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ABSTRACT
In this paper, we describe a novel sensor device which rec-
ognizes hand shapes using wrist contours. Although hand
shapes can express various meanings with small gestures,
utilization of hand shapes as an interface is rare in domes-
tic use. That is because a concise recognition method has
not been established. To recognize hand shapes anywhere
with no stress on the user, we developed a wearable wrist
contour sensor device and a recognition system. In the sys-
tem, features, such as sum of gaps, were extracted from wrist
contours. We conducted a classification test of eight hand
shapes, and realized approximately 70% classification rate.

Author Keywords
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ture interface.
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INTRODUCTION
Increasing numbers of companies and researchers are de-
veloping natural user interfaces using gestures for human
computer interaction[1]. Prominent examples are TV game
interfaces such as Wii (Nintendo) and Kinect (Microsoft).
Their success made gesture recognition interfaces popular.
The most common action used in gesture interfaces is arm
movement. However, it requires substantial physical energy
and lacks the ability of precise expression. Therefore in this
study, we put focus on hand shapes. Hand shapes are used
in many scenes such as hand language or hand signals, and
we presume that hand shapes are good gestures which can
express much information with small actions. Nevertheless,
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Figure 1. TV game with wrist contour sensor device.

there are few examples using hand shape recognitions in do-
mestic use because a concise recognition method has not
been established yet. There are several hand shape recog-
nition methods[5]; we discuss the features and problems of
some major methodologies hereafter.
Wired glove[3]: A wired glove is a glove-like input device
that captures the finger bending with sensors mounted on the
finger joints. It disturbs the haptic sense of the hand because
the glove covers over a whole hand.
Electromyogram signals[6]: Signals are captured by wet or
dry type electrodes attached to the surface of the forearm,
and the electro signals are used for recognition. Because it
is unnecessary to attach a device to a hand, the influence
on hand movements is little. However, the electrodes must
cover the whole forearm, and it is necessary to compress the
arm for reducing the clearance between the electrode and the
arm surface. Thus, the stress on the user is a problem.
Camera[4][9]: It trims the hand area from captured images
and recognizes the hand shape. It does not disturb the ac-
tivity and does not stress the user. However, the whole hand
must be in the camera view range.
Therefore existing methods may be problematic for domes-
tic use. These problems include the influence on activity,
stress on the user, and limitation of circumstances. In this
study, we propose the use of ”wrist contours” for hand shape
recognition. Rekimoto [7] measured wrist contours by ca-
pacitive sensors and recognized two hand shapes. We devel-
oped a new device using another type of sensor, and it can
measure wrist contours more precisely. Figure 1 is a concep-
tual image of a game interface application. It will capture
the ball grip, which any existing interfaces cannot get, and
allows players to express a throwing motion more naturally.

WRIST CONTOUR BASIS
We designate a wrist cross-section contour (especially a wrist
circumference contour near ulna) as a wrist contour. Figure 2
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shows examples of hand shapes and wrist contour sets. Mus-
cles and tendons for finger movements are compacted near
the elbow. Around the wrist, however, tendons and muscles
are separated to some extent, so they are comparatively ob-
servable. We observed the variation of their thicknesses and
positions, which vary with finger movements. For example,
to bend a finger, a flexor contracts and the nearby wrist sur-
face dents. To straighten a finger, a flexor relaxes and the
nearby wrist surface becomes as before. Our approach is to
recognize hand shapes from these variations.

WRIST CONTOUR MEASURING SYSTEM
Figure 3 shows our system configuration and data flow dia-
gram. We developed a wrist watch type sensor device (Fig-
ure 4) and a recognition system.

Required specification
Human constraints and our design are as follows.
• Human constraints:
(1a) Muscles and tendons for finger movements are approx-
imately 5 mm in diameter. (1b) Radial variation of wrist
contour is approximately 5 mm at maximum.
(2a) Wrist circumference is approximately 150∼170 mm.
(2b) Human arm motions should not be interrupted.
• Design:
(1a) Sensor pitch is 2.5 mm around circumference. (1b) Ra-
dial resolution of the sensors is 0.1 mm.
(2a) Measurement area is at least 170 mm in circumference.
(2b) The band is narrower than 30 mm.
To achieve the design requirements, we adopted photo re-
flector sensors and shift register switching method.

Photo reflector as distance sensor
Photo reflector is a combination of infrared LED and photo
transistor. LED transmits an infrared signal and Photo tran-
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Figure 4. Wrist contour measuring device.
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Figure 5. Mechanism of photo reflector.

sistor detects the intensity of the signal reflected at the sur-
face of the object as shown in Figure 5. We selected a small
photo reflector sensor ”NJL5901AR-1” (produced by New
Japan Radio Co.) to achieve the measurement density 2.5mm.
Because an output of photo reflector is non-linear with dis-
tance, and sensors have individual differences, raw outputs
cannot be used for measuring distances as they are. Then, we
calibrated the outputs by prior measurement. We measured
range of 0∼10mm with 0.05mm pitch with 1-axis automatic
stage to achieve 0.1mm radial resolution. As a result, we
achieved 0.1mm resolution in 0∼3.5mm. As figure 6 indi-
cates, the smooth surface of an inclined flat board can be
recognized in the range of 0∼3.5mm.
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Shift register switching method
To measure the whole circumference of wrist contours, we
arranged photo reflector sensors in rows. We mounted them
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Figure 9. Five data at the same attachment condition.

on a flexible printed circuit board (measuring band). There
are two rows in both side of the band and each row has 75
sensors in 2.5mm pitches, so the total number of sensors is
150 and measurement length is 185mm. In this configura-
tion, if all sensors are controlled by one unit, it needs nu-
merous number of signal lines and they make the band wider.
Therefore, we utilized the shift register switching method as
shown in Figure 7. The D-flip-flops and analog switches
realize a sequential measurement by just sending trigger sig-
nals. That means only one sensor is active at once.

ANALYSYS OF WRIST CONTOUR
We collected wrist contour data from ten subjects with the
device. Subjects are all students, and the wrist device was
attached to the right hand. When putting the device on, sub-
jects are guided by an experimenter, but the device is at-
tached by themselves. The device was reattached each time
we collected data. We configured eight hand shape classes
as shown in Figure 8 and observed differences based on hand
shapes, individuals, arm postures and so on. Figure 9 is sam-
ple data of one subject, fist class, five iterations, and without
reattachment. We confirmed repeatability in the same class
and the same posture when the identical subject did not reat-
tach the device.

Individual differences
Figure 10 shows wrist contour data of three hand classes of
two subjects. The graph indicates that wrist contours vary
not only with hand shapes but also subjects.

Introduction of feature extraction
Variation between subjects executing the same hand shape
was large compared with a subject’s variation of the con-
tour between hand shapes. So it is difficult to classify using
subject-independent models on the raw data. We solved this
assignment by introduction of feature extraction.

HAND SHAPE CLASSIFICATION
We didn’t adopt regression between finger joint angle and
outputs but classification of hand shape. That is because
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Figure 10. Three hand shape classes of two subjects

Single feature Sep. Met.
Sum of gaps 3.104
Sum of neighbours differences 0.575
Number of maximal points 0.042
Number of minimal points 0.024
Max gap 0.581
Min gap 0.377
Differences* of Gap-hist 1.522

Differences* of Diff-hist 0.795
Sum ratio (former/latter) 0.020
Max increment width 0.052
Max increment value 0.514
Max decrement width 0.039
Max decrement value 0.320

Adopted features are colored.

Histogram feature Num. of bin Sep. Met. (Ave.)
Gap Histogram (Gap-hist) 8 0.190
Difference of neighbours histogram (Diff-hist) 8 0.110
Open hand difference histogram 16 0.497

*Sum of differences between 
bins of the class and that of fist class

Table 1. Separation metrics of features

muscles and tendons for finger movements are crowded even
near the wrist, and it is difficult to recognize the wrist con-
tour variation of independent finger.

Feature extraction
We organized feature candidates (13 single features and 3
histogram features), and evaluated their availabilities. Data
of fist class and open hand class were used as the
pre-classification calibration data. In evaluation of features,
we used separation metrics as an evaluation standard.

Separation metrics =
Between class variance

Within class variance
We can evaluate effectiveness of features without learning
process with the metrics value. Table 1 shows feature can-
didates and separation metrics of them. Through this analy-
sis, we selected six single features and one histogram feature
with high separation metrics. Figure 11 shows the overview
and chart of one good feature; max increment value.

Classification method
We designed a classification method using the features as in-
puts.
Target hand shape classes are eight classes as shown in Fig-
ure 8. We utilized ‘”k-NN method”, which can use data sim-
ilarity effectively, and “boosting”, which can make strong
classification from weak features [2]. As for boosting, we
utilized multi-class method Adaboost.MH [8] with weak
learners of features. Each feature is normalized from the cal-
ibration data of fist and open hand class, eventually the range
between max and min was configured to 2.0.

EXPERIMENT
We conducted hand shape classification experiments. The
classification outputs the most probable class. Experiments
are sorted into two categories: (1) learning data including
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the subject’s data and (2) learning data excluding the sub-
ject’s data. In category (1), three data were used for learn-
ing and another data was used for test regarding the subject.
Learning data included three data of the other six subjects.
In category (2), we exerted cross-validation: nine subjects’
data out of ten subjects’ data were used for learning data and
one subject’s data was used for test data in rotation.
Figure 12 and Figure 13 show the experimental results. Row
classes are input classes (answer classes) and column classes
are output classes. The diagonal line indicates correct output
classes, larger numbers on the diagonal line mean better per-
formance of the classification. The performance was evalu-
ated in classification rate.

Classification rate =
Number of correct samples

Number of all samples

The classification rate (Boosting, k-NN method) are 64.1%,
72.2% in category (1) and 47.8%, 45.6% in category (2).
However, in category (2), classification rate changed from
35.8% to 65.4% (Boosting) and from 25.4% to 59.6% (k-
NN method) depending on the combination of the data. We
thought this is because subjects who have similar wrist con-
tours are exist and high classification rate occurs when one
subject is assigned to learning data and the other is assigned
to test data. So collecting more learning data may enhance
the performance of the classification.

CONCLUDIONS
In this study, we developed a novel hand shape classifica-
tion system using wrist contours in order to recognize hand
shapes with little stress on users.
First, we developed a wrist-watch type wrist contour sensor
device. Mounting small distance sensors (photo reflectors)
on a flexible band enabled to measure wrist contour with
2.5mm pitch. Second, we observed differences attributed by
hand shapes and postures, and then picked up some useful
features such as sum of gaps and differences of histogram.
In classification, approximately 70% classification rate was
marked when the learning data included the subject’s data.
Additionally, it was confirmed that some subjects have sim-
ilar wrist contour and it indicates the possibility of
pre-learning-free recognition.
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