =
rq∑

r=1

√
{q(t)}r{qj}r. (8)

III. SCHEMES FOR SPEEDING UP ESTIMATION:
CASCADED SPARSE INCREMENTAL PSH

Since the number of pose codebook is extremely large,
it is impossible to maintain the real-time performance with
the same estimation scheme. In this section, schemes for
speeding up the estimation process will be presented in
detail.

PSH (parameter sensitive hashing) [2] is well known
and used technique as a near-neighbor search metric. In
this paper, we newly propose an algorithm called CSI-
PSH (cascaded sparse incremental PSH), which solves some
disadvantages in PSH. In particular, CSI-PSH has advantages
in memory consumption, level of narrowing, and stability.
At first, prerequisites of fast near-neighbor search metrics
are described. This is followed by a brief review of the
PSH algorithm. And then, the mechanism for improving the
performance of PSH in terms of memory consumption, level
of narrowing, and stability will be explained.

A. Prerequisites of fast near-neighbor search

In the following discussions, a fast near-neighbor search
metric will indicate an algorithm that searches for posture
label sets that are similar to the query feature vector q in
high probability.

Level of narrowing is evaluated by query ratio, which is
the ratio of candidates that are retrieved in search. Lower
query ratio corresponds to higher level of narrowing. In
other words, higher query ratio increases redundancy of the
evaluation. Another measure of search is the recall ratio,
which is the ratio of successfully retrieved candidates that
are similar to the query. The higher the recall ratio, the lower
the probability of leaks will be in search.

Let θ, θ̃ be human posture data in joint angle format.
Through forward kinematics, human posture data in joint
position format can be calculated, which is notated as
x, x̃. We evaluate the similarity between two postures by
a distance metric dx(x, x̃) which is formulated as a mean
distance of joint positions. Whether two postures are similar
or not is defined by parameter R, and postures that satisfy
dx(x, x̃) < R will be assumed to be similar. In addition,
feature vectors q, q̃ are extracted through artificial voxel data
generation.

B. Parameter Sensitive Hashing (PSH)

PSH is an extended version of a similar metric named
LSH (locality sensitive hashing) [13]. LSH is known to
offer an explicit connection between error expectation and
cost. The difference between these two algorithms is the
space where similarity of search is considered. LSH de-
fines similarity in input space (feature space), while PSH
considers it in parameter space (human posture space). In a
human pose estimation framework, similarity is desired to be

considered in parameter space, so PSH is preferred. When
PSH is combined with the actual matching process (in input
space), similarity in both input and parameter space will be
considered, and the quality of the overall matching process
will be enhanced.

PSH is an algorithm that is based on hash functions and
hash tables. L hash functions and hash tables are prepared,
and each hash function h(q) translates a query into a hash
value. The hash value denotes an address in the hash table
where data is stored. During the preliminary phase, posture
candidate data (posture labels) are registered to every hash
table via hash function. During search, registered data over
all hash tables are collected to form the search result. Quality
of hash functions will influence the search result, so the goal
of training in PSH is to construct hash functions that are
sensitive in parameter space.

A hash function h(q) is defined as shown in Eq. (9).
b(q) is a binary function called a decision stump, and K of
them are concatenated to form a hash function. Moreover,
a decision stump b(q) is defined by an index m of vector
q and threshold Tm (see Eq. (10) 1). Decision stumps are
calculated through an optimal calculation [2], which uses pair
data as training data. Training pairs {(q(n), q̃(n), z(n))}Nt

n=1

are associated with a label z that indicate whether the
pairs are similar or not in parameter space (see Eq. (11)).
ε is a parameter to assure that dx(x, x̃) < R will be
satisfied between query and search result in high probability
(this property is called locality-sensitive [2], [13]). After
the optimal calculation, 432 decision stumps (same number
to feature dimension) are obtained. The obtained decision
stumps are associated with scores that describe sensitivity
in parameter space. So top M decision stumps are chosen
(to form a sensitive decision stump set B), and randomly
allocated to L K-bit hash functions (allows duplication).

L and K are important parameters that significantly affect
the performance of near-neighbor search. However K is
manually set based on preliminary experiments, L is au-
tomatically determined during an iterative construction of
hash function until the recall ratio of training pairs surpasses
parameter TR. The recall ratio is derived by considering the
ratio of similar pairs that satisfy hash uniqueness (see Eq.
(12)).

h(q) = [b(1)(q), b(2)(q), · · · , b(K)(q)]T (9)

bm,Tm(q) =
{

1 if {q}m ≥ Tm,
0 otherwise. (10)

z =

⎧⎨
⎩

+1 if dx(x, x̃) < R/(1 + ε),
−1 if dx(x, x̃) > R,
not defined otherwise.

(11)

h(q(n)) = h(q̃(n)) s.t. z = +1 (12)

C. Incremental update of training pairs: I-PSH

Query ratio tends to be higher when L is larger. In
addition, hash tables consume huge memory so L is required
to be as low as possible. In PSH, every hash function

1{q}m denotes the m-th element of vector q



is constructed randomly and independently from the same
decision stump set B. Therefore, it is probable that similar
types of hash functions are wastefully defined. Such redun-
dancy leads to larger values of L. At each step (iteration),
training pairs are narrowed down based on evaluation of
hash uniqueness (dissimilar pairs will not be updated) (see
Fig. 2). This is followed by the optimal calculation process
which outputs a newly updated sensitive decision stump set
B. In this way, every hash function will be constructed from
different decision stump sets, and the redundancy will be
lightened, resulting in smaller number of hash functions. We
introduce this approach to PSH and call the algorithm I-PSH
(incremental PSH).
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D. Sparse registration to Hash tables: SI-PSH

Query ratio is required to be kept as low as possible, be-
cause it directly affects the computational cost of matching.
High query ratio is believed to attribute to conflicts in hash
values. At first, all posture labels are registered to the hash
table. Then, based on a feedback in human posture space
using an evaluation dataset {x(n), q(n)}Ne

n=1, only partial
posture labels will be left for registration. Sparseness of
registration is decided by parameter TS (posture labels are
registered until the query ratio for the evaluation dataset
reaches TS) (see Fig. 3). In this way, we achieve a sparse
registration of posture labels, which leads to fewer conflicts
in hash values and lower query ratio. We introduce this
approach to I-PSH and call the algorithm SI-PSH (sparse
incremental PSH).
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E. Cascaded search for stability: CSI-PSH

In PSH, query ratio depends on the property of the query,
so it is not possible to consistently maintain a fixed query
ratio for various queries. However, in a real-time system, it is
unsuitable to allow such a fluctuation in query ratio because it
directly influences the processing time of matching and the
overall estimation process. So an approach that is capable
of maintaining the query ratio to a certain fixed value TQ

is desired. We present an cascaded search approach which
consists of two tactics: hash table with confidence scores (see
Fig. 4), and redundant hash values (see Fig. 5). This cascaded
search approach diverges in two ways depending on the
initial search conducted in a normal way. If the query ratio
of the initial search surpasses TQ, the search result will be
cut down based on confidence scores associated with hash
values. If it does not surpass TQ, range of search will be
expanded based on cascaded search with redundant hash
values. We introduce this approach to SI-PSH and call the
algorithm CSI-PSH (cascaded sparse incremental PSH).

The idea is to rank search result elements based on a
confidence score associated to hash values. Confidence is
calculated by the similarity between two postures. When
search results are ranked, it becomes possible to cut down
the search result based on the ranking. The confidence score
indicates a higher ranking when it’s value is lower, and is
calculated based on a feedback using the evaluation dataset
{x(n), q(n)}Ne

n=1.
A redundant hash value is a hash value where partial bits

have been reversed. In this way, addresses to search in a
hash table will increase and lead to expansion of search.
Number of bits that are reversed correspond to the stage
of cascade in search. Each bit in L hash values is given a
priority based on the proximity score pm in decision stump
bm,Tm(q) (see Eq. (13)), and bits that have higher priority
will be reversed preferentially (when two or more bits are
going to be reversed, priority will be determined based on
the average proximity score). Proximity score pm indicates
whether {q}m and Tm are close, and lies between 0 and
1. Higher proximity scores signify that the two values are
close, and when the values are closer, the bit will have
higher priority (reversing the bit becomes more reasonable).
Moreover, not all the bits are allowed to be reversed since the
combination of bits will become massive if it does. Based on
parameter κ, only bits that satisfy pm > κ will be allowed
to be reversed.

pm =

{
0 if {q}m = 0,
min({q}m,Tm)
max({q}m,Tm) otherwise. (13)

F. Evaluation of fast near-neighbor search metrics

Parameters are set to R=50mm, ε=0.25, M=60, TR=0.95,
TS=0.04, TQ=0.01, κ=0.33, while 579,731 similar pairs with
174,937 dissimilar pairs were prepared (total of 754,668
pairs) for training pairs. Additionally, 233,062 elements of
evaluation data were prepared for feedback training and hash
functions were trained under these conditions. Table. II show
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numbers of hash functions it took for each metric until con-
vergence. CSI-PSH had a smaller number of hash functions
(hash tables) than PSH, which lead to massive reduction in
memory consumption (also note that each hash table of CSI-
PSH consumes smaller amount of memory than that of PSH,
due to the sparsity of hash tables). Additionally, effect of
CSI-PSH can be seen in Fig. 6 where transitions of query
ratio on a real voxel data sequence are presented. Metrics
except CSI-PSH show very unstable results. Especially on
PSH, there are two very huge peaks in around frame 250
and 350. Such peaks (high query ratio) will lead to extremely
high computational cost of matching, and cannot be tolerated
in a real-time system. In contrast, query ratio of CSI-PSH is
consistently lower than that of PSH and is maintained near
TQ. Therefore, computational cost of matching will be lower
than PSH and more stable as well. Moreover, query ratio of
SI-PSH is mostly lower than that of CSI-PSH, but it does not
directly indicate that SI-PSH has a better search performance.
Since, too low query ratio lead to higher possibility of search
leaks, it is important to assure that query ratio will not
be too low. Hence, CSI-PSH not only provides stability in
computational cost but also in performance (possibility of
search leaks is suppressed).

TABLE I
NUMBER OF HASH FUNCTIONS

PSH I-PSH SI-PSH CSI-PSH
342 144 198 198

IV. EXPERIMENTAL RESULT

A. Evaluation on artificial data

A human pose estimation experiment was conducted using
artificial voxel data generated from motion capture data. The
test motion set consists of 5484 frames of unknown motions
which contain basic and dynamic motions such as walk,
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jump, sit, and skip. Results are shown in Table. II. Mean
distance of joint positions (Pos. Error) and mean RMS error
of joint angles (Ang. Error) [6] were used as error metrics,
while processing time of the human pose estimation phase
was measured.

The With CSI-PSH setting corresponds to the proposed
approach, and experiments on other settings are conducted
for comparison. Precision of the With SI-PSH setting are
lower than that of the With CSI-PSH setting. This attributes
to search leaks in SI-PSH, and signifies that CSI-PSH can
recover from such errors. The With PSH setting show
similar results to the With CSI-PSH setting, but real-time
processing will not be possible in the current configuration
because processing time exceeded 33 ms. The No FastNN
Search setting, was conducted by not applying fast near-
neighbor search metrics. Precision of the No FastNN Search
setting differ slightly to that of the With CSI-PSH setting,
while processing time differ greatly. Hence, reasonableness
of near-neighbor search can be confirmed.

Agarwal’s approach [6] is a representative of regression
based approaches which are known to be precise. In [6], an
Ang. Error evaluation on a walking sequence was conducted
and the error was reported to be 6.0 deg. This value is
better than the proposed approach, but when limiting the
test motion set to walking, the error was 6.9 deg. Thus,
the proposed approach nearly reached precision of regression
based approaches while offering better performance in speed.
Also note that the model in [6] was trained only with walking
sequences, which indicates that it was not a completely
fair comparison (precision is believed to fall when the
model becomes more complex). Taycher’s approach [8] is a
representative of example based approaches which are known
to be relatively fast. In [8], a Pos. Error evaluation was
conducted and the error was reported to be 100mm∼250mm.
Therefore, the proposed approach has much better precision,
and can be mentioned that it is provided with both precision
and speed.

B. Experiment on real image sequences

An experiment was conducted on a daily life simulated
space, using 8 cameras and capturing images in 30 fps.
We leverage parallel pipe-line framework with 3 stages
computation. The overall processing time is presented in
Table. III. Each stage has completed within 33 msec, which
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TABLE II
EVALUATION OF ESTIMATION ERROR AND PROCESSING TIME

Pos. Error Ang. Error Processing Time
With CSI-PSH 46.0 mm 8.53 deg 21.3 msec
With SI-PSH 47.5 mm 8.60 deg 15.5 msec
With PSH 46.0 mm 8.43 deg 39.6 msec
No FastNN Search 45.6 mm 8.33 deg 1382 msec

signifies that online processing of 30 fps has been achieved
(however, certain amount of delay will occur). Experimental
Results are presented in Fig. 7. This implies that our system
successfully capture various complex motion in real-time.

TABLE III
PROCESS TIME OF THE OVERALL PIPELINE PROCESS

Process Time
Background Subtraction 16 msec
Visual Hull Extraction 10 msec
Stage 1 Total 26 msec
Visual Hull Integration 6 msec
Labeling (Noise Removal) 3 msec
Stage 2 Total 9 msec
Human Pose Estimation 21 msec
Render 5 msec
Stage 3 Total 26 msec
Delaying Frames 3

V. CONCLUSION

A novel approach to recover human pose from 3D voxel
data has been proposed. Experimental results show that
real-time processing up to 30 fps has been achieved by
introducing an example based approach and a fast near-
neighbor search metric. Future tasks are to realize multiple-

person tracking and to tackle the occlusion problem by
furniture for practical daily house use.
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