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Abstract— In this paper we propose a novel method for
predicting resident’s behaviors in a house from one’s move-
ment trajectories. The method consists of 1) segmentation of
trajectory data into staying or moving and classification of the
segments and 2) prediction by time-series association rules from
transition events of each segment. The method predicts the
start time of target behaviors for daily life support, such as
eating, taking a bath etc. The time lag between the prediction
and the target behavior can be set up manually, thus the
method is adaptable to a variety of supporting systems. The
experimental results using real residents’ trajectory data of
almost two years demonstrate that prediction of behaviors by
the proposed method is feasible.

I. INTRODUCTION

It is important to recognize persons’ behaviors for ex-

ecuting supports by robots or systems. Of course, that

contains what they are doing then. However, since it takes

considerable time for execution or preparation of support,

to predict what they are going to do is needed. And then,

the high quality support is enabled by predicting the target

behavior.

Though there are many kinds of sensors for the behavior

recognition, in case of supporting residents at a living space,

external sensors is considered to be more suitable than the

wearable ones since they do not need batteries and they can

flexibly cope with continuously changing clothes in a living

space. There are researches of intelligent environments in

living spaces by introducing sensor networks [1], [2], [3],

[4], [5]. These systems have a lot of and many kinds of

sensors, and the residents’ behaviors can be recorded in detail

in them. However, it is currently impractical to introduce

such large-scale systems into the real existing houses.

From such a background, we constructed a system [6] that

calculates trajectories of the resident by measuring one’s us-

ing multiple Laser Rangefinders (LRF) and estimating one’s

position in time series. We have accumulated trajectories

from the system for approximately two years.

Trajectories are used for predicting behaviors [7], [8], [9].

These researches are often focused on the prediction of where

persons are going from the position where they are then.

These approaches are considered to be useful for the collision

avoiding systems of mobile robots or the simple information

presentation. However, since the support in a living space are

focused on assistance for or substitution for behaviors such
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as cooking or preparation for going out and they cost more

time to prepare, the further prediction will be needed.

As for the meaning or information of residents’ trajecto-

ries, our daily life in a house contains a lot of behaviors

and they are connected like a chain. For example, there may

exist washing his face, fetching a newspaper and preparing

for breakfast, from getting up to eating breakfast. And, each

behavior are stratified and expressed by the chain of behav-

iors of a deeper layer, for example fetching a newspaper are

separated into going to the entrance, catching it and bringing

it back. Each of such stratified and chain-like behaviors has

a relationship to the location in a house, and most of them

are considered to contain staying at the related locations.

Table I shows general pair examples of locations in a house

and behaviors of residents. In fact, the relationship between

locations and behaviors have the factors that depend on the

resident and the pairs in the table are not necessarily true,

however, the location where the resident stays will be a clue

to behavior recognition of the person. On the other hand,

when the resident is not staying it can be said that one is

moving, and one is staying before and after one moves. Thus,

grasping the flow of behaviors is enabled by segmenting

trajectories into staying or moving and mining the transition

of segments.

TABLE I

PAIR EXAMPLES OF LOCATIONS AND BEHAVIORS

Location in a House Corresponding Behaviors
Dining Table Eating, Reading Books

Kitchen Cooking
Bed Sleeping

Bathroom Taking a Bath
Washstand Washing Hands or Face
Entrance Going out, Coming Home

Therefore, in this paper, we propose a method for predict-

ing resident’s behaviors by one’s trajectories. The method

consists of 1) segmentation of trajectory data into staying or

moving and classification of segments and 2) prediction by

time-series association rules from transition events of each

segment.

The rest of this paper is organized as follows. We explain

the system, which calculates and accumulates trajectories in

a house, in section II. Next, we estimate transition model of

behaviors by segmenting the trajectory and classifying each

segment in section III. And then, we extract the features

existing before the target behavior starts in section IV. In

section V we show the experimental result using the real

trajectories of two residents for twenty one months. Finally,



conclusion is discussed in section VI.

II. TRACKING SYSTEMS IN A HOUSE

A. Layout of Sensors and the Experimental House

We utilize the tracking system introduced into a real

house (Fig. 1) [6]. The system is constructed with multiple

LRF modules (upper left part of Fig. 1), a combination

of Hokuyo URG-LX04 and Atmark Techno Armadillo-220.

Specifications of the module are in Table II. The modules

are arranged at hip-height and in several locations in the

house (concrete locations are shown in Fig. 1), and the

locations are calibrated manually by the LRF’s output data.

Each module is connected to a server by wired LAN and the

server integrates the sensor data.
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Fig. 1. Layout of Experimental House and Location of LRF Modules

TABLE II

SPECIFICATIONS OF LRF MODULE

Max Measurable Distance 5.6 [m]
Scan Range 240 [deg]

Scan Resolution approx. 0.36 [deg]
Frequency 10 [Hz]

B. Calculation of Movement Trajectories

The method of calculating trajectories consists of prepro-

cessing to get candidate points of the resident, detection of

his location by detected points, and tracking with particle

filter [10]. First, at the preprocessing step, we utilize the

grid map of room layout such as Fig. 2-A. The black grids

represent the location at which the residents are not to be

such as walls, furniture, etc and at which there are objects

at hip-height, which might be mistaken for the residents.

All background-subtracted LRF data are projected on 2D

coordinates and the points on black grid are removed. Next,

at the detection step, we estimate the resident’s location by

fitting a circle to the preprocessed points with least-square

method and detect the residents position as the center of

the fitting circle. Last, at the tracking step, we consider the

resident’s 2D position xt = (x, y) as a state in the filter.

Scattered particles on black grids or between foreground of

scan points and LRF are removed. Supposing their movement

to be uniform linear motion, the remaining particles are

evaluated with distance between state (x, y) of particle and

LRF points below the equation.

p(yt|xt) =
m∏

i=0

exp(
−(di −R)2

σ2
)

Where m is the number of foreground points. σ is distributed

variance, defined as 0.25 empirically. R is defined as 15 [cm]

in our method.

A B C

Fig. 2. Grid Map for Calculating Trajectories and Trajectory Examples
(A: Grid Map B, C: Trajectory Examples)

C. Features of the Calculated Trajectories

Fig. 2-B,C are trajectory examples. In the figures, blue

circles are the starting points of trajectories and the green

circles are the end points. Fig. 2-B is the data from coming

back to sitting down on the floor near the table B (122

seconds), and Fig. 2-C is the data from standing up near

the table B to lying in bed (120 seconds). Starting or end

points of trajectory data have the features below.

• The locations out of range of LRFs such as restroom,

entrance, bathroom, etc.

• Near the furniture where residents lie down or sit down

on the floor (as is usual with Japanese customs) below

the installation height of LRFs such as table B, bed etc.

Thus, there are behaviors potentially, while the system does

not track the resident.

III. ESTIMATING TRANSITION MODEL

USING STAY POINTS

A. Extracting Typical Staying Locations

As we mentioned in section I, trajectories can be divided

into staying and moving. In addition, each location of staying

is related to the activity there. Thus, extracting typical

staying locations is meaningful for understanding transition

of activities. There, we call points of trajectories which

considered to be staying, stay points.



Now, we explain the clustering method of stay points from

the accumulated trajectories. Fig. 3 shows stay points around

Aug. 2009 under the condition below a certain velocity (we

defined the velocity as 0.2 [m/s]), the left part is the plot

image and the other part is the two-dimensional histogram.

The ellipses of the same color correspond to the same

location each other. Because of the difference of the time at

the locations, stay points are greatly biased and it is difficult

to extract the locations considered to have a meaning with

existing clustering method. Therefore, we cluster them with

the method below,

1) Divides the house into meshes and count the number

of stay points in each mesh

2) Binarizes the count of points with a threshold

3) Clusters the binarized mesh as a new dataset, with k-

means method

The left part of Fig. 4 is the clustering result of the stay

points. Thus, locations which can be seen in the left part of

Fig. 3 but, because of the biased time being there, cannot be

seen in the right part of the figure such as washer, entrance,

etc are extracted. In the figure, red circles are the cluster

centers. The right part of the figure is table of corresponding

furniture of each cluster center. The cluster centers are related

to furniture layout or floor plan, except position 4. The

position 4 in the figure may be overlooked if these position

are chosen manually by the layout, however, it may become

important for detailed transition modeling of the behaviors.

Fig. 3. Stay Points around Aug. 2009

B. Segmentation of Trajectory Data into Staying or Moving

We extract stay points from trajectories, and assign ID

of the nearest cluster center. Then, we define a group of

continuous points of the same ID as staying activity and a

part between staying activities as movement. Each staying

activity is assigned ID of the cluster center. Starting and

end points of trajectories are processed as stay points. It

is because activities should exist while the tracking system

loses the resident such as lying in bed or taking a bath as

we mentioned in section II-C.

Fig. 5-B shows an example of extracted segments from

a trajectory (Fig. 5-A). The trajectory is the data from the
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bathroom to the entrance (269 seconds). Thus you can see

that potential activities are extracted by the process.

A: B-1: In front of 
MovementBathroom

B-2:
Input Data

B-3: 
Washer Movement

B-4:
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Table B
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Fig. 5. The First Nine Extracted Segments from an Input Trajectory
(A: Input Data B: The First Nine Extracted Segments)

IV. PREDICTION ALGORITHM

WITH SEGMENTED TRAJECTORIES

A. Prediction by Preceding Activities

Factors that cause resident’s behaviors are considered to

be,

• Elapsed time from the last occurrence of the same

behavior

• Current time itself

• Preceding activities



We give examples of eating. When residents does not eat

for six hours they will be hungry (the first factor), residents

who usually eat at 12 possibly eat at 12 (the second factor),

and there should exist a preparation of meal before eating

(the third factor). Of course, each factor does not have an

effect only as a stand-alone element but a combination of

them. However, in case of providing real-time assistance to

resident following the transitive behaviors, the third factor,

preceding activities, should be the most reliable of the three.

Thus in this section we construct a prediction algorithm by

mining events of preceding activities.

B. Extracting Transition Event from Segmented Trajectories

We define the transition of segmented trajectories as

events. Concretely the system extract events in this way

below,

• Transition from a staying activity to movement is an

OUT event assigned the ID of the staying activity.

• Transition from movement to a staying activity is an IN

event assigned the ID of the staying activity.

Fig. 6 is an outline of transition event extraction from

segmented trajectories. The system finds a combination or a

sequence of events extracted this way.

STAY(1) STAY(2)MOVE MOVE

Time1, OUT 2, IN 2, OUT

Segmented Trajectories

Event Sequence

Fig. 6. Transition Event Extraction from Segmented Trajectories

C. Extracting Features for Behavior Prediction

For the following discussion, we define the terms about

event mining, event sequence, window, episode, and minimal

occurrence. Although there are various kinds of defined

episodes [11], the system adopts the serial episode. The

definition of the terms follows [12], [13].

Definition 1. Event Sequence and Window
An event sequence of E is an ordered sequence of events

like S = 〈(A1, t1), (A2, t2), ..., (An, tn)〉 (A ∈ E is an event

type and t is the occurrence time of the event). A window

W = (ts, te) is a slice of an event sequence and contains

those pairs (A, t) from S where ts ≤ t ≤ te. The time span

te − ts is called the width of W .

Definition 2. Episode
An episode is a shorter event sequence that occurs serially

in a given longer event sequence, where some other events

may occur within the range of the episode. For a window

Wi = W (ts, te), it is said that the n-event episode α occurs

in Wi if there exists a sequence of positive integers {φ(i)}
such that ts ≤ φ(1) < φ(2) < ... < φ(n) ≤ te and α(i) =
S[φ(i)] for any i = 1, ..., n.

Definition 3. Minimal Occurrence
A minimal occurrence of an episode α in an episode se-

quence S is the time interval (ts, te) which satisfies the

followings.

• α occurs in window W = S(ts, te)
• α does not occur in any proper subwindow on W

In this research, we utilize and modify the Harms’ time-

series association rule [14]. The rule are described as Fig. 7.

Concretely, it is like, ”if A occurs in Window, then e (1-

event Episode) occurs in Prediction T ime Range after

Time Lag”. Originally, e is a multiple-event Episode and

Time Lag is the time between the first event of A and e.

However, if Window is wider than Time Lag in the original

rule, a event of e itself or after e may be learned as contents

of A. It is why we define Time Lag’s starting point as the

last event of A. In addition, since predicted episodes are

the start time of the behavior and contains only 1 event, we

define the occurrence of e to have the duration like Fig. 7.

The confidence of the rule is the conditional probability

of e, under the condition of occurrence of A i.e.

Confidence(Rule(A, e)) = p(e|A) =
freq(Rule(A, e))

freq(A)
(1)

Where, freq(X) is the frequency of X in the sequence.

In this research, frequency of an episode are defined as the

number of minimal occurrences.

Antecedent Episode (A)

Window Time Lag Prediction Time Range

Event to be
Predicted (e)

(Another Window)

Time

Fig. 7. Time-Series Association Rule

D. Efficient Learning of the Rules

Since it is a peculiar situation that the predicted event

(the start time of the predicted behavior) are much less

than the total events, there will be a lot of wasted time in

case of learning with a simple method and it is difficult to

utilize directly the existing method such as depth-first search

algorithms [15], [16] or breadth-first search algorithms [17].

In this research, we propose a efficient method for learning

rules based on the features of predicted event e below.

• Each predicted event e is already known and fixed in

the learning step.

• e is a 1-event episode.

Suppose a minimal occurrence of A is (ts, te), the rule

holds when ”e occurs in S(te + time lag, te + time lag +
predict time range)”. This situation is also described as

”e occurs at t, then a minimal occurrence of A exists

with the occurrence of A’s last event in S(t − time lag −
predict time range, t−time lag)”. Namely, we can obtain

a list of A by the candidate last events of A that are easily



extracted from the list of e. In addition, since the number of

A is much less than that of all episodes which occur in the

event sequence, we can reduce the number of the sequence

scanning significantly by extracting a list of A and counting

up the held rules before calculating the frequency of each A.

Therefore we define tree-structured episodes, the node of

which is an event that contains frequency of the rule and

the episode, as Episode Tree (Fig. 8), and the system learns

rules by buffering a Episode Tree in the step of extracting a

list of A. In these steps below,

1) Extracts a candidate last event list of A from e
2) Acquires all A into an Episode Tree and count the fre-

quency of rules by searching backward in the sequence

within Window
3) Counts the frequency of each A in the whole sequence.

4) Extracts rules from the Episode Tree with calculating

the confidence of them.

And for expanding Episode Tree and counting the number

of held rules or episode occurrences, we constructed a

procedure based on DFS-MO algorithm [13], which con-

tains recursive compression of the sequence by buffering

of the minimal occurrences of parent node and calculation

of minimal occurrences of child nodes by one scan, called

occurrence deliver.

Alg.1 is the proposed algorithm for learning the rules from

the event sequence. MO means a minimal occurrence. In

the function expand Tree (row 6) the system expands the

Episode Tree with counting the frequency of rules and in

the function expand MO (row 11) the system counts the

frequency of episodes along the expanded Episode Tree in

the whole sequence.

A

C

B B

D

C

Episode: [C, D, A] 

Frequency of Rule: 12 

Frequency of Episode: 30 

Confidence: 12/30 = 0.4 

Fig. 8. Episode Tree

E. Prediction Using the Learned Rules

After learning rules of a predicted behavior, the system

outputs prediction of the behavior in the way below,

1) Buffers events before in the range of Window
2) Extracts the list of A which occurs in the buffered

events.

3) If there are detected rules the confidence of which

exceeds threshold, then system outputs the prediction.

For example, where the confidence threshold 0.5 and

there are rules learned for predicting eating, the contents of

which are A = [A, C,D] and confidence = 0.6, if events

[A,B, C,D] are buffered in this order at the current time

then the system outputs prediction of eating, following the

learned rules.

Alg. 1 Proposed Algorithm for Learning Rules

Input:Sall ← seq. of all events

Input:Slast ← seq. of candidate last events of ante. episodes

1 begin
2 initialize EpisodeTree

3 MOList←MOs of each 1-event episodes in Slast

4 while MOList �= null do
5 MO ← remove head item of MOList

6 expand Tree(EpisodeTree, MO)

7 end while
8 MOList←MOs of each 1-event episodes in Sall

9 while MOList �= null do
10 MO ← remove head item of MOList

11 expand MO(EpisodeTree, MO)

12 end while
13 get all rules from EpisodeTree

14 end

V. EXPERIMENT

A. Experimental Condition
In this research, we have Going out, Eating, Sleeping and

Taking a bath to be the target behaviors for support, and

experiment with predicting the start time of them. The used

trajectory data are of two residents living alone in a existing

house (the layout of which is in Fig. 1) during different

periods. One is living from Apr. 2009 to Mar. 2010 (Subject

A), the other from Apr. 2010 to Dec. 2010 (Subject B). The

parameters of the experiment are 0.2 [m] within 1 [sec] for

deciding the staying activity, 1 [cm] as the mesh size, 1 as

the count threshold, 17 as the number of cluster centers (in

section III-A), 60 [sec] as the width of Window, 30 [sec] as

Time Lag, 120 [sec] as Predict T ime Range (for time-

series association rule in section IV-C). In short, the system

predicts behaviors in 30-150 [sec] from the current time.
We use all data of subject A of going out and sleeping for

learning rules. We also use all data of subject B for going out,

sleeping and taking a bath, three months of data of subject

B for eating, when he took notes of the start time of it, for

learning rules. And then, the system predicts the behaviors

with learning results of the last thirty behaviors for eating

and the last fifty behaviors for the other behaviors.

TABLE III

VALUES USED FOR EVALUATING PREDICTION

Proper Time

for Prediction
True False

Predictive
Output

Positive TP FP
Negative TN FN

For evaluating the system, we define accuracy, preci-

sion, and specificity. With the above-mentioned parameters,

proper time for prediction in Table III means 30-150

seconds before the start time of each behavior. Accuracy,

precision, and specificity are calculated using the values in

the table like:



Accuracy =
TP

TP + TN

Precision =
TP

TP + FP

Specificity =
FN

FP + FN

Actually, accuracy is similar to recall and specificity is the

complement of type I error. For calculating accuracy, TP and

TN are the number of behaviors. Since we cannot evaluate

FP and FN with behavior units, all values in the table are

the frame time for calculating precision and specificity.

Since the system which outputs a lot of predictions in

improper time is confusing and useless, specificity is to be

the most important of the three. There, we calculate accuracy

and precision at the confidence threshold of high specificity.

B. Experimental Results

Table IV shows accuracy and precision of each behavior

where specificity is 0.99. Overall, the system has high scores

on accuracy but low scores on precision. Fig. 9 is an

example of succeeded prediction on going out of subject

A. In the figure, the assigned numbers is the real IDs of

cluster centers in this exam. In the trajectory just before

going out, the system extracts the transition events from

segmented trajectories and detects the rule of confidence 0.6,

45 seconds before subject A goes out. However, the accuracy

of sleeping of subject A have less score than the others. It is

because there are some cases of few transition events before

the behaviors, for example he is sitting at a table B just

before he goes to bed, and that causes no predictive output

or those of not enough confidence. Thus, the system can

predict the behavior which have movement as preparation of

it with high accuracy.

TABLE IV

ACCURACY AND PRECISION AT SPECIFICITY 0.99

Going out (A) Going out (B) Eating (B)
Accuracy 0.93 0.84 0.63
Precision 0.12 0.06 0.06

Sleeping (A) Sleeping (B) Taking a Bath (B)
Accuracy 0.42 0.81 0.97
Precision 0.03 0.05 0.06

C. Investigation of Precision

Table V is the comparison of the proportion of predictive

outputs in 30-600 [sec] before the start time of the behaviors

to all predictive outputs and the proportion of predictive out-

puts in 30-150 [sec] before the start time of the behaviors to

all predictive outputs (i.e. precision). The learning results in

a short range of two minutes are detected in a little bit wider

range. Thus mistaken outputs just because they are done

more than 150 [sec] before the behaviors cause a little early

preparation of them and they are not necessarily mistakes. In

addition, Table VI is the ratio of precision of the system to

random noise (a imaginary system that outputs completely

Trajectory just

Part of Segmented Trejectories

STAY(13) STAY(7) STAY(15)MOVE MOVE

Time[13,OUT] [7,IN] [7,OUT] [15,IN]

The system outputs prediction

before Going out

13

7 15

Detected Rule: 

Confidence of the Rule: 0.6

45 seconds before subject A goes out.

     (13, OUT), (15, IN) -> Going out

Fig. 9. Example of Succeeded Prediction

TABLE V

EXISTENCE RATE OF PREDICTIVE OUTPUT AT SPECIFICITY 0.99

Going out (A) Going out (B) Eating (B)
30-600 [sec] 0.26 0.18 0.16
30-150 [sec] 0.12 0.06 0.06

Sleeping (A) Sleeping (B) Taking a Bath (B)
30-600 [sec] 0.05 0.08 0.09
30-150 [sec] 0.03 0.05 0.06

TABLE VI

PRECISION RATIO OF THIS SYSTEM TO RANDOM NOISE

Going out (A) Going out (B) Eating (B)
x : 1 53 46 64

Sleeping (A) Sleeping (B) Taking a Bath (B)
x : 1 14 39 49

random predictions). You can see that the predictive outputs

have considerable entropy. From the viewpoint of entropy,

it can be said that the behavior prediction of residents is of

use.

VI. CONCLUSION

In this research, we proposed the method for behavior pre-

diction of residents by accumulated trajectories in a house.

First, the method performs segmentation of trajectories into

staying or moving and classifies each segmented trajectory.

And then, the method utilizes time-series association rule

mining of the transition events of segmented trajectories

to find out the preceding behaviors of the target behavior.

The experiment using real trajectories of almost two years

demonstrated that the behaviors which have movement as



preparation of them can be predicted with high accuracy and

considerable precision.

In the future work, since the parameters are decided manu-

ally, we will challenge the further improvement of prediction

by automated estimation of the parameters, especially of

the time-series association rule based on large-scale data. In

addition, we will introduce support systems such as service

robots, and evaluate the overall system qualitatively.
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