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Abstract

Recognizing collective human activities has gained
attention. Collective activities are such as queueing in
a line, talking together and waiting by an intersection.
It is often hard to differentiate between these activities
only by the appearance of the individual. Hence, recent
works exploit the contextual information of other peo-
ple nearby. However, these works do not take enough
care of the spacial and temporal consistency in a group
(e.g. considering the consistency in only adjacent area).
To solve the problem, this paper describes a method
to integrate individual recognition result via fully con-
nected CRF's, which assume the relationships among all
the people. Unlike previous methods that determine the
range of human relations by heuristics, our method de-
scribes the “multi-scale” relationships in position, size,
movement and time sequence as flexible potentials, so
as to handle various types, sizes and shapes of groups.
Experimental results show that our method outperforms
state-of-the art methods.

1. Introduction

Collective activity recognition is one of the most
challenging problems in computer vision, and actively
studied [1, 2, 3, 7, 8]. Collective activities are activi-
ties performed by multiple persons: crossing, waiting,
queueing, walking and talking. Since there are human
interactions in collective activities, it is often hard to dif-
ferentiate between these activities only by the appear-
ance of the individual (see Fig. 1 in [3]). Hence, recent
works exploit the contextual information of the others.

The ways of encoding the contextual information are
categorized into the following three approaches: feature
description approach, grid based approach, and graph
structure approach. Feature description approaches in-
clude the contextual information in the feature descrip-
tors [2, 7]. In these approaches, activity of each person
is independently recognized, therefore, the spacial and
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temporal consistency in a group is not always ensured.
To obtain the consistency, it is required to answer the
following question: “Who is in the same group?” In
reply to the question, grid based approach optimizes ac-
tivities around each deformable grid [1], while graph
structure approaches describe the relationship between
each person in the graph structures [3, 8]. However,
these works cannot describe the “multi-scale” relation-
ships in various features such as position, size, move-
ment and time sequence, although there exist various
types, sizes and shapes of groups as shown in Fig. 1.
The grid based approach [1] depends on the density and
position of grids, therefore, it is difficult to exploit the
long range relationships. One of the graph structure
approaches [8] assumes that there is only one activity
in a single image, therefore, cannot handle the scene
where multiple groups exist. Another graph structure
approach based on MRF [3] is intractable to include var-
ious features, and unable to handle a complicated graph
structure such as fully connected model.

By contrast, our proposed method handles the
“multi-scale” relationships in various features: position,



size, movement and time sequence. In particular, our
method uses fully connected CRFs and describes hu-
man relationships as variable potentials. This approach
is able to represent the various features over “multi-
scale” in a single unified model. The calculation cost
of fully connected model is intractable when estimat-
ing strictly, however, the cost is reduced to linear in the
number of detected persons by describing the pairwise
potentials with a Gaussian kernel [5].

In summary, the contributions of this paper are 1)
to exploit various features to describe human relation-
ships: position, size, movement and time sequence; 2)
to describe the range of human relations not as constant
values but as variable potentials; 3) to use fully con-
nected CRFs to obtain the consistency over the “multi-
scale” relationships. The experimental results show that
our “multi-scale” model outperforms not only the unary
only model but also state-of-the art models [2, 3, 7].

2. Consistent Collective Activity Recogni-
tion with Fully Connected CRFs

2.1. Model Overview

Our goal is to ensure the spacial and temporal con-
sistency of activities in a group. For this purpose, our
method uses conditional random fields (CRFs) [6]. CRF
is a probabilistic framework for labeling and segment-
ing structured data and able to deal with various fea-
tures in a single unified model. Specifically, in order
to handle the “multi-scale” relationships, our method
uses fully connected CRFs. Instead of specifying the
range of human relations heuristically, our approach de-
scribes human relationships in position, size, movement
and time sequence as flexible potentials, so as to deal
with various types, sizes and shapes of groups.

A brief overview of our model is illustrated in Fig. 2.
In the preprocessing, the persons in the images have
been found. Next, features (e.g. histogram of oriented
gradients (HOG) and optical flow) are extracted from
the detected bounding box. Unary potential and pair-
wise potential are calculated using these features, and
integrate them via fully connected CRFs. The technical
details follow in Sec. 2.2.
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Figure 2. Overall process of our model.

2.2. Model Formulation

Fully Connected CRFs Model: Given a video, our
method first detects persons by an efficient human de-
tector [4]. The observed data from the detected persons
are defined as * = {x1,...,xx}, where z; is the ob-
served data from the ¢-th person and [V is the number of
detected persons in the video. Let the corresponding ac-
tivity labels be given by y = {y1, ..., yn }. The domain
of each variable y; is a set of labels £ = {l1,...,Ix},
where K is the classes of labels. A conditional random
field (¢, y) is characterized by a Gibbs distribution:

P(y|z) = exp(—E(y)), (1)

1
Z(z)
where Z(x) is the partition function which normalizes
the distribution, and E(y) is the Gibbs energy:

B(y) =Y vuly) + D> p(viny;),
i i g>i

where 1, (y;) is the unary potential and 1, (y;, y;) is the
pairwise potential.
Unary Term: The unary potential is computed inde-
pendently for each person, and encodes a distribution
over the activity label y;. The unary potential used in
our implementation is described in Sec. 3.
Pairwise Term: The pairwise potential represents the
relationship between each person. In the fully con-
nected CRFs, the pairwise potential is computed for all
the sets of persons as shown in Fig. 3 (c). In our model,
the pairwise potential is defined as

Yoy, y5) = w(yi, yi )k (Fi, £5), (3)

where 1(y;, y;) is the label compatibility function given
by Potts model: p(y;,y;) = [yi # y;]. It introduces a
penalty for similar persons that are assigned different
labels. The vector f; and f; are feature vectors for ¢-
th and j-th persons, and k(f;, f;) is the Gaussian ker-
nel defined by the positions p; and p;, sizes s; and s,
movements m; and m, times ¢; and ¢;, and weight w:
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Note that we normalize positions and sizes by the me-
dian size of all the persons to describe the relationships
as relative value rather than absolute value. Movement
is calculated by subtracting the median optical flow
without the bounding boxes from the mean optical flow
within the bounding box. The former optical flow repre-
sents the camera movement, while the latter optical flow
represents the person movement in the image. Optical
flow is computed by the approach of Sun ef al. [9].
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Figure 3. Node relationships in each
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2.3. Inference and Learning

In inference, the maximum a posteriori (MAP) label-
ing of the random field is estimated:

y = arg max P(y|x). )
yeLN
Since it is intractable to compute the exact distribution
P(y|z) for all the sets of labels £, our model uses a
mean field approximation. The mean field approxima-
tion finds Q(y) = [[; Q:(y:) close to P(y) in terms of
minimizing the KL-divergence D(Q||P). A naive im-
plementation of this approximation has quadratic com-
plexity in the number of variables N. However, the pair-
wise potential in our model is defined by the Gaussian
kernel, therefore, it is possible to use a highly efficient
approximated inference algorithm via high-dimensional
filtering [5]. This reduces the calculation complexity
from quadratic to linear in the number of variables V.
In learning, the kernel parameters w, 61, 62, 63 and
64 are estimated. Due to non convexity of kernel width
01, 02, 03, 04 on log-loss criterion, it is hard to optimize
them globally, therefore, we use grid search from the
training set with cross-validation.

3. Experiments

We evaluate our model on the collective activity
dataset [2]. This dataset consists of 44 short videos of
crossing, waiting, queueing, walking and talking. The
videos were recorded under realistic conditions, includ-
ing camera shaking, background clutter and transient
mutual occlusions of persons. Some videos include
multiple groups or activity transition. All the persons
in every 10th frame are labeled with the ground truth:
pose, activity and bounding box information.
Implementation: To evaluate our graph structure
model for unary only model, we use action context (AC)
descriptor [7] as the baseline. AC descriptor is one of
state-of-the art methods based on contextual feature de-
scription. Actions are defined by combining poses and
activities [8]. In our implementation, the unary po-
tential in (2) is defined as ¢, (y;) = — log(prob(y;)),
where prob(y;) represents the probability that the ac-
tivity of i-th person is y;. prob(y;) is calculated by nor-
malizing the score of multi-class SVM classifier on AC
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Figure 4. Connected range in each graph
structure.

descriptor. To convert SVM score into probability, sig-
moid function is used.
Quantitative Results: We use the same leave-one-out
scheme described in [2, 3, 7] to compare fairly. When
one video is used as the testing set, the other videos are
used as the training set. The confusion matrix of our
method using fully connected CRFs and the baseline us-
ing only unary potential are shown in Fig. 5. In the con-
fusion matrix, rows represent ground truth and columns
represent prediction. Each row is normalized to sum
to 1. These confusion matrices show that our model
achieves a significant improvement over the unary only
model. Note that walking vs crossing is still ambigu-
ous in our model, because whether walking or crossing
often depends on not human relationships but environ-
mental settings: a sidewalk or a pedestrian crossing.
We also compare our method with recent works in
Table 1. The first row to the fifth row show the re-
sults using unary only models such as Fig. 4 (a), while
the sixth row to the ninth row show the results using
graph structure models such as Fig. 4 (b) (c). The first,
fourth, seventh and ninth rows show the results by our
implementation. The first row shows the result using
HOG without the contextual information. The fourth
row shows the result using AC descriptor with the con-
textual information. To evaluate fully connected CRFs
model, we compare adjacency connected CRFs (AC-
CRF) model in the seventh row, with fully connected
CRFs (FC-CRF) model in the ninth row. AC-CRF
model considers human relationships in the adjacency
frames as shown in Fig. 4 (b). Note that state-of-the
art method (RSTV + MRF) [3] needs the trajectory data
of each person to obtain the consistency via 3D MRF,
however, our method does not need the surplus data.
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Table 1. Comparison of activity classifica-
tion accuracies for different methods.

’ Method \ Average Accuracy ‘
HOG 50.0%
STV in [2] 64.3%
RSTV in [3] 67.2%
AC in ours 67.4%
ACin [7] 68.2%
STV + MC in [2] 65.9%
AC + AC-CRF 69.6%
RSTV + MRF in [3] 70.9%
AC + FC-CRF 72.2%

Qualitative Results: Example results are presented
in Fig. 6-7. Fig. 6 shows success and failure exam-
ples. The labels C (magenta), S (blue), Q (cyan), W
(red), T (green) and NA (white) indicate crossing, wait-
ing, queueing, walking, talking and not assigned. Top
two rows show examples of successful classification
and bottom row shows examples of false classification.
Fig. 7 shows example results in the scene where multi-
ple groups exist. Top two rows show examples of being
consistent in groups and bottom row shows examples of
being inconsistent in groups. These results demonstrate
that our method is robust for temporal false recognition
and able to handle the multiple existence of groups.
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Figure 6. Example results of collective ac-
tivity recognition.
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4. Conclusion and Discussion

This paper has described a method for consistent col-
lective activity recognition with fully connected CRFs,
which assume the relationships among all the people.
Our model leverages various features such as position,
size, movement, and time sequence in a single unified
model, and describes the “multi-scale” relationships in
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Figure 7. Example results in the scene
where multiple groups exist.
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these features as flexible potentials, so as to handle var-
ious types, sizes and shapes of groups. Experimental
results demonstrate that our model is robust for tem-
poral false recognition, and able to deal with multiple
existence of groups. Evaluation results on the collec-
tive activity dataset show that our method outperforms
state-of-the art methods, as well as the method using
unary only model.

At the present time, our method is based on batch
processing. In the future, we hope to extend our method
to online processing for online applications.
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