
Moving Objects Detection and Classification
Based on Trajectories of LRF Scan Data on a Grid Map

Taketoshi Mori, Takahiro Sato, Hiroshi Noguchi, Masamichi Shimosaka, Rui Fukui and Tomomasa Sato

Abstract— Laser based environment recognition technolo-
gies have been developed recently. Especially moving objects
detection and classification by laser scanners mounted on a
mobility is required for mobile robots and autonomous cars.
In this paper, we propose a moving objects detection and
classification method based on grid trajectories acquired from
sequential laser scan data. Grid trajectories are obtained by
voting sequential laser scan points on a grid map, and these
trajectories not only work for a correct scan segmentation, but
also represent the size and the speed of moving objects. We
classify a moving object into either a person, a group of people,
a bike, a car based on its grid trajectory. In our experiments,
our mobility mounted laser scanners acquired scan data in the
university campus, and the experimental results illustrate the
effectiveness of the proposed method in outdoor environments.

I. INTRODUCTION

Environmental recognition and understanding technologies
are important for intelligent vehicles such as mobile robots
and autonomous cars. Especially, a detection of moving
objects (pedestrians, cars, bicycles, etc. ...) is available to
realize a safer path planning, an informative support for
the driver and so on. In environments that don’t have clear
discrimination in traffic regions between pedestrians and
cars, many moving objects exist with different states, such
as speed, direction, and size. Therefore, moving objects
classification is effective for motion predictions of each
object and an intuitive informative support to the driver.

Many research efforts have shown the possibility of de-
tecting objects in front of a mobility. Approaches using a
video camera [1] can utilize much information about the
object such as its color and shape, but robust methods against
outdoor lighting condition haven’t been practical yet. Laser
range finder(LRF) can detect objects in an extensive area
because wide angle and long range data is required. Further,
LRF is robust sensor against outdoor lighting condition.

A simple moving objects detection method is a way of
using an occupancy grid map [2]. In an occupancy grid
map, an environment is represented by many grids, each
grid has the occupancy which indicates the probability of
the object existence. This method is utilized in mobile robot
localization and map construction. In the Vu’s method [3],
scan points appeared on a free grid are considered as points
taken from moving objects. This approach is effective in
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an environment surrounded buildings, but it is difficult to
acquire enough free spaces in an environment such as a park
which has many open space.

In other moving objects detection methods, LRF scan
points are processed as a segment: a set of continuous points.
Many approaches have used segments because each object is
often represented by one segment [4]–[6]. In their proposed
methods, the segment is considered as a moving object when
its enough movement is observed by tracking it a certain
time. But in general, scan segments repeats combining and
splitting through the observation, and disappears temporary.
Therefore, it is difficult to track scan segments robustly.

Such noises of scan segments affect moving objects clas-
sification. In moving objects classification, the size, the
shape and the speed of each segment are used as features
of classification. In the Zhao’s method [7], moving objects
segments are classified to four groups: a pedestrian, a group
of pedestrians, a bicycle, and a car. They focused on scan
segments are divided into four groups by the size, the moving
speed and the number of axis composing the segment. But
in their paper, they presented as a problematic case that split
car’s scan segments are misclassified to other object if they
are processed as separate objects. To avoid such segments
splitting, merging segments by distance threshold between
scan segments is in general, but it is difficult to decide the
threshold appropriately.

As another scan segmentation method for each object, a
model based approach is proposed. In this approach, a target
segment contour shape is assumed by a rectangle. Streller
et al. [8] focused on a car’s scan contour was modeled
a rectangle, so they fit a rectangle to scan segments and
merge the segments on the same rectangle. By this way,
they realized robust scan segmentation of cars. However, a
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Fig. 1. Examples of splitting LRF scan segments



scan contour of a car is not always modeled by a rectangle.
A contour shape of a car varies in a kind of cars and the
height where it is scanned. Therefore, rectangle fitting scan
segmentation doesn’t always works correctly.

In the past scan segmentation approaches, every method
utilizes only a single frame scan data. Our scan segmentation
method utilizes sequential scan data. In the proposed method,
we acquire moving objects trajectories by voting sequential
scan data on a grid map, and utilize these trajectories for scan
segmentation. In addition, moving objects are detected and
classified based on these trajectories because these indicate
the target moving speed, size (length and width). In our
research’s target environment, cars and motorcycles don’t
run too fast because they share roads with another moving
objects such as a pedestrian and a bicycle. Therefore, in
the proposed method, we regard following four classes as
target moving objects: a person, a group of people, a bike,
a car. A group of people represents two or three pedestrians
walking concurrently and a bike contains both a bicycle and
a motorcycle.

This paper is organized as follows. We mention our scan
segmentation method using sequential scan data on a grid
map in section II. In section III, we define features of a
grid trajectory and utilize them for machine learning based
detection and classification of moving objects. We show
experimental results of the proposed method in section IV.
Finally, conclusion is discussed in section V.

II. A SCAN SEGMENTATION METHOD BASED ON GRID
TRAJECTORIES OF MOVING OBJECTS

In this section, we describe about a scan segmentation
method using grid trajectories of moving objects. Compared
to the past segmentation methods, robust segmentation can
be achieved by using a grid map and sequential LRF scan
data. First, we describe details about acquisition of grid
trajectories for scan segmentation. Then we mention about a
scan segmentation method based on the grid trajectory.

A. Acquisition of a Grid Trajectory

Fig. 2 illustrates the process of obtaining a grid trajectory.
In our method, we utilize past N frames LRF scan and
odometory data. In a current frame, scan points of the past
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Fig. 2. (a) Acquisition of a grid trajectory and (b) scan segmentation based
on a grid trajectory

frame are voted on a local grid map based on a mobility
pose obtained from an odometory estimation. The origin of
the grid map is the mobility pose N frames before and
each grid occupancy is a binary value: occupied or free.
We refer to parameters setting of N and the grid size on
IV. Then, by clustering occupied grids adjacent each other,
we get grid trajectory clusters Ctraj = {Ctraj,1...Ctraj,Ntraj}
illustrated by white grids in Fig. 2(a). In our research’s
target environments which don’t have clear discrimination
in traffic regions between pedestrians and cars, cars and
motorcycles don’t run too fast. Therefore, LRF scan time
is short enough to the relative speed between own mobility
and each moving object, so Ctraj represent N frames grid
trajectories of moving objects. Similarly, new frame scan
points are voted on the same grid map. By clustering only the
grids where new scan points are voted, we obtain new grid
clusters Cnew = {Cnew,1...Cnew,Nnew} illustrated by green
grids in Fig. 2(a).

Then, Ctraj and Cnew are taken correspondence by eval-
uating overlaps and adjacent degrees between grid clusters.
This evaluation score is calculated by the equation (1). Grid
clusters which don’t have any overlap or adjacent grids
aren’t taken correspondence. nsame

ij , nneighbor
ij represents re-

spectively the number of which a grid or its adjacent of
Cnew,i is identical to one of Ctraj,j .

score(Cnew,i, Ctraj,j) = 2nsame
ij + nneighbor

ij (1)

B. Scan Segmentation Based on a Grid Trajectory

Large size moving objects such as cars are often misclas-
sified to other objects due to split of segments obtained from
these objects. Segments merging methods in a single frame
such as a distance threshold and a rectangle fitting doesn’t
work correctly in general. So sequential information about
scan data is effective for scan segmentation and we use grid
trajectories as the sequential information. When Cnew and
Ctraj are obtained as shown in Fig. 2(b), Cnew near the same
Ctraj is more likely acquired from the same object, even
if Cnew are distributed separately. Therefore, Cnew taken
correspondence to the same Ctraj are considered as acquired
from the same object and re-clustered. By this way, split scan
data obtained from the same objects clustered correctly.

III. MOVING OBJECTS DETECTION AND
CLASSIFICATION BASED ON A GRID TRAJECTORY

In this section, we mention details about the moving
objects detection and classification method. First, we define
features of a grid trajectory, and these features are utilized in
moving objects detection and classification mentioned later.
Second, we utilize AdaBoost framework in moving objects
detection, so we show the AdaBoost algorithm and our
implementation. Last, we describe about the moving objects
classification method using Naive Bayes classifier.

A. Features of a Grid Trajectory

In Fig. 3, we show some examples of grid trajectories
acquired from target moving objects: a person, a group
of people, a bike, a car. Compared to the grid trajectory
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Fig. 3. Grid trajectory examples of target moving objects
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Fig. 4. Features definition of a grid trajectory

of a static object, trajectory grids of moving objects are
distributed trailing to new scan grids. This is common
features between moving objects. In addition, compared grid
trajectories of four objects each other, the number of grids
in Cnew and Ctraj, and the major/minor axis length of the
approximated ellipse of a grid trajectory are characteristic.
From these perspective, we use following features for moving
objects detection and classification.

nnew，ntraj are the number of grids composing
Cnew,i, Ctraj,j respectively. dmajor, dminor represents the
length of a major/minor axis of the approximated ellipse of
Ctraj,j . These features indicate the size and speed of moving
objects. Additionally, when each new scan grid are projected
on the major/minor axis of a grid trajectory, let projected
values notate xmajor, xminor respectively. The origin of the
axis is a centroid of Ctraj,j and we define the moving
direction of an object as positive. Mean and covariance of
xmajor, xminor are used additional features. These represents
characteristics of that trajectory grids of a moving object are
distributed trailing to new scan grids. In easy representation,
let these eight features notate y = {yi}(i = 1, ..., 8)

B. Moving Objects Detection

Moving objects detection is identical to an binary clas-
sification problem whether each grid cluster is a moving
object or not. However the size and speed of target mov-
ing objects differ respectively, so it is difficult to decide
threshold experimentally to detect four classes commonly.
In the proposed method, decisions of features’ thresholds are
performed automatically with a set of training data obtained
in advance. We use AdaBoost framework utilized in such

TABLE I
ADABOOST ALGORITHM
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•  Input : set of example  (y1,z1),...,(yN train
,zN train

)
•  Let  m  be the number of negatives examples and l  be the number of

   positive exmaples.  Initialize weights w1,n =
1

2m
,  1

2l
 depending on the value of  zn
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1)  Normailze the weights wt ,n  so that wt,n =1.
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:

εi = wt,n
n

N train
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4)  Choose the classifier  hi  with the lowest error  εi  and set  (ht ,εt ) = (hi,εi).

5)  Update the weights wt+1,n = wt,nβ t
1−en  where  βt =

εt
1−εt

  

     and  en = 0, if example  yn  is classified correctly by ht  and  1, otherwise.
•  The final strong classifieris given by :
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 1 if log 1
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t=1

T
∑ 1

2
log 1

β t
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∑
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as a face detector [9], and construct strong moving objects
detector by choosing effective features from y

The original Adaboost algorithm is a supervised learning
algorithm designed to construct a strong binary classifier.
The input of the algorithm is a set of training examples
(yn, zn), n = 1, ..., Ntrain, where each yn is an example and
zn is an boolean value indicating whether yn is a positive
or negative example. AdaBoost boosts the classification
performance by combining a collection of weak classifiers.
Each weak classifier is given as a function hi(y) which
returns boolean value. The output is 1, if y is classified
as a positive example and 0 otherwise. The weak classifier
only need to be slightly better than a random guess. To
boost a weak classifier, it solves a sequence of learning
problems. After each learning, the examples are re-weighted
in order to increase the importance of those which were
incorrectly classified by the previous weak classifier. The
final strong classifier takes the form of perceptron. Large
weights are assigned to good classification functions whereas
poor functions have small weights.

In our implementation, a weak classifier has the form (2)
similar to the one proposed by Mozos et al. [10].

hi(y) =
{

1 if pifi(y) < piθi

0 otherwise. (i = 1, ..., 8) (2)

fi(y) is a function which returns the i-th feature of y. θi is
a threshold and pi is either -1 or 1 and thus representing the
direction of the inequality. The optimal values for θi and pi

are chosen by minimizing the number of misclassified train-
ing examples as shown (3). To achieve this, the algorithm
considers all possible combinations of θi and pi.

(pi, θi) = argmin
(pi,θi)

Ntrain∑
n=1

|hi(yn) − zn| (3)

The resulting algorithm is given by Table I.
When a strong classifier is constructed by one train-

ing data set, features which chosen more than the
other are dmajor, dminor, mean(xmajor) and cov(xmajor).



dmajor, dminor represents the similarity to an ellipse shape
of grid trajectory. Mean(xmajor) and cov(xmajor) represents
that trajectory grids of a moving object are distributed trailing
to new scan grids. These four features are considered as
characteristics common to target four moving objects.

In each frame, static objects such as tree, bush and polls
are often detected as moving objects because of LRF scan
noises and disturbance of the mobility’s attitude by road
bump. These miss-detection happens momentarily, so we
suppress these using sequential detection results. In details,
each grid cluster preserves its Ndetect frames history which
it was detected as a moving object by tracking each cluster.
Tracking a grid cluster is performed based on a correspon-
dence of Ctraj between frames by equation (1). If the cluster
was detected as a moving object more than threshold frames
in the past, it is detected as a moving object in a current
frame.

C. Moving Objects Classification

Moving objects classification is effective for a prediction
of a object’s moving direction and intuitive informative
supports to the driver. In each frame, given a feature set
y, the objective is to classify the object into a certain class
ci, where ci might be either a person, a person group, a bike,
or a car. Let ct,i notate a class of a moving object at time t,
the problem is formulated as follows.

ct,i = argmax
i

p(ci|y1, ...y8) (i = 1, ...4) (4)

According to Baysian rule, (4) can be parsed to

ct,i = argmax
i

p(ci)
8∏

j=1

p(yj |ci) (i = 1, ...4) (5)

p(ci) is a prior of each object. In our implementation, p(ci) is
a equivalent for each class. p(yj |ci) is a likelihood function
obtained from a training data set previously. We assume that
the function is a gaussian mixture model.

Fig. 5 shows likelihood functions acquired from a certain
training data. The number of each class contained in the
training data was as bellow: a person 12, a group of people
4, a bike 12, a car 10. Fig. 5 illustrates that each class has
the different likelihood distribution of its feature, so these
features are likely to work effectively in classification of
moving objects.

However, misclassifications happen momentarily because
of LRF scan noises and speed changes of objects. Similar to
moving objects detection, these temporary misclassifications
are suppressed by the past sequential classification results. In
details, each grid cluster preserves its Nclassify frames history
which class it was classified by tracking the cluster. In the
past Nclassify frames history, the label classified the most is
an output result in a current frame.

In addition, there is an impossible transition of a classi-
fication label between each class. For example, a moving
object considered as a car for the past long time should be
classified to a car even if features similar to other objects
are observed. By utilizing knowledge like this, the classifier
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Fig. 5. Likelihood functions obtained from a training data set

TABLE II
TRANSITION MODEL BETWEEN TARGET FOUR CLASSES

person
 group
 bike
 car


person
 ○
 ○
 ×
 ×


group
 ○
 ○
 ×
 ×


bike
 ○
 ○
 ○
 ×


car
 ○
 ○
 ○
 ○


previous frame class


current 

frame 

class


gets robust against scan noises and the change of the object’s
speed. When an object is classified ctrans more than Ntrans in
the past N frames, it was applied a transition model defined
in Table II and classified by (6). Ictrans is a set of indices
based on the transition model of ctrans.

ct,i = argmax
i∈Ictrans

p(ci)
8∏

j=1

p(yj |ci) (6)

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The proposed method described above has been imple-
mented and evaluated on real data acquired with Hokuyo
UTM-30LX laser range finders mounted on a powerchair.
UTM-30LX covers an angular area of 270◦ at a resolution
of about 0.25◦ and measures distance of 30 meters with
a nominal system error of ±50 mm. 1081 data points are
obtained at 40 fps. In our experiment, we used it at 20 fps
considering the computation efficiency. The two LRFs were
mounted at a height of about 50 cm covering all around
the mobility shown in Fig. 6. The maximum translational
velocity of the powerchair during data acquisition was 1.1
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Fig. 6. Our platform mobility and the experimental environment

m/s. Experimental environment was inside the campus of the
University of Tokyo shown in Fig. 6, whose characteristics
are that many trees, bushes exist other than buildings.

In this experiment, we set the size of the grid map 40 ×
40 m2. In our preliminary experiment, the grid size should
be set about person’s waist width (30-60 cm) to decrease
error scan segmentation and N should be set about a time
length which some trajectory grids are observed from a
person whose the velocity is the minimum of all four classes.
Considering above, we set all parameters as below: the grid
size 30 cm, N=30, Ndetect=18, Nclassify=30, Nclassify=30,
Ntrans=25. Intel Core 2 Duo 2.8GHz PC was used for the
computation.

The object’s reference class label in the test data was
acquired manually. In an area more than 20 m away from the
mobility, it is difficult to measure the objects stably because
of LRF scan noises. Further, in our method, moving objects
must be kept observed a certain time to detect them. So we
limited evaluated moving objects existing in an area within
15 m away from the mobility.

B. Detection and Classification Accuracy Results

Table III shows experimental results in the test data and we
evaluated recall rate, precision rate, and F-measure defined
as below.

recall rate =
correctly detected frames

total frames

precision rate =
correctly detected frames

total detected frames

F-measure =
2 × recall × precision

recall + precision

Each frame was processed at about 30 fps, so the proposed
method can work online. Fig. 7 shows examples of LRF raw
scan points, grid trajectories, reference video camera images
when objects were detected. Fig. 7(d) was the case that a
person walking near a parking car was misclassified to a

TABLE III
MOVING OBJECTS CLASSIFICATION ACCURACY

Total
 Total 
 frame


Total 
 detected 
frame


Correctly  
detected 
frame


Precision 
[％]


Recall 
[％]


F‐Measure 
[％]


Person
 16
 2395
 2783
 2083
 76
 87
 81


Group
 2
 497
 689
 478
 69
 96
 81


Bike
 6
 646
 666
 613  92
 94
 93


Car
 6
 981
 1036
 890
 86
 91
 88
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Fig. 8. Examples of correct scan segmentation results

group of people. This is because trajectory grids are miss-
clustering when a person walks near other objects as shown
Fig. 7(d) middle row. Therefore, F-measure values of person
and group were less than the other.

Fig. 8 shows cases considered that scan segmentation such
as a distance threshold and rectangle fitting are difficult.
Yellow circles in Fig. 8 represents the centroid of new
grids clustered as one object. These objects were classified
correctly based on the grid trajectory despite that their scan
segments were distributed separately.

Further, Fig. 9 shows detected moving objects other than
target four classes. Fig. 9(a) were two bicycles running
concurrently and (b)(c) were pedestrians carrying a bicycle
and a carrier cart respectively. Whereas each of them wasn’t
contained in the training data, they were detected as moving
objects. Therefore, it indicates that the proposed method has
generality as moving objects detector.

V. CONCLUSION

In this paper, we proposed a moving objects detection
and classification method based on grid trajectories using
LRFs mounted on a mobilty. Grid trajectories are obtained by
voting sequential LRF scan points on a grid map, and these
trajectories not only work for a correct scan segmentation,
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but also represent the size and the speed of moving objects.
Based on these trajectories, our method realizes robust de-
tection and classification against LRF scan noises. In our
experiment, the proposed method detected and classified
target four moving objects(a person, a group of people, a
bike, and a car) more than 80 % at F-measure in each frame.
Our future task is an avoidance of misclassifications when
multi objects approach each other.
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