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Abstract— This paper presents the development of planar
caging manipulation. It involves a preliminary conclusion where
the targets are limited to convex objects and the finger number
is limited to three. Despite the popularity of form or force
closure analysis, we prefer caging as it owns merits like requir-
ing little dynamics, reducing kinematics and affording robust
breaking margins to tolerate control errors. The analysis part of
this paper theoretically discusses optimization procedures that
best exploits the merits from caging. The practice part presents
implementation details of our proposal in real work space by
employing KINECT, a low-cost depth image capture produced
by PrimeSense. Especially, some artifice and strategies are
discussed and compared in this part to fulfill application
requirements. Experimental results show the efficacy of our
analysis and its promising future.

I. INTRODUCTION

Traditionally, grasping and manipulation relate much to
force analysis, namely, form closure and force closure [1][2].
Despite its popularity, force analysis requires pre-processing
on the raw perception data to evaluate forces. Intrinsically,
the pre-processing procedures, e.g. curve or polygon fitting
[3], comprise an error source. Further, the problem grows
more complicated as materials of target surfaces, target
internal properties, or possible external force sets are taken
into account [4][5]. For instance, reference [5] shows some
results of grasping with respect to a given external force
set and different friction coefficients. It costs too much to
perform direct iteration that the paper employs a branch-
and-bound approach to reduce complexity. The force-based
closure theory is powerful, however they are vulnerable to
perception or control errors, guarantee no robustness and lack
potential in pragmatic applications.

The toughness of force analysis drive researchers to seek
passive alternatives. Caging, in this case, is introduced. The
aim of caging is to configure fingers properly so that target
objects are constrained and may not escape into infinity.
Unlike force-based closures, caging is sometimes named
“object closure” as it does not take forces into account.
The base of force analysis is “immobilization” while the
base of caging is “constraints”. In Configuration space (C
space), force-based closure indicates a configuration point
while caging indicates a compact configuration region.

Initially, reference [6] discusses the caging problem of
one-parameter gripping system and proves that equilibrium
grasps are potentially where caging breaks. References [7],
[8] respectively propose regions of finger positions that
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guarantee caging. These regions lead to “breaking margin-
s” of this paper. References [9][10] introduce caging to
coordinate multiple robots in transportation. The forceless
property of caging makes multiple robots easy to maneuver
transportation targets as long as friction does not cause into
jam. Reference [11] discussed our previous work in the
application of caging on active systems. Although much
attention has been paid to caging, it is far from well exploited
since previous works are mainly devoted to caging test,
or whether caging is formed and target is constrained. We
propose to optimize grasping and manipulation towards the
merits of caging robustness. In the best case when perception
is exact, our approach generates a single C space point.
When certain errors are encountered, our approach may
still maintain caging manipulation robustly as targets are
constrained in a compact region.

Fig. 1. Mechanical finger structure and its simulation model

We implement our approach by using both virtual simula-
tion scanners and real depth cameras with concisely designed
mechanism. Fig.1 demonstrates the mechanical structure of
our manipulator. The left figure in Fig.1 is the mechani-
cal hardware and the right figure shows its simulation in
WEBOTS. Our manipulator is composed of a palm with
several fingers hanging beneath it. On the tip of each finger,
a rotational nail is installed to constrain target objects in
the vertical direction. The finger tip is a key contribution to
caging since it is not only a smart mechanical design but also
a solution to the curse of dimensionality. Caging problems in
real world 3D space are successfully projected to horizontal
plane, say, 2D planar caging problems, owning to the finger
tips. In this paper we focus on generating finger positions
where robust caging can be obtained by configuring fingers
onto them. Actuation of the fingers are not considered. Con-
sequently, major challenges of this procedure are perception.
Thanks to the optimization towards caging robustness, a low-
cost PrimeSense KINECT can be enough for caging and
demonstrates good performance in experiments.

Organization of this paper is as following. The analysis
part is presented in Section II. Details such as background
concepts and approximate alternatives are also introduced in
this Section. Section III proposes practice of our analysis,



including some implementation artifice, experiments and
comparison. Conclusions are drawn in Section IV, accom-
panied by discussions on future works.

II. ANALYSIS OF OPTIMAL CAGING

A. CC space and breaking margins

The configuration of fingers can be explicitly expressed
as point positions1. Then we can intuitively employ
(x0,y0,x1,y1,x2,y2), where (xi,yi) denotes one finger posi-
tion, or employ (x0,y0,θ0,d0,θ1,d1), where (x0,y0) denotes
an initial finger position and θ ,d denote the relative positions
of the other two fingers, to present these configurations.
Consequently, all possible three-finger caging configurations
comprise a 6-dimensional manifold and the most robust
caging is the maximum corresponding to an optimizing
function of this manifold. However, despite its intuition, the
explicit 6-dimensional presentation costs much to perform
searching and it is hard to find proper heuristics for robust-
ness, which are essential to optimization.

Following the traces of popular works in caging
[7][12][10], we propose to solve optimization problems in
CC space. CC space is based on the concept of C space and
means the configuration space of a configuration finger. Fig.2
demonstrates this idea.

Fig. 2. C space, CC space and the caging configurations

C space is originally employed in motion planning and
it is introduced into caging for easier analysis. In order to
decide whether a finger position is obstructed by the target
object, we change target into a configuration point, or C
space target in Fig.2. Correspondingly, the point fingers, or W
space finger positions in Fig. 2 are changed into C fingers.
Then it is easier to check whether given point fingers are
obstructed by targets or not. Note that the C space which

1Some readers may argue the advantages from finger shapes. However,
fingers with shapes are easier compared with point fingers and we assume
point fingers are ready for further extension.

corresponds to planar fingers is R2×S space, meaning that C
fingers rotate with respect to orientation of the target object.

Given three fingers and a target object whose θ is fixed, the
correspondent C fingers can be obtained by employing the
conversion procedure introduced in last paragraph. Whether
the target object is caged can then be validated by checking
if its correspondent C space target is in a compact free region
embraced by C fingers. The bottom figure in the middle of
Fig. 2 illustrates this idea.

Formally, these concepts can be expressed as following.
Here, Cob j denotes the C space of a given target object, Aob j
represents a W space object, Ai represents a W space finger
(simplified into a position in this case), and q denotes a
configuration of Cob j.

Coi = {q|q ∈Cob j ∧ (Aob j(q)∩Ai , ∅)} (1)

C f ree = {q|q ∈Cob j ∧q < ∪N
i=1Coi} (2)

Here Coi is exactly the C finger of Fig.2 and C f ree
corresponds to the free space which is not obstructed by
Coi. Given a fixed orientation, Coi and C f ree are projected to a
slice along the S dimension. The snapshots at θ=10 and θ=10
of Fig.2 corresponds to projected slices. Whether a target
object is caged at a given slice, or whether a translational
caging can be validated by checking if its correspondent C
space configuration is in Cc, a subspace of C f ree where

C f ree = (Cc∪C f )∧ (Cc , /0)∧ (C f ∩Cc = /0) (3)

Nevertheless, the toughness of representing Cc blocks us
from deeper exploration. CC space, in this case, is employed.
Since Cc requires analyzing the relationship between fingers,
one finger is considered against another and the configuration
of a configuration finger is discussed. The basic idea is to
take one C finger and generate its “Coi” with respect to
another C finger, which is taken as an obstacle. Note that
fingers are assumed to be of the same geometrical property
in this procedure.

Expression (4) formally illustrates CC fingers. Here, qq
denotes a configuration of CCob j.

CCoi = {qq|qq ∈CCob j ∧ (Co j(qq)∩Coi , ∅)} (4)

By introducing CC space we can calculate Cc implicitly
by checking whether each Ai is independent of the other
fingers. The following lemma concludes this idea. This
lemma corresponds to the bottom figure in the right of Fig.2.
Details are shown in Fig.3. Note that i− 1 or i+ 1 should
be modulated with respect to three. Explicit modulation
operation is hidden for conciseness.

Lemma 1: In the case of 3 finger convex caging, if each
Ai, i = 1,2,3 is separated from the others by its adjacent
∂CCok, k = i−1, i+1 and target boundary ∂Aob j, the given
target object is caged with respect to translational motions.

The solid red, green and blue segments in Fig.3 correspond
to effective parts of ∂CCoi while the dashed boundary of
target object correspond to ∂Aob j. The finger positions in
the right of Fig. 3 form a caging configuration as each finger



Fig. 3. Demonstration of Lemma1

is separated from the others by intersections of boundaries.
Actually, it is both sufficient and necessary to translational
caging when none of the fingers are redundant. We can draw
this conclusion for the following reasons.

• Each Coi overlays its adjacent Co(i−1) and Co(i+1).
• Aob j is inside the chain formed by Coi, guaranteeing the

existence of Cc.

By the way, Lemma.1 can be extended and applied to
parallelograms where at least four fingers should be used for
caging. This paper focuses on three-finger caging of convex
objects, leaving four-finger problems to future works.

We define the areas that correspond to separated Ai the
breaking margins of a fixed orientation, namely Atc(q). Here
the subscript “tc” means translational caging. Please refer
to Fig.3 for details. Since objects may rotate arbitrarily, the
actual breaking margins that resist to both translational and
rotational motions should be smaller than Atc(q). Details of
actual breaking margins will be discussed in SectionII-B.
Breaking margins are helpful to generating the most robust
translational caging configurations. Given a finger position
Ai and its correspondent breaking margin Ai

tc, robustness
can be evaluated by estimating the distance from Ai

tc to
the outer boundary of Bi. Formally, we would like to find
the configuration A1, A2 and A3 where the worst value
of robustness evaluation reaches maximum. The following
expressions illustrate this idea.

argmax
A1,A2,A3

{min
i=1,2,3
∥Ai−∂ (CCo(i−1)∩CCo(i+1))∥} (5)

Expression (5) shows optimization procedure that best
resists to translational optimization. Complete optimization
is more complicated as it requires the consideration of
rotations. We will discuss complete optimization in the next
part.

B. Complete Caging Optimization

Complete caging optimization means to perform maxi-
mum searching towards the actual breaking margins. There-
fore, the major challenge of complete caging optimization
is to decide the breaking margin with respect to two given
adjacent fingers and arbitrary orientations. As an intuitive
conclusion, the most robust caging configurations should be
comprised of finger contacts on target boundary. According-
ly, we reduce the searching space into three-point combina-
tions of boundary clouds, drastically improving efficiency.

Given two contacts on the boundary, breaking margin
of the third finger could be accumulated by continuously

Fig. 4. The actual breaking margin of a triangle target with respect to two
given finger contacts

changing target orientation. Fig.4 demonstrates this idea by
using a triangle target for better visual rendering.

The two red contacts on triangle edge in Fig.4 denote
the two adjacent finger positions. Continuous changing of
target orientation is performed by counter-clockwise and
clockwise rotation. Upper and lower figures in the left of
Fig.4 correspond to this procedure. The shadow areas in each
of the left eight figures demonstrate the breaking margins of
its correspondent orientation.

Breaking margin at the initial orientation, Atc(qinit), is a
super set of actual breaking margin. Fig.5 illustrates this
idea. When the third finger, which is rendered as a green
point in Fig.5, is in a certain area of Atc(qinit), target object
may escape by hybrid translating and rotating motions. As
has been proved by references [7][8], Atc(q) only guarantees
that target object may not escape by translation. It is a larger
area than actual breaking margin which provides protection
not only against translational motions but also rotating ones.
By continuous accumulating breaking margins at different
orientations, the actual breaking margin can be obtained. The
right figure of Fig.4 demonstrates the procedure of margin
accumulation. Actual breaking margin of a third finger with
respect to the two given red finger contact positions is
rendered with shadow in the right of Fig.4.

Fig. 5. Atc(qinit) is a super set of actual breaking margin

Formally, the accumulation procedure is as following.

Apa(qstepi)← Apa(qstepi−1)∩ (Atc(qstepi)∪Aob j(qstepi)) (6)

Ada← (A+
da∩A−da)∪A

′

da

A+
da←∪

n
i=1(Aob j(qstepi)∩Apa(qstepi−1))

A−da←∪
−n
i=−1(Aob j(qstepi)∩Apa(qstepi+1))

A
′

da← (∩n
i=1Apa(qstepi))∩Apa(qstep0)∩ (∩−n

i=−1Apa(qstepi))

(7)

Here, qstep denotes the continuously changing orientations,
Apa indicates the potential caging area. It is initially the same
as Atc(qinit) = Atc(q0) while accumulates following the rule
of expression (6) as target rotates. A

′
da denotes a sufficient

caging area that permanently exists. The determinate caging



area, Ada, is finally obtained through expression (7). Details
of these expression and some experiments are written in a
separate paper. Interested readers may refer to it for more
information later.

Despite the completeness of this caging algorithm, it could
cost at worst O(n2) where n relates to boundary rasterization,
say, number of critical orientations or number of rasterized
boundary points. If we perform maximum searching, expres-
sion (5), directly based on this complete algorithm, total cost
might be as worse as O(n5). Therefore, it is necessary to seek
approximate alternatives.

C. Approximate Caging Optimization

Orientation accumulation brought in dramatic cost of com-
putational resource. We hope to exploit the power of breaking
margins at fixed orientations and approximate determinate
caging area by introducing certain constraints. We expect that
it is possible to obtain satisfying results without orientation
accumulation after introducing new constraints.

Reference [10] introduced bounded rotational angle from
ρ-θ coordinates for caging test. ρ-θ curve is a function
between the distance from rotation anchor to CCob j boundary
and CCob j orientations. The major idea of bounded rotational
angle is to ensure that the target object collides into fingers
before rotating beyond the boundaries. Fig.6 shows the ρ-
θ curve of a convex polygon. It is easy to find that largest
bounded rotational angles appear at global minimum of the
ρ-θ curve. Therefore, the finger positions that are most
robust to rotation should coincide in ρ with the positions
where global minimum appears and should be as far away
from the curve as possible. Note that this constraint only
considers resistance to rotation and guarantees no caging.
Analytically, a robust caging should (a) form cage and own
good translational margins (b) approximate global minimum
of ρ value (c) locate at positions far from going beyond the
ρ-θ curve. The three red points in the right of Fig.6 illustrate
these requirements. ρ values of them approximate global
minimum while their distance to the curve, for instance
radius of the magenta circle, are relatively large.

Fig. 6. ρ-θ curve of a convex polygon

As a conclusion, we need to (a) ensure caging is formed
and (b) seek balance between translational and rotational
constraints. Specifically, (b) involves two aspects as (b.1)
largest translational margins and (b.2) global minimum ap-
proximation and large clearance from ρ-θ curve. Item (a)
can be fulfilled according to Lemma.1. Whereas, item (b) is
ambiguous and may bear various strategies. In this paper, we
propose to seek the balance by selecting configurations with
the least maximum finger distance from results of expression

(5)2. Fig. 7 demonstrates this idea.

Fig. 7. Seeking the balance of translational and rotational constraints

The thick black region on edges of the triangle target
shows all possible A1, A2 and A3 combinations that own
the same max value of expression (5). It can be obtained
by intersecting CCoi, CCo j and CCok correspondingly. Since
the target object in Fig.7 is a simple triangle, its equivalent
max configuration regions can be generated by intersecting
attitudes. The dash line in Fig. 7 left shows the intersection
of attitudes where ha = hb = hc. Further analysis shows
that du

dl
is indeed the ratio of ∠b∠a . The max configuration

regions on edges of the triangle target are therefore the thick
black regions formed by altitude intersections. Although
max configuration regions of simple triangular objects own
interesting property and relate to altitudes, they become
complicated with general polygons and may not be drawn
manually.

Our proposed balance-seeking strategy, or the least max-
imum finger distance, seeks the three-finger combination
whose maximum inter-finger distance is smallest compared
with the other combinations of the maximum Atc boundary
regions. Formally, we have the following expression where
A1, A2 and A3 are results of expression (8).

argmax
A1,A2,A3

{min(∥A1−A2∥,∥A2−A3∥,∥A3−A1∥)} (8)

Additionally, some research proposes solution to cover
radius [13] as a preliminary result for sufficient caging.
Cover radius is widely used in practical cages. For instance,
distance between poles of a bird cage should always be
smaller than a certain distance, or cover radius, to constrain a
bird. The discussion goes complicated as our aim is actuation
of fingers which might suffer from perception or control
errors. Indeed, cover radius caging is non-optimal to errors.
The middle figure of Fig.6 demonstrates this idea. Radius
of the largest inscribed circle of CCob j shares the same
sense with cover radius. Cover radius caging requires (a)
target object is caged and (b) the distance between point
fingers should be smaller than cover radius, but there’s no
evaluation on caging breaking. Consequently, it is vulnerable
to errors and caging may break easily with wrong finger
positions. Actually, daily cages are powerful because they
employs lots of redundant poles. These poles can be viewed

2Although this approximation obtains efficiency, we do not claim its
completeness in caging. The making up procedure of least inter-finger
distance is ill with certain shapes. For example, the three-finger configuration
that corresponds to largest translational breaking margin of a semicircle may
never be caged. However, our proposal is practical as it guarantees resistance
to translation while ensures relative large rotational margin. Objects can
always be constrained in actual environment, indicating its robustness.



as necessary fingers with non-point shapes which are beyond
our discussion.

III. PRACTICE, EXPERIMENTS AND ANALYSIS

The practice part is based on approximate caging opti-
mization. It presents and discusses implementation details in
real applications, including comparison on employment of
normals and how to deal with numerical problems.

KINECT, a product of PrimeSense, is employed as the
perception device in our implementation. Only depth infor-
mation is utilized to detect boundaries of targets. Target
object boundaries in our implementation are obtained by
repetitive perception and caging. The following items list the
algorithm. By using this algorithm, we can extract boundaries
of overlaying targets and pick them up iteratively.
(1) Pick up the peak pixel pm from filtered depthmap.
(2) Expand pm with a region growing technology.
(3) Extract boundary of grown region as target’s boundary.
(4) Perform caging and move the target away from view.
(5) Capture a new depth map and go back to (1).

Unlike the other perception settings [14], we do not require
exact installation of KINECT. The only limitation is that
the perceived depth map should not deviate too much from
top view. The robustness of our proposal makes the system
possible to endure slight deviation and errors of perception.
In experiments, we capture depth map by manually holding
the KINECT camera. Despite its roughness, our algorithm
can output qualified caging positions. On simple targets, the
positions satisfy human expectation.

In reality, the perception devices shall be installed to a
fixed position of the manipulator and afford better data. Our
experiments with the manually hold perception device can
output satisfying results, indicating a better performance on
fixed manipulators.

Fig.8 shows some targets during our experiments and their
correspondent depth map. Some of the target objects overlay
each other while some are independent. Major targets of
the sub-figures in Fig.8 in left-right and top-down order
are mouse, bottle cap, plate, tape, tape box and paper box
respectively.

Fig. 8. Some targets and their correspondent depth map

Fig.9 shows the procedures employed in searching the
most robust caging positions. Since the positions have been
limited to contact boundary points, contact caging positions
should form immobilizing grasping [8]. Therefore, we may
alter Lemma. 1 into detecting whether surface normals at
contact positions balance each other. Note that although
the normal detecting alternative outperforms Lemma.1 in
efficiency, we maintain the original version as (a) normals
depend a lot on generating algorithms, (b) normal errors
always exist due to flaws of perception devices and (c)
simply using normals is not applicable to non-convex targets.
In our implementation, we generate normals by calculating
the expectation of two K-curve edges. The average value,
1
4 (n̂

1
K1

+ n̂1
K2

+ n̂2
K1

+ n̂2
K2
) is calculated as surface normal

of a given boundary point. Here, n̂i
K j

is the normal that
corresponds to the ith edge of the jth K-curve. This strategy
outperforms the others, such as PCA or general curve fitting,
in its flexibility to perception errors. Nevertheless, it is
not as effective at sharp corners. Actually, surface errors
and surface fineness intrinsically conflict each other, and
it is still an active research field of how to balance the
trade-off. In our environment, keeping fineness or sharp
corners is unnecessary as largest margins cannot appear with
contact positions around them, see “critical orientations” in
[7]. The criteria, expressions (5) and (8) not only brings
robustness into caging, but also relaxes the evaluation of
surface normals. The right two figures of Fig.9 respectively
demonstrate surface normals generated from expectation of
K-curve edges and the result of optimal searching based on
contact positions that owns balancing normals.

Fig. 9. Procedures and results in processing a mouse target

In the mouse example, there is little difference between
our Lemma. 1-based caging detection (2nd figure of Fig.9)
and the normal balancing alternative (4th figure of Fig.9),
indicating the robustness of the normal alternative. Note that
normals in these figures are drawn with red line segments
and the normal balancing alternative is applicable to three-
finger caging of convex objects only.

Table.I shows experimental results with the target objects
listed in Fig.8. Each target owns two rows where the upper
one denotes the results from surface normals and the lower
one denotes the results from Lemma.1. The item “boundary”
shows the number of boundary cloud points detected from
our depth sensor. Values under this item are raw numbers
without any processing. The “cost” column shows time
efficiency of our implementation. Lemma.1-based cage de-
tection acquires more resources than normal-based strategy.
However, we do not impose preference on a certain one
as normals may introduce new errors. The “closure” item
indicates all finger configurations that form caging. It proves
our claim that normal-based strategy is not as powerful



TABLE I
EXPERIMENTAL RESULTS WITH THE TARGETS LISTED IN FIG.8

Targets Boundary Cost Closure Exp.(5) Exp.(8)

Mouse 373 7.19s 920 125 74.25
87.72s 13244 125 74.25

Bottle cap 347 5.32s 652 106 68.00
66.25s 10660 121 68.59

Plate 599 7.53s 765 369 116.77
95.23s 11480 405 117.55

Tape 403 6.90s 744 125 77.99
84.21s 12341 146 77.70

Tape box 465 6.76s 631 325 87.97
75.79s 10660 370 90.52

Paper box 757 8.08s 702 4505 120.20
112.50s 11480 4825 113.02

since it outputs fewer closure configurations. Columns “Exp.
(5)” and “Exp. (8)” are the maximum values obtained in
optimizing expression (5) and expression(8). Although the
difference is minor, we may get more robustness by using
Lemma.1.

Visual positions of the most robust finger configurations
are shown in Fig. 10. Only the normal-based caging positions
are demonstrated in this figure. Despite its efficiency, our
implementation, say, averaging two K-curve edge normals,
is specially designed for the application and may fail on some
unexpected targets. Practitioners may make choice between
normal-based strategy and Lemma. (1) according to their
demands. Note that bottle cap is not shown in this figure
as its shape and environment settings are similar to plate.

Fig. 10. Visual results of plate, tape, tape box and paper box in left-right
order (Note that the last one suffers from numerical problems, see Fig.11
to fix the idea.)

As has been discussed in Section 2.3, the approximate
optimization is to seek the balance between translational
and rotational constraints. Specifically, expression (8) is
optimized based on the results of expression (5). In practice,
programs may suffer a lot of numerical problems and deviate
from our expectation. Fig.11 demonstrates such an example.
The paper box in Fig.11 is made according to Fig.7. The 2nd
figure of Fig.11 shows the three-finger configurations by op-
timizing expression (8) based on the result of expression (5).
The results, however, deviate from our analysis in Section
2.3 due to perception errors and numerical problems. One
useful artifice in implementation is to select the maximum
region of expression (5) but the exact maximum. The 3rd
and 4th figures of Fig. 11 show the optimizing results based
on maximum region where configurations that own breaking
margins larger than 9

10 and 4
5 of maximum value, respective-

ly, are included. This artifice depends on implementation. In
the worst case, the results may degenerate into searching
configurations that form equilateral triangles. Practitioner

should choose region thresholds carefully according to their
application environments.

Fig. 11. The approximate robust positions by choosing different maximum
region thresholds

By the way, besides selecting the optimum we may loosen
the requirements and obtain a sub-optimal configuration set
that plays as candidate goals in motion planning and reduce
the limitation of kinematics. Interested readers may refer to
reference [15] for more information.

IV. CONCLUSIONS AND FUTURE WORKS

In this paper, we first introduce robustness of caging
and propose approaches to calculate the best caging con-
figurations. Then, we implemented and evaluated it in real
work space with KINECT. Our robust caging can work
well even with a low-cost sensor, indicating the efficacy
of the proposal and its promising future. In the best case,
our approach generates a single C space point. With certain
errors, we may still maintain caging manipulation robustly
as targets are constrained in a compact region. Future works
involve dealing with concave target objects and extending to
four fingers. Finally, we would like to actuate the designed
mechanism to retrieve daily utilities forcelessly, doing little
harm to targets.
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