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The smooth provision of support to residents by in-
formation display systems or robots will essentially re-
quire that their behaviors be appropriately grasped
and that predictions be made that allow some margin
for preparations. In this paper, we offer new perspec-
tives by proposing a novel method to predict residents’
behaviors. The proposed method mainly consists of
the following two phases: (1) to grasp the chains of res-
idents’ potential actions from their trajectories, and
then, (2) to identify the rules of association between
residents’ behaviors, subject behavior to support and
their last actions. In order to verify the performance
of the proposed method in predicting residents’ behav-
iors, we have conducted experiments using two resi-
dents’ trajectories that have been tracked for around
one year.

Keywords: Behavior Modeling, Event Mining, Time-
Series Association Rule

1. Introduction

It is vitally important to have appropriate knowledge
or understanding of residents’ behaviors if one wants to
support them with information display systems or robots.
Since the provision of support takes considerable time
to prepare, it is essential to grasp residents’ ongoing be-
haviors to predict their intended behaviors. The predic-
tion of targeted behaviors will ensure smooth provision of
higher-quality support services.

In order to grasp residents’ behaviors at home using a
variety of sensors, it would be better to install such sen-
sors in the residential environments rather than imposing
wearable sensors, because the former requires no elec-
tric charges and poses little burden on users. There are
numerous research studies available on intelligent sensor
network systems for use in the house [1, 6–9]. Those sys-
tems consisting of a large number and variety of sensors,
though able to record residents’ behaviors in detail, are
so large in scale that it is not practicable to deploy such
a large-scale system in the existing residential environ-
ments.

In the above-mentioned context, we have constructed a
system to measure and estimate residents’ locations with
multiple laser range finders (LRFs) deployed in the resi-
dential environments [10]. Using the system, we have in-
dividually tracked trajectories of two residents’ behaviors
for around one year without placing any special restraints
or burden on their way of life.

Use of trajectories as a means to predict people’s be-
haviors [4, 13, 16] focuses more on short-term predictions
as to where they are going to be headed from their present
locations and in that sense it is more suited to mobile
robots or simplified displays of information. On the other
hand, robots to support people in their residence should
be more focused on providing aids or substitutes for res-
idents’ behaviors, such as preparations for going out or
cooking, and should require much longer-term predictions
because preparations to provide such aids or substitutes
take a longer time.

What will residents’ trajectories tell us? Our daily life
may be considered as chains of multiple activities in the
residential environments; for example, we wash our face,
take in a newspaper, and prepare breakfast in the period of
time between getting out of bed and taking breakfast. In
addition, each of these multi-layered activities may be de-
scribed as a chain of much more deeply layered activities;
for example, taking in a newspaper consists of the follow-
ing actions: move to the door entrance, pick up a newspa-
per, and return from the entrance. Such multi-layered and
chained activities are so heavily associated with the resi-
dents’ locations in the house that they often stay at their
respective locations to do such activities. For the sake
of better comprehension of the discussions described in
this paper, activities like eating and sleeping that glob-
ally define residents’ daily life are defined as “behaviors”
and small individual activities that compose each behav-
ior, as “actions.” Table 1 gives a combination of general
locations in the house and residents’ behaviors; of course,
more than one behavior may be performed at a particu-
lar location and any behavior may be performed at more
locations than one particular location; nevertheless, loca-
tions where residents usually stay in the house seem to
provide important clues to grasping their behaviors. On
the other hand, when residents do not stay in the house,
we may assume that they must be on the move or it must
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be immediately before or after they are about to move in
the house. In other words, if we divide residents’ trajecto-
ries into the moving and staying parts, we will be able to
grasp a flow of their behaviors by mining their trajectories
to discover their transitions between the moving and the
staying parts.

The following factors are supposed to trigger residents’
behaviors in the house: (1) time elapsed from the last per-
formance of the behavior; (2) current time; (3) last ac-
tions. Take eating for example, people will feel hungry
eight hours after the last meal; people who usually eat at
twelve o’clock will feel like eating around twelve o’clock;
people spend some time to prepare for each meal. Among
these three factors that work compositely rather than indi-
vidually, we consider the third factor (last actions), which
involves closely following resident’s behaviors that vary
from hour to hour, the most important for providing sup-
port, because there is too large a difference in duration of
time between the former two factors. On the other hand,
predictions of residents’ behaviors derived from their last
actions should take into full account the diversities of ac-
tions, time lags between the predictions and the actual oc-
currence of behaviors subject to support, and the seasonal
variations.

Table 1. Pair Examples of Locations and Behaviors

Location in a House Corresponding Behaviors

Dining Table Eating, Reading Books
Kitchen Cooking

Bed Sleeping
Bathroom Taking a Bath
Washstand Washing Hands or Face
Entrance Going out, Coming Home

In this paper, on the basis of the above-mentioned per-
spectives, we propose a new method to predict residents’
behaviors from their trajectories. The proposed method
mainly consists of the following two phases: (1) to grasp
the chains of residents’ potential actions from data on
their trajectories; (2) and then to predict residents’ behav-
iors by identifying rules of association between residents’
behaviors subject to support and their last actions.

2. Capture of Trajectories

2.1. System to Measure Trajectories
To obtain an environment where we could capture res-

idents’ trajectories, we use an experimental house, about
9.5 [m] in length and about 4.9 [m] in width as indicated
in the center of Fig. 1, equipped with a system to mea-
sure residents’ trajectories [10]. Residents’ locations are
measured with LRF modules shown at top left in Fig. 1.
The LRF modules, made of a combination of URG-LX04
manufactured by Hokuyo Denki and Armadillo220 man-
ufactured by Artmark Techno, have the following speci-
fications: maximum measuring distance: 5.6 [m]; angles
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Fig. 1. Layout of LRF modules and experimental house

in measuring range: 240 [deg]; angular resolution capac-
ity: about 0.36 [deg]; measuring cycle: 10 [Hz]. These
modules are installed at the height of a resident’s waist in
the positions indicated in Fig. 1 after being manually cal-
ibrated on the sensor outputs. The modules are connected
to a wired LAN to process captured sensor data and inte-
grate processed results.

2.2. Computation of Trajectories
At the preprocessing stage, areas such as desktops

where people are not supposed to exist are given as grid
maps at the time of the system’s initial installation (Fig. 2-
A). After that, data captured from LRFs are first subjected
to background subtraction processing for each distance to
convert them into a coordinate system of the room, so that
captured data should have points removed from unpopu-
lated grid maps. Detection and tracking of a resident are
made at the following stages: (1) the preprocessing stage
to capture from LRF-captured data the points where peo-
ple may be present; (2) the stage to detect human pres-
ence from the captured points; and (3) the stage to track it
through particle filters [3]. At the detection stage, points
captured at the preprocessing stage are segmented into
neighboring points to be applied to circular shapes by the
least squares method before we commence human track-
ing. At the human tracking stage, residents’ locations on
two-dimensional coordinates, xxxt = (x,y), provide the set-
tings of particle filters. As for diffused particles, points
on unpopulated grid maps as well as points present on the
LRF side in LRF outputs are removed to evaluate remain-
ing particles using the following equation, with di de-
noting distances between particles and observation points
yyyt,1, . . . ,yyyt,m; m denoting the number of observation points
determined as present in the foreground; σ representing a
dispersion term that is empirically set to 0.25 [m]; R de-
noting that the distance from the center of the body to the
contour of the body is assumed constant or 0.15 [m] at the
height of the waist, where measurements are taken in the
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A B C

Fig. 2. Grid Map for Calculating Trajectories and Trajectory

Examples (A: Grid Map B, C: Trajectory Examples)

Fig. 3. Stay points around Aug. 2009

experimental environment to capture data.

p(yyyt,1, ...,yyyt,m|xxxt) =
m

∏
i=1

exp(
−(di−R)2

σ2
)

In the event of a failure in tracking several frames in suc-
cession, the system determines that residents have disap-
peared and returns to the stage to detect residents. A total
of 709 frames in the experiments conducted by Noguchi
et al. [10] have produced a mean error in captured trajec-
tories of 0.18 [m].

Fig. 2-B and 2-C show examples of actual data on tra-
jectories (great circles in the figures indicate start and end
points of the trajectories); Fig. 2-B shows data on the resi-
dents’ trajectories from the entrance to Table B when they
return home; and Fig. 2-C, data on the residents’ trajecto-
ries from moving away from Table B till going to bed.

3. Grasping Chains of Actions from Stay Points
in Trajectories

3.1. Capture of Typical Staying Locations
In this study, in order to classify staying actions by lo-

cations, we capture typical staying locations by clustering
stay points that exist in the trajectories.
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Fig. 4. Clustering result of stay points

Fig. 3 illustrates stay points as captured from the trajec-
tories dated August 2009, on condition that the resident
should move within a range of 0.2 [m] in the space of one
second; the plan on the left shows such stay points plotted
on a two-dimensional image and the graph on the right,
their two-dimensional histogram. The locations circled in
the Figure indicate particular locations where many stay
points are concentrated; stay points are disproportionately
concentrated at particular limited locations, which makes
it difficult to extract from the plan on the left the locations
that would define residents’ daily life, for example, the
entrance, in front of the washing machine, and so on. We
have therefore clustered the stay points as follows:

1 Divide the house into meshes to count stay points in
each mesh.

2 Digitize the counts into 0 or 1 by a certain threshold.

3 Develop a new set of data on the digitized counts on
the assumption that they are positioned in the cen-
ter of respective meshes and cluster them by the k-
means method.

Fig. 4 shows the results of clustering the above-
mentioned stay points by the k-means method (numbered
points indicate cluster centers); it also shows that cluster
centers are allocated not only to the location in front of
Table A where the resident stays for a considerable length
of time but also to other locations where the histogram
in Fig. 3 does not recognize the presence of the resident.
The relationships between the positions of captured clus-
ter centers and the main items of furniture arranged in the
house are given in the list on the right side of Fig. 4, which
shows that locations of typical stay points in daily life are
affected by the items of furniture and the room arrange-
ment in the house.
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Fig. 5. A: Input data B: The first nine extracted patterns

3.2. Grasping Chains of Actions
We extract stay points from the input trajectories to

seek the nearest neighbor algorithm whose cluster centers
the extracted stay points stay at. Any of the extracted stay
points staying at a certain cluster center are defined as a
staying action at the said cluster center. The time segment
between two staying actions is defined as a moving action.
Start and end points of the trajectories should be treated
in the same way as stay points, because there is the poten-
tiality that residents may be present even when no trajec-
tories are available. For example, when they are outside
the measuring range of LRFs or when they bend down
or sleep at locations lower than the measurable height of
LRFs, trajectories are cut off and they reemerge in other
cases.

Fig. 5 illustrates how the trajectories (Figure A) mea-
sured over the period from 15h 17m 57s to 15h 25m 12s
on August 4, 2009, can be divided into staying and mov-
ing actions by the above-mentioned method (Figures B-1
to B-9); they show a part of staying actions at typical stay-
ing locations and moving actions between those staying
locations.

4. Algorithm to Predict Behaviors

4.1. Capture of Events Representing Changeovers
in Actions

On the basis of the chains of actions captured in Section
3, we capture time-series data on the events that represent
changeovers in actions as follows:

• Changeover from a staying action to a moving action
is captured as an event that gets out of ID for the
cluster center where the staying action belongs to.

STAY(1) STAY(2)MOVE MOVE

Time1, OUT 2, IN 2, OUT

Segmented Trajectories

Event Sequence

Fig. 6. Transition Event Extraction from Segmented Trajectories

• Changeover from a moving action to a staying action
is captured as an event that gets into ID for the cluster
center where the staying action belongs to.

Fig. 6 illustrates the outline of how to capture the events
representing changeovers in actions. Events that are use-
ful for predictions are derived from the above-mentioned
captured events.

4.2. Extraction of Pre-Features to Predict Behav-
iors by Time-Series Association Rules

For the convenience of the subsequent discussions, we
define the terms used to describe event mining as follows;
as for episodes, we use serial episodes from among the
various definitions available [5].

Definition 1: Window: A certain segment on the tempo-
ral axis is defined as window W (tstart , tend).

Definition 2: Episode: A partial series of events in a
window is defined as episode E = [e1,e2, . . . ,en]. On
the other hand, the fact that window W is made up of
episode E = [e1,e2, . . . ,en] means that events Ewindow =
[ew1,ew2, . . . ,ewm] contain integer arrays {φ(1)...φ(n)}
where 1 ≤ φ(1) < ... < φ(i) < ... < φ(n) ≤ m and that
ewφ(i) = ei is satisfied for any i = 1,2, . . . ,n

Definition 3: Minimal Occurrence: When episode E
is satisfied in a certain segment on the temporal axis
mo = [ts, te] and episode E is not satisfied in other par-
tial segments on mo, then such mo is defined as a minimal
occurrence of E.

In this study, we apply time-series association rules
[2] established by Harms et al. to predict behaviors and
pre-behavior features with some time lags between them
as well as different lengths of duration in their occur-
rence. Specifically, as illustrated in Fig. 7, if an antecedent
episode is satisfied in a certain window, then follows a
time lag and another predicted event is satisfied in another
window (called prediction time range). Its confidence is
represented by the probability that the rule can be estab-
lished when an antecedent episode is satisfied, and is as
follows:

Con f idence(Rule(A,e)) =
f req(Rule(A,e))

f req(A)
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Antecedent Episode (A)

Window Time Lag Prediction Time Range

Event to be
Predicted (e)

(Another Window)

Time

Fig. 7. Time-series association rule

where, f req(X) denotes the occurrence frequencies of X
in time-series data. In this study, we use minimum occur-
rence frequencies to calculate occurrences. On the basis
of the above-mentioned time-series association rules, we
conduct learning for the time-series association rules by
defining the start of a behavior in the supervised learning
period as an event to be predicted.

4.3. Speeding-Up of Identifying Rules
In the special circumstance where there are very few

events to predict from among generally huge amounts
of data on time-series events, identifying the association
rules needs to be done more efficiently than simplistically
learning rules, because the latter makes the calculations
too protracted for the direct use of generally accepted
methods such as depth-first search [12, 15] and breadth-
first search [14]. We therefore attempt to speed up learn-
ing by using the features of predicted events, namely, that
they represent episodes of single events and that they are
few and known in the period of supervised learning.

The conditions of the time-series association rules for
the establishment of predicted events may be considered
satisfied if there is an antecedent episode within a time
window in such a way that the last event occurs in the
time segment between 0 and time earlier by the predic-
tion time range when viewed at the time of the predicted
event minus time lag. In this way, the last event in the an-
tecedent episode can easily be captured. In addition, a rel-
atively small number of predicted events in the whole data
of events allow us to significantly reduce the scanning of
unnecessary event data if we first calculate the number of
established rules and then calculate the total number of es-
tablished episodes among captured candidate antecedent
episodes.

In this study, we conduct learning as in Alg. 1 using
tree structure data with nodes of events that compose an-
tecedent episodes (Fig. 8). With each node containing
data on the number of established rules and the total num-
ber of established episodes, the 4th to 7th lines in Alg. 1
are used to expand from the last candidate events in an-
tecedent episodes, as captured from predicted events in
the negative direction on the temporal axis, as well as to
calculate the number of established rules (right-side nu-
merator in Eq. (1)); the 9th to 12th lines are used to calcu-
late the total number of established episodes in each node
of expanded antecedent episodes (right-side denominator
in Eq. (1)). Actually, we have installed DFS-MO algo-
rithm [11], a depth-first search method that recursively
contracts the database by buffering the minimal occur-
rence of parent nodes as well as efficiently calculates all

A

C

B B

D

C

Episode: [C, D, A] 

Frequency of Rule: 12 

Frequency of Episode: 30 

Confidence: 12/30 = 0.4 

Fig. 8. Episode tree

Alg. 1 Main Algorithm
Input: Sall ← all events

Input: Slast ← candidate last events of antecedent episodes

1 begin
2 initialize E pisodeTree
3 MOList ← MOs of each 1 event episodes in Slast
4 while MOList �= null do
5 MO← remove head item of MOList
6 expand Tree(E pisodeTree,MO)
7 end while
8 MOList ← MOs of each 1 event episodes in Sall
9 while MOList �= null do
10 MO← remove head item of MOList
11 expand MO(E pisodeTree,MO)
12 end while
13 get all rules from E pisodeTree
14 end

child nodes by one scanning.

4.4. Predictions from Learning Results
Predictions are made with the time-series association

rules captured in Section 4.2 as follows:

1 Capture events in the window from current time.

2 Capture established antecedent episodes.

3 In case of any antecedent episodes that exceed the
threshold of confidence in the rule, predictions are
made in accordance with the rule.

For example, with the threshold of confidence in the rules
set at 0.5, predictions will be made if events in the win-
dow are [A, B, C, D] for the antecedent episodes of [A,
C, D] within a learned rule after a rule is learned whose
confidence is 0.6.

5. Experiments

5.1. Predictive Experiments and Their Results
We have carried out experiments with two subjects who

live in the same house for different lengths of time (here-
inafter referred to as Subject A and Subject B) to predict
the start of the following behaviors subject to support by
robots: going out; eating; sleeping; taking a bath. As for
Subject A, only the start of his going out and his sleeping
is predicted because there is a lack of reference material
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due to the time he is living in the house, whereas for Sub-
ject B, the start of all four behaviors is predicted. We have
used Subject A’s trajectories for 12 months and Subject
B’s trajectories for 9 months (3 months for eating when
its reference is available). We have used the following pa-
rameters: not more than 20 cm per second as a staying
condition; 17 classes for the clustering (Section 3.1); pa-
rameters for the time-series association rule (Section 4.2):
60 seconds in the time window; 30 seconds in the time
lag; 120 seconds in the prediction time range. Those pa-
rameters are used to allow for predictions of behaviors in
30 to 150 seconds. We have applied the learning results
of the past thirty eating behaviors and fifty behaviors for
others.

We now define accuracy, precision, and specificity as
criteria on which to evaluate predictions. In Table 2,
proper duration for making a prediction refers to the pe-
riod of 30 to 150 seconds for each behavior within the
parameters of the experiments. Accuracy, precision, and
specificity are calculated from the following equations
with values given in the table.

Accuracy =
T P

T P+T N

Precision =
T P

T P+FP

Speci f icity =
FN

FP+FN

Prediction performance should be evaluated by units of
behaviors; while accuracy is evaluated by units of behav-
iors, precision and specificity are calculated in frames (1
fps) for all behaviors because FP and FN in the table can-
not be expressed by units of behaviors.

Table 2. Values Used for Evaluating Prediction

Proper duration for

making a prediction
True False

Predictive
Output

Positive TP FP
Negative TN FN

Table 3. Accuracy and Precision at Specificity 0.99

Going out (A) Going out (B) Eating (B)

Acc. 0.93 0.84 0.63
Pre. 0.12 0.06 0.06

Sleeping (A) Sleeping (B) Taking a bath (B)

Acc. 0.42 0.81 0.97
Pre. 0.03 0.05 0.06

Table 3 highlights the accuracies and precisions in pre-
dictions of behaviors at a specificity of 0.99. A specificity
of 0.99 indicates that predictions are output once in a hun-
dred at a time when normally predictions should not be
made. While accuracy is generally high except for Sub-
ject A’s sleeping, precision is generally low. Fig. 9 shows
an example of successful predictions for Subject A’s go-

Trajectory just

Part of Segmented Trejectories

STAY(13) STAY(7) STAY(15)MOVE MOVE

Time[13,OUT] [7,IN] [7,OUT] [15,IN]

The system outputs prediction

before Going out

13

7 15

Detected Rule: 

Confidence of the Rule: 0.6

45 seconds before subject A goes out.

     (13, OUT), (15, IN) -> Going out

Fig. 9. Example of succeeded prediction

ing out on the morning of October 19, 2009; the num-
bers indicated in the Figure are the ones allocated at the
actual clustering; events are captured in time-series and
predictions are made 45 seconds before Subject A goes
out. In another successful example of predictions, the sys-
tem predicts and identifies the rule of Subject B’s taking
a bath with a confidence of 0.43, 78 seconds before Sub-
ject B takes a bath: (moves away from the vicinity of the
kitchen rack→moves away from the vicinity of the wash-
ing machine → stays in front of the wash basin) → takes
a bath. Predictions of behaviors in almost all cases are
made based on plural events or more than two events in
particular, because behaviors at certain locations are not
always uniquely determined as described in the Section 1.
For example, for Subject A’s sleeping behavior, the sys-
tem has failed to detect a highly confident rule, because
Subject A stays at Table B immediately before going to
bed, which the system can detect as a single event of mov-
ing away from Table B. This proves the low accuracy rates
for Subject A’s sleeping behavior. On the other hand, the
proposed method can predict with high rates of accuracy
such behaviors as those that involve preparatory moving
actions immediately before the intended behaviors.

Table 4 and 5 give the maximum and mean time
for learning supervised behaviors and the maximum and
mean time for making predictions from events in the win-
dows for each frame, as measured in the experiments to
predict behaviors. The CPU used for calculations in the
experiments is Intel Core i7-620M (2.66 GHz, 2-core, 4
threads), out of which 4 threads are used for learning and
1 thread for making of predictions. In respect of learn-
ing time, all behaviors are learned within 15 seconds; for
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Table 4. Max and mean time for finding rules [s]

Going out (A) Going out (B) Eating (B)

Max 4.8 10.3 10.0

Mean 1.1 3.4 4.4

Sleeping (A) Sleeping (B) Sleeping (B)

Max 0.7 10.3 6.3

Mean 0.4 3.9 3.9

Table 5. Max and mean time for processing each frame [ms]

Going out (A) Going out (B) Eating (B)

Max 45.0 41.0 33.0

Mean 3.0 3.0 0.9

Sleeping (A) Sleeping (B) Taking a bath (B)

Max 20.0 40.0 30.0

Mean 2.0 2.7 2.5

Table 6. Existence Rate of Predictive Output at Specificity 0.99

Going out (A) Going out (B) Eating (B)

30-600 [s] 0.26 0.18 0.16

30-150 [s] 0.12 0.06 0.06

Sleeping (A) Sleeping (B) Taking a bath (B)

30-600 [s] 0.05 0.08 0.09

30-150 [s] 0.03 0.05 0.06

example, the calculation time for going out and sleeping
behaviors seems quite reasonable, given that such behav-
iors are usually calculated when the proposed system has
adequate allowance. In respect of the time for processing
frames, the maximum time for any behaviors is 50 ms or
less per frame, which indicates in turn that the proposed
system with prediction outputs at around 1 fps would still
allow for some calculation time even after making plu-
ral predictions at less frequencies. In other words, an on-
line system would be quite possible in terms of calculation
time.

5.2. Consideration of Precision
Table 6 shows a comparison between existing rates of

predictive outputs (precision) at 30 to 600 seconds and
at 30 to 150 seconds before behaviors. The table clearly
shows how learning results obtained in such a short period
of time as two minutes per behavior are distributed in the
range of 10 minutes. Table 7 compares the precision of
predictive outputs between the proposed system and the
random noise (system capable of absolutely random pre-
dictive outputs). The table clearly shows that the proposed
system outputs predictions with sufficiently large amounts
of information. This proves it is significantly useful in
terms of precision in predicting human behaviors in daily
life from their trajectories.

Table 7. Precision Ratio of This System to Random Noise

Going out (A) Going out (B) Eating (B)

x : 1 53 46 64

Sleeping (A) Sleeping (B) Taking a bath (B)

x : 1 14 39 49

5.3. Variations in Performance of Learning Rules
with Seasonal Variations in Behaviors

As described in the Section 1, actions immediately be-
fore each behavior vary with seasons, probably affecting
prediction results in some way.

Fig. 10 illustrates typical staying locations (17 classes)
of Subject A as captured each month of the year. While
typical staying locations in individual months vary from
the neighborhood of the entrance to the bedroom, depend-
ing on the lengths of time and frequencies of the behav-
iors in particular months, there are no large variations in
staying locations throughout the year. This seems to indi-
cate that chains of behaviors do not vary that much with
seasonal variations.

Table 8 illustrates the experimental results of predict-
ing behaviors on the learning results of the first 50 be-
haviors (experimental parameters in Section 5.1 are ap-
plied). Please note that we have omitted experiments for
the eating behavior that is less frequently attempted. We
see generally little difference in values between Table 3
and 8. This seems to indicate that among actions immedi-
ately before behaviors, key actions are not much affected
by seasonal variations.

Table 8. Prediction Performance with Rules from First 50

Behaviors

Going out (A) Going out (B)

Acc. 0.88 0.90
Pre. 0.11 0.06

Sleeping (A) Sleeping (B) Taking a bath (B)

Acc. 0.51 0.83 0.97
Pre. 0.03 0.05 0.05

6. Conclusion

In this study, we have proposed a new method to pre-
dict residents’ behaviors from actions that probably in-
volve potential stays in trajectories on the basis of accu-
mulated data on their trajectories in the house. The pro-
posed method is largely divided into two phases: (1) to
grasp the chains of residents’ potential actions from their
trajectories, and then, (2) to identify the rules of associa-
tion between residents’ behaviors, subject to support and
their last actions.

In the experiments to verify the performance of the pro-
posed method, we have applied two subjects’ trajectories
that have been recorded in the period of around one year,
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Fig. 10. Differences of Typical Locations of Staying

to find that the proposed method can predict a majority
of behaviors including going out with accuracies of 0.8
or more. Despite the generally low precision in predic-
tion outputs of individual behaviors, the proposed method
is found around forty times better in precision than ran-
dom prediction outputs on almost all behaviors, proving
the practicability of the proposed method from a precision
point of view.

The proposed method seems most suited for predic-
tions of behaviors that involve some preparatory trajec-
tories. On the other hand, the proposed method seems
unable to predict with high accuracy behaviors that do not
involve any preparations or that take place several hours
after preparations. Since seasonal variations are found
to have no significant impacts on the precision of pre-
dictions, we may determine that there are no significant
variations in the core part of people’s preparations imme-
diately prior to behaviors.

The proposed method could be further improved in
terms of the precision of predictions by addressing the
following three specific issues in the future: (1) Instead of
the empirical estimation of system parameters as done in
this study, there could be a more appropriate and efficient
estimation of system parameters to construct a prediction
system so that the proposed method can be better utilized.
(2) Windows and durations of time could be used as in-
formation for predictions; since windows and durations
of time themselves are information sources as described
in the Section 1 and since actions immediately prior to
the behaviors that we have chosen to predict in this study
may also vary with windows and time, the introduction of
such information to the prediction method could lead to
improvements in the precision of predictions. (3) There
should be sequential updating of rules: not only the infor-
mation obtained in the learning period but also the evalua-
tions of the prediction results should be incorporated into
the updating of rules as well as into the thresholds of con-
fidence of prediction outputs, which could result in less
failures in predictions.
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