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Abstract— This paper describes a human shape reconstruc-
tion method from multiple cameras in daily living environment,
which leads to robust markerless motion capture. Due to contin-
ual illumination changes in daily space, it had been difficult to
get human shape by background subtraction methods. Recent
statistical foreground segmentation techniques based on graph-
cuts, which combine background subtraction information and
image contrast, provide successful results; however, they fail
to extract human shape when furniture such as tables and
chairs are moved. In this paper, we focus on the results of
face detectors that would be independent of such background
changes and help to improve the robustness under movement
of background objects. We propose a robust human shape
reconstruction method with the following two characteristics.
One is iterative image segmentation based on graph-cuts to
integrate head position information into shape reconstruction.
The other is high-precision head tracker to keep multi-view
consistency. Experimental results show that proposed method
has enhanced human pose estimation based on reconstructed
human shape, and enables the system to deal with dynamic
environment.

I. INTRODUCTION

Vision-based human pose estimation is expected to realize
markerless motion capture, or the motion capture system
without any device attached. There are many approaches for
pose estimation [1], [2], such as silhouette based methods and
volume based methods. Although these approaches succeed
to estimate pose well enough, most approaches assume that
human silhouette is captured by simple background subtrac-
tion, and cannot deal with difficult scenes, such as cluttered
background, illumination changes and dynamic background.
In fact, background images frequently changes in daily living
space. Recent statistical foreground segmentation techniques
based on graph-cuts, which combine background subtraction
information and image contrast, provide successful results
[3]; however, they fail to extract human shape when furniture
in background such as tables and chairs are moved. To
extract human silhouette robustly, we introduce additional in-
formation independent of background. Human head position
could be significant to robust silhouette extraction because
human head has common image features and is easy to
be detected by cameras. We propose a robust human shape
reconstruction method with the following two characteristics.
One is iterative image segmentation based on graph-cuts to
integrate head position information into human silhouette
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extraction. The other is high-precision head tracker to keep
multi-view consistency of head poses.

There are many approaches to reconstruct human shape in
spite of dynamic background. For example, voxel coloring
which uses multi-view color consistency [4] and the fusion of
multiple depth map acquired by stereo cameras [5] are able
to reconstruct a target shape without silhouette extraction.
Indeed, these reconstruction methods are not affected by
background changes, but they take much more computational
cost and need much more cameras. Moreover, it is necessary
to extract human shape from whole shape of the target
space through some additional clues. To achieve high-speed
reconstruction, we employ silhouette-based approach, that is
volume intersection. We tackle to extract human silhouette
robustly with background and additional information. Re-
cently, silhouette-based approaches with not only background
information but also feedback from reconstruction results are
proposed. Although feedback from reconstructed volumes [6]
or feedback from estimated human pose [7] help us to extract
human silhouette when background changes, these feedback
are effective only when background changes are apart from
human; furthermore, it is difficult to recover silhouette ex-
traction if the feedback loop collapses. Our reconstruction
method leverages head position estimated by textual features,
which is independent of background information, to improve
the robustness under movement of background objects.

Remainder of this paper is as follows. In section II, the
overview of our motion capture system is introduced. In
section III, we describe human silhouette extraction method
via graph-cuts. Then, 3D head tracking method is described
in section IV. In section V, experimental results in difficult
situations are shown. Finally, our conclusions are discussed
in section VI.

II. HUMAN POSE ESTIMATION VIA MULTI-CAMERAS

Fig. 1 shows the flow of proposed motion capture sys-
tem as the baseline of our research. First of all, multi-
view cameras surrounding the target human fetch image
sequences. Multi-camera setup is showed in Fig. 1. Then, 3D
head position is estimated through multi-view head detection
and classification. Next, 3D head position is used to extract
human silhouette from camera images. Silhouette extraction
is based on integration of multiple information such as color
distribution, color contrast and positional constraint. Then,
human shape is reconstructed by volume intersection through
multi-view silhouette images. Human shape is expressed by
a set of voxels. Finally human pose is estimated to fit human-
shaped voxels. We employ Shimosaka’s method [2] on pose



estimation. Our research focuses on shape reconstruction
method in dynamic scenes. Our approach is based on human
silhouette extraction based on head position and 3D head
position estimation.
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Fig. 1. Markerless Mocap and Multiple Camera Setup

III. HUMAN SILHOUETTE EXTRACTION VIA HEAD
POSITION

In order to extract human silhouette from a camera image,
we use clue of head position in addition to background
information. Our extraction method is based on graph-cuts
to integrate multiple cues. Integration of pixel-level color
likelihoods, image contrasts and positional constraint of head
enables robust extraction in spite of background changes.
Furthermore robust extraction makes it possible to update
background images online.

A. Background Subtraction via Graph-Cuts

We introduce a method of background subtraction based
on graph-cuts, that is the basis of our method. Image seg-
mentation based on graph-cuts is performed by minimizing
following energy function,

E(X) =
∑
r∈I

Dr(xr) + λ
∑

(r,s)∈ε

Srs(xr , xs) (1)

where I is a set of pixels in a image and ε is a set
of combinations of neighboring pixels. X means a set of
foreground / background labels xr at pixel r. Graph-cuts
calculate a label set X minimizing E(X). Dr(xr) is a data
term, which denotes a cost to label pixel r as xr , and
Srs(xr , xs) is a smoothing term, which denotes a cost of
label changes between neighboring pixels. λ is a parameter
which balances two terms. The data term and the smoothing
term are defined as follows.

Dr(xr) =
{ − ln pB(ir) xr = 0

− ln pH(ir) xr = 1 (2)

Srs(xr , xs) = |xr − xs| · exp(−γdrs), (3)

where pB denotes background likelihood and pH denotes
human-area likelihood, drs is color difference between pix-
els. Minimizing Srs causes label changes along strong con-
trasts. γ is a parameter for normalization.

Background likelihood pB is expressed in YCrCb color
space, and modeled by Gaussian mixture at each pixel. Each
distribution is trained by iterative updating for each frame
[8]. Moreover, introducing likelihood evaluation via CrCb,
which is chromatic information, can deal with shadow effect
[6].

Human-area likelihood pH is also expressed in YCrCb
color space, and modeled by Gaussian mixture. Because
human color has no relationship with location, distribution

is trained from whole pixels labeled as human area. Besides
likelihood of whole human color, likelihood of skin color is
employed. Skin color is learned from a head position.

Image contrast drs means color differences between pixel
r and pixel s. To emphasize foreground contrast only, drs is
designed to weaken contrast derived from background image
[3].

Fig. 2 shows the result of background subtraction via
graph-cuts. Comparative method using only background like-
lihood is affected by background flicker and shadow. On the
other hand, the method via graph-cuts extracts noiseless and
accurate silhouette. However, this approach cannot divide
human region and object region when some objects except
human appears like Fig. 2. To handle such background
changing situation, our approach employs positional con-
straint of human head.

Camera Image Background Image Bg Model Only Graph-cuts

Fig. 2. Background Subtraction via Graph-Cuts

B. Constraint of Head Position

1) Estimation of Central Axis of Human Body: It is
difficult to extract human body silhouettes directly from
positional constraint of human head. Then, first of all, we
estimate a central axis of human body by 3D head position.
Assuming the human stands on the floor, 3 points in an
image, which are a head PH , a center of gravity PG and
a foot PF , are estimated. The head position PH is the
projected point of estimated 3D head position in the camera
image. The center of gravity PG is calculated by background
and human-area likelihoods. Probability of being human
area, pH/(pH + pB) is calculated for each pixel, and center
of the probabilities becomes PG. The foot position PF is
calculated by PH and PG. The position where 3D head
position is projected onto the floor is projected to P ′

F in
camera image, that is

−−−−→
PHP

′
F is the projected vector of the

vertical vector from the head to the floor. Using point P ′
F , the

foot position is defined as PF = PG + 1
2

−−−−→
PHP

′
F . Fig. 3 shows

estimated central axis based on the 3 points. Our approach
is effective in various scenes such as standing, sitting and
bending down.

Fig. 3. Rough Human Area Based on Head Position

2) Graph-Cuts Modeling via Head Position: The central
axis of the body can be used to evaluate human-area likeli-



hood of each pixels, then data term, which was defined as
(2), is redefined as follows,

Dr(xr) =
{ − ln pB(ir) + η(1 − qH(r)) xr = 0

− ln pH(ir) + ηqH(r) xr = 1 (4)

where qH(r) denotes likelihood based on distance from the
central axis, and η is a parameter adjusting the effect. The
distance from the axis is described as dH(r), and the human-
area likelihood qH(r) is defined as follows

qH(r) = exp(−dH(r)2

2σ
) (5)

where σ means thickness of the human body in camera
image.

3) Iterative Reshaping the Human Silhouette: Like Fig. 2,
when energy minimization is applied to whole image, back-
ground changes are extracted as human area wrongly. It is
necessary to integrate the positional constraint into silhouette
extraction in order to deal with such scenes with background
changes. Based on active contour approach [9], we propose
the approach to revise the extraction result iteratively by
graph-cuts segmentation.

Rough Silhouette

Iteration

Refine Contour by Graph-Cuts Result

Fig. 4. Iterative Segmentation Approach

Fig. 4 shows the processing flow.
1) Based on the central axis of the body and its thickness,

rough human silhouette is defined.
2) pB, pH , drs of pixels in the boundary region (blue area

in Fig. 4) of the silhouette is calculated.
3) The boundary region is segmented by graph-cuts.
4) Step 2 and 3 are repeated until human silhouette

converge.
At step 3, inner region is set to human area, and outer region
is set to background to apply graph-cuts to boundary region.
That is, if pixel r is in inner side, pB(ir) = 0, pH(ir) = 1
or if pixel r is outer side, pB(ir) = 1, pH(ir) = 0 .

Fig. 5 shows the differences between global graph-cuts
segmentation and iterative graph-cuts based on head posi-
tion. Positional constraint achieves to extract only human
silhouette in spite of background changes.

Camera Image Grobal Graph-cuts Constraint Proposed Method

Fig. 5. Iterative Graph-Cuts vs. Global Graph-Cuts

C. Online Updating of Background Color Model

Our extraction method can divide human silhouette from
changing background via head position. Taking advantage of
robust human silhouette extraction, background and human
color information is able to learned from the silhouette. In
background region, background GMMs are updated gradu-
ally per pixel [8], and in human region, human color GMM
is retrained by EM algorithm from the set of pixels labeled as
human. Because there is a problem of adaptive background
subtraction that static foreground is learned as background
with time, it is difficult to learn background changes fast.
However, our approach achieves fast update without making
human area background by using silhouette extraction result.
Moreover, because head position estimation is independent of
background information, the loop of information update can
be restored easily even if it collapses. Fig. 6 shows update of
background images. Upper row shows camera images, and
lower row shows background images. In this scene, a man
brings a bag on a table and goes by. The bag on the table
is learned as background soon after putting it on the table.
However the static man sitting on a chair does not become
background.

Camera Images

Background Images

Frame 100 Frame 400 Frame 800 Frame 1000 Frame 1300

Fig. 6. Online Updating of Background Image

Background update affects not only learning after back-
ground changes but also accuracy of silhouette extraction
while background is changing. Fig. 7 shows the difference of
silhouette extraction while background is changing between
without update and with update. In this scene, a man moves
a chair and sit down on it, therefore background changes
in the region of the chair and the shadow under it. Though
positional constraint by head position (left of Fig. 7) cannot
handle this effect, extraction with update of background
produces good result (right of Fig. 7). This is because gradual
change of background like shadows is learned quickly.

Camera Image Background Image Without Update With Update

Fig. 7. Improvement of silhouette extraction by background update

IV. HEAD POSITION ESTIMATION

As already discussed, our silhouette extraction method
leverages head position as a clue of human position. That
is because head (face) is the most distinctive body parts to



be detected in image, and it has common features among
various people. Moreover, because it is at higher position in
general, it is hardly occluded by some objects like furnitures.
Therefore we tackle to estimate 3D head position through
head detection in each camera image.

We propose high-precision multi-pose head classifier
and integration method of multi-camera head detections to
achieve robust estimation of 3D head position. Proposed
method has following two features. First one is dataset clus-
tering on training phase to minimize false classification rate,
and the other is multi-view integration based on consistency
of head pose estimated on each view.

A. Training of Multi-Pose Head Classifier

There are some problems to detect heads by cameras
equipped on the ceiling. They are low-resolution image,
variety of head pose and computational cost. Viola and
Jones’s face detection method [10] is famous for high-
speed detection of low-resolution facial images. Their image
classifier uses well-known rectangle features and is trained
by Adaboost algorithm to achieve high-precision and fast
detection. Various methods based on the same framework are
proposed, then we also construct a head detector based on
Viola and Jones’s approach. As a solution to the problem
of variety of head pose, it is general approach to train
independent classifiers for all pose classes, however not only
it takes time depending on a number of classes but also
definition of pose classes affects classification accuracy. In
our approach, tree-structured classifier is trained to achieve
multi-pose multi-class fast detection, and a pose class is
automatically divided appropriately in training phase. To
divide a pose class, we have built a head image dataset with
pose information, or Yaw and Pitch angles.

Practically, head detection from images is performed
through sliding window search. This approach scans the
image with a fixed-size window and applies the classifier to
the subimage defined by the window. Head image is detected
when the classification result is positive.

1) Feature Selection via RealAdaboost: Adaboost algo-
rithm is a method to create a binary classifier by combination
of many weak classifiers. From many candidates of rectangle
features, the most effective feature is picked up and trained
as a weak classifier, then connected to the main classifier.
Several variants of Adaboost algorithm is proposed to im-
prove its performance. FloatBoost [11] employs the feature
elimination step to reduce number of weak classifiers. Real-
Adaboost [12] expands the output of weak classifiers from
binary decision to probabilistic distribution. Our method
employs RealAdaboost to select features and train weak
classifiers. Each weak classifier outputs probability value as
confidence based on the feature value histogram [13]. The
flow of feature selection and training of weak classifiers is
described below.

A training dataset is expressed as S =
(yi, zi), i = 1, . . . , N , where yi is an image input,
and zi denotes a label (head images are labeled as zi = 1,
others are zi = −1). A main classifier composed of T

weak classifiers f(y) is defined as FT (y) =
∑T

t=1 ft(y),
and its classification result is z = sign(FT (y)). In
RealAdaboost algorithm, we boost up the classification
performance by adding weak classifiers one by one. First,
we define weak classifiers f(y). Weak classifiers output
a value between -1 and 1 according to the feature value
of rectangle feature. Its feature value is divided with
equal width to nc regions, and each region has confidence
about output label. Weak classifiers output its confidence
cj , j = 1, . . . , nc corresponding to the region of feature
value uj, j = 1, . . . , nc as follows.

f(y) = cj , if h(y) ∈ uj, j = 1, . . . , nc (6)

where h(y) denotes the feature value of y. Selection of new
feature ht+1(y) and training of new weak classifier ft+1(y)
is performed by minimization of the loss function as follows.

Lt+1 =
N∑

i=1

exp(−ziF
t+1(yi)) (7)

Following value is defined by classification result on each
label and each region.

Wlj =
∑

i:zi=l,h(yi)∈uj

exp(−lF t(yi)) (8)

Then, (7) is deformed as follows.

Lt+1 =
nc∑

j=1

(W+1je
−cj +W−1je

cj) (9)

This loss function is minimized when

cj =
1
2

ln(
W+1j

W−1j
). (10)

Plugging into (9), Lt+1 becomes

Lt+1 = 2
nc∑

j=1

√
W+1jW−1j . (11)

This value Z = 2
∑nc

j=1

√
W+1jW−1j can be a barometer

of performance improvement when a new weak classifier is
added. RealAdaboost pick up the feature which minimizes
Z value and connect it to main classifier.

In practical implementation, because image dataset varies
by boot-strapping, we use a variable ωi in place of
exp(−ziF

t+1(yi)) for each sample yi, and update the values
iteratively to calculate Z value.

2) Tree Structured Classifier and Head Pose Clustering:
Creating many classifiers corresponding to many pose classes
to detect various poses of head causes heavy computa-
tional cost. Our approach creates a tree structured classifier
for multi-pose classification at one time. Fig. 8 illustrates
cascaded classifiers for multi-pose classification. Near the
root of the tree, some rectangle features are shared among
multiple pose classes near the root, and then detailed classifi-
cation is decided after branching. This approach fasten head
detection because it reduces number of rectangle features.



Input

Head

Input

Head

Multiple Classifiers Tree Structured Classifier
:Weak Classifier

Fig. 8. Tree Structured Classifier

3) Training a Tree Structured Classifier: Wu’s method
[14] also trains tree structured classifier with dividing the
dataset. It divides the dataset according to Z value, which
denotes classification performance. If Z is higher than the
threshold, the dataset is divided into two classes, and the
classifier for each class is trained continuously. Then, trained
classifier becomes like tree of weak classifiers as shown in
Fig. 8. Wu describes that automatic clustering of dataset
makes the performance higher than previous method with
pre-defined pose classes. Classifier is trained as Fig. 9.

In Fig. 9, ψ means number of classes, Ψ is maximum
number of classes, R is the target false positive rate and
θv,t is the threshold for rejection of each weak classifier
fv,t. Firstly all of the dataset belong to single class, then
the dataset is divided and a number of classes increases with
adding a new weak classifier for each class. Trained classifier
is structured like tree finally.

4) Head Pose Clustering Depending on Classification
Performance: Although Wu’s method employs k-means clus-
tering to divide the dataset, we divide the head pose class
according to the loss function after division. To split the
dataset S+1v belonging to class v into two classes, S+1A

and S+1B , border value of two classes has to be searched.
The head pose is expressed by yaw and pitch angles, and
the border value is Θy or Θp correspondingly. When the
dataset S+1v is divided into S+1A and S+1B and new weak
classifier for each is added, loss function (7) to decide the
border value is as follows.

Lt+1 =
nc∑

j=1

(WA
+1je

−cA
j +WA

−1je
cA

j +WB
+1je

−cB
j +WB

−1je
cB

j )

(16)

WA
+1j =

∑
i:yi∈S+1A,h(yi)∈uj

ω
(t)
i (17)

WA
−1j =

|S+1A|
|S+1A + S+1B|

∑
i:yi∈S−1v ,h(yi)∈uj

ω
(t)
i (18)

where outputs of new weak classifiers are cAj , c
B
j . WB

j is
defined in the same way as WA

j . This function is minimized
when

min
cA

j ,cB
j

Lt+1 = 2
nc∑

j=1

(
√
WA

+1jW
A
−1j +

√
WB

+1jW
B
−1j) (19)

� �
1) All weights of samples are initialized as ω

(1)
i =

1/N .
2) For t = 1 to T , do

a) For all classes v = 1, . . . , ψ, do
i) For all candidates of weak classifier, compute

following.

Wlj =
∑

i:zi=l,h(yi)∈uj

ω
(t)
i (12)

Z = 2
nc∑

j=1

√
W+1jW−1j (13)

ii) Select the weak classifier with smallest Z

ft = argmin
f

Z (14)

iii) Train the weak classifier by (10).
iv) Update the weights of samples by

ω
(t+1)
i = ω

(t)
i exp(−zift(yi)) (15)

v) Normalize the weights of samples.
vi) Learn the threshold θv,t to reject as many

negative samples as possible.
vii) Remove the rejected samples from the dataset,

and recollect samples as needed.
viii) Finish the training for this class if false detec-

tion rate is smaller than R.
ix) If Z > θZ for 3 times running about class v

and ψ < Ψ, then divide the dataset of class v.
A) Divide the dataset by some clustering

method, and assign the labels v and ψ + 1
to the 2 new classes.

B) Retrain all the previous weak classifiers for
the new datasets.

C) Add number of classes ψ.
� �

Fig. 9. Tree Structured Classifier Training by RealAdaboost [14]

We define (19) as Z̃ , and search for the border value to
minimize Z̃ in order to split dataset for high-performance
classification. Now we assume to search the border value
Θy and divide the dataset depending on yaw angles for
simplicity. To compute Z̃ value for all weak classifiers
and for all candidates of border value, its computational
cost is O(N2 × nh) by naive approach. Compared to the
computational cost for feature selection O(nh ×N), it takes
too much. We propose the method to search the border value
fast by storing W+1j values for each weak classifier and each
border value. Our algorithm is described in Fig. 10.

To minimize (19), loss on a part of the dataset is computed
for each weak classifier and minimum loss is stored as
M inc

i ,Mdec
i . Then, optimal split is searched by minimizing

(20). Sorting samples and storing minimum loss reduces



� �
1) Prepare the storages Dinc

r,j , D
dec
r,j , r = 1, . . . , nh, j =

1, . . . , nc

M inc
i ,Mdec

i , i = 1, . . . , |S+1k|, where nh denotes
the number of weak classifiers.

2) Compute W
(r)
−1j for all weak classifiers hr, r =

1, . . . , nh by negative samples.
3) Sort positive samples of the dataset S+1v in ascend-

ing order by yaw angle.
4) For i = 1, . . . , |S+1k|, do

a) For each weak classifier hr, r = 1, . . . , nh, do
i) If hr(yi) ∈ uj , add ωj to Dinc

r,j .

ii) Compute Ẑ = 2
∑nc

j=1

√
Dinc

r,j
i

|S+1v|W
(r)
−1j .

b) Store the minimum Ẑ as M inc
i .

5) Then, sort samples in descending order.
6) Store Mdec

i by the same way.
7) Compute Z̃ about i = 1, . . . , |S+1k| as follows.

Z̃ = M inc
i +Mdec

|S+1v|−i (20)

8) Search the sample i minimizing Z̃ , and the border
value is its pose parameter.

� �
Fig. 10. Searching for the Border Value of Head Pose Classes

computational cost to O(nh ×N).
Fig. 11 shows the difference of head detection rate be-

tween Wu’s method and proposed method. Experimental
data is captured by ceiling cameras. There is one head in
a test image like Fig. 13, and test samples are captured by
sliding window. Correct head position is captured by optical
motion capture. Fig. 11 denotes that improvement of dataset
clustering approach enhances head detection rate.
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Fig. 11. ROC Curve of Head Detection

B. Integration of Multi-View Detection

3D head position is estimated as follows.
1) Preparing 3D Position Candidates: After head detec-

tion on each camera image, candidates of 3D head position
can be calculated by triangulation using a pair of detections.
In multi-view camera system, human face can be seen by
only a few cameras actually, then using two views to estimate
3D position reduces the influences of false detections. If there
are more than one candidates, each candidate is evaluated

about multi-view consistency. Moreover, we apply image
tracking based on subspace tracking [15] to track undetected
head. This image tracking is applied to the view which was
used to estimate 3D position in previous frame.

2) Head Pose Estimation: Before deciding the optimal
candidate, pose of each candidate is roughly estimated by
multi-view classification result. Global head pose is also
expressed by yaw and pitch angles as local head pose in
image is. A global pose is evaluated by consistency of
classification results on multi-view head images.We use how
many weak classifiers the input image passes as classification
score, therefore the consistency about each global pose is
computed as Fig. 12.

� �
1) Prepare sufficient pose candidates expressed by yaw

and pitch.
2) For each pose candidate, do

a) Compute the corresponding pose class in each
view, and count how many weak classifiers of the
class are passed.

b) Decide the consistency score from the mean of
three maximum passage rates.

3) The most appropriate pose is estimated to be the
candidate which produces the highest consistency
score.

� �
Fig. 12. Head Pose Estimation based on Multi-View Classification

3) Evaluation of Candidates via Pose Consistency: Ap-
propriate head pose is estimated for each 3D position can-
didate. Likelihood of each candidate is defined based on
consistency score q as follows.

phead(q) = ρ1−q (21)

where ρ means head likelihood of random image, and is set
to 10−7. The higher phead(q) is, the more appropriate the
candidate is. We apply this evaluation function to temporal
filtering based on dynamic programming [16], then most
appropriate 3D head position is selected.

4) Evaluation of Head Position Estimation: We evaluate
head position estimation on three movie sequences, normal
walking, dynamic walking and sitting down. Our method
based on multi-view classification consistency is compared
with Potamianos’ method [16], which evaluate each candi-
date about Bhattacharyya distance of color histograms. Both
methods use our head detector. Table I shows the results of
evaluation. There are number of sequence frames, mean error
in all frames [mm], number of frames where position error is
over than 100mm and its percentage to all frames in the table.
Numbering 1 denotes our method and 2 denotes Potamianos’
method. 100mm is the threshold to judge whether estimated
position is inside of head in camera images. The table shows
that our approach improves the accuracy about mean error,
furthermore number of frames with over 100mm error is



only 2%. Therefore our method achieves enough accuracy
to reconstruct human shape robustly.

Normal Walking Dynamic Walking Sitting Down

Fig. 13. Examples of Head Position Estimation

TABLE I
ESTIMATION ERROR OF HEAD POSITION

Scene Normal Walk Dynamic Walk Sit Down
Num. of Frames 342 238 661
Mean Error 1 38mm 36mm 45mm
Mean Error 2 44mm 37mm 48mm
Over 100mm 1 6 (1.7%) 6 (2.5%) 14 (2.1%)
Over 100mm 2 12 (3.5%) 1 (0.4%) 23 (3.5%)

V. EXPERIMENTAL RESULTS OF HUMAN POSE
ESTIMATION

We made experiments to estimate human pose in living
environment by proposed shape reconstruction method. 8
cameras are equipped on the ceiling of the room and they
captures 640 × 480 image. In silhouette extraction process,
captured image is compressed to 160 × 120, and computa-
tional time is reduced to achieve almost 20 FPS processing
for each camera.

Fig. 14 shows three examples of our experiments. From
top down, it shows the example of holding a bag, turning on
a desk light and pulling up a chair. Shape reconstruction by
simple background subtraction (middle column) is affected
by environmental changes and reconstructs excess shape. On
the other hand, our method based on head position (right
column) achieves better shape reconstruction with removal of
effect of environmental changes. Fig. 14 shows the sequential
pose estimation results on a scene with background changes.
In this scene, a man brings a bag on a table and then moves
a chair. Pose estimation results are superimposed on the
input images. When simple background subtraction applied,
some excess shape caused by background changes affect pose
estimation results continuously. In contrast, proposed method
provides successful results because it suppresses the effect
of background changes and updates background information
soon. In addition, we tried other scenes such as bringing a
chair, taking off and putting on a jacket, reading a book and
folding a blanket. Although pose estimation fails in a few
scenes, it recovers soon through moving of human and it
does not collapse.

VI. CONCLUSION

In this work, we propose a novel human pose estimation
via head position information. Though it has been difficult
to segment human silhouette and neighboring background
changes, it can be solved by the iterative segmentation
approach based on graph-cuts with head position. We also

Scene of Carring a Bag

Scene of Turning On a Desklight

Scene of Pulling Up a Chair

Camera Images Background Subtraction Proposed Method

Fig. 14. Examples of Human Shape Reconstruction and Pose Estimation

contribue to develop robust 3D head position tracker by
boosting. High-precision multi-class head detector and 3D
position estimation based on multi-view consistency are
leveraged as the 3D head position tracker. The experimental
results show that use of head positions is appreciated to
reconstruct human shape in spite of background changes.
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