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Abstract. In this paper, we propose an activity localization method
with contextual information of person relationships. Activity localiza-
tion is a task to determine “who participates to an activity group”, such
as detecting “walking in a group” or “talking in a group”. Usage of
contextual information has been providing promising results in the pre-
vious activity recognition methods, however, the contextual information
has been limited to the local information extracted from one person
or only two people relationship. We propose a new context descriptor
named “contextual spatial pyramid model (CSPM)”, which represents
the global relationships extracted from the whole of activities in single
images. CSPM encodes useful relationships for activity localization, such
as “facing each other”. The experimental result shows CSPM improve
activity localization performance, therefore CSPM provides strong con-
textual cues for activity recognition in complex scenes.

1 Introduction

Recognizing human activities from images has been a challenging task. Since
the most of traditional vision-based human activity recognition works have been
focused on single-person activities (e.g. [1, 2]) , several recent works [3–7] are
tackling for activities with multiple-people interactions (called “collective activ-
ity”). The collective activities are such as “crossing the road”, “queuing” and so
on. The most of the former works have focused on image/video sequence clas-
sification task [4, 7], which determines the particular image or video sequence
contains the activity or not, and several works focus on activity classification
task on each person [3–6]. However, the former works do not handle “who par-
ticipates in the same activity group”, such as “talking in two groups” (Figure
1(a)). The task of “detecting and localizing collective activities” is able to be
formulated as a form similar to the object localization tasks [8,9]. In this paper,
we focus on the collective activity localization.

Collective activity recognition (including collective activity classification and
localization) is difficult because sometimes people in different activity have sim-
ilar appearance (Figure 1(b)). Therefore, the most of former approaches use
contextual information. The former works can be categorized into following two
approaches: by unary relationships [3,4,6,7] and by pairwise relationships [4,5,10]
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Fig. 1. Collective activity localization. (a) Examples of activity groups. Though indi-
vidual activity are the same, people belong to different groups (left: two walking groups,
right: two talking groups). Activity localization is a task to determine these activity
groups. (b) Difficulty of collective activity recognition. Though “queuing” activity and
“talking” activity are different activity, people in these activities look similar if you see
individual people.

Fig. 2. Relationships in collective activities. (a) Local relationships and (b) global
relationship in the collective activity. Though the former works mainly use local rela-
tionships, the proposed method focuses global relationship extracted from the whole
of single activities. (c) An example of global relationship in collective activities. Since
“crossing” activity is locally seen as “walking” activity, distinguishing crossing from
walking only by local relationship is hard because of this ambiguity. On the other hand,
global relationship provides several important cues which is difficult to acquire by local
relationships (e.g. in “crossing” activity, people in “walking” to opposite direction exist
on the both side of the activity group).

(Figure 2(a)). Unary relationships are information extracted from the near re-
gion of a person or image point, such as how people near a focused person
look like. Pairwise relationships are information of two focused people, such as
in “queuing” activity, people are facing in same direction. However, these ap-
proaches use only local information, i.e. one-person or two-people relationships,
so global information from whole participants of the activity has been ignored
(Figure 2(b)). The global information extracted from whole activity participants
would be useful for activity localization, for example, “talking” activity needs
“facing each other”. At the same time, the global relationships are useful for
recognizing activities: though a “crossing” activity is locally seen as “walking”
activity, “crossing” and “walking” can be distinguished by using person layout
of the whole of an activity (Figure 2(c)). This paper introduces a new context
descriptor named “contextual spatial pyramid model (CSPM)”, which extracts
global relationships from whole participants in single activity. Thanks to its
representation similar to spatial pyramids [11], CSPM is able to encode global
people layout in an activity (e.g. “facing each other”), therefore CSPM provides
a strong cue for activity localization. We show how CSPM improves activity
localization performance with the experimental results.
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Fig. 3. Activity localization model. An activity window is defined by participants of
the activity. The proposed method enumerates possible activity windows composed by
subsets of detected people, and assigns score to the activity windows.

1.1 Related work

Contextual information is widely used in object detection [12], human-object
interaction recognition [13–15] and collective activity recognition [3, 4, 6, 7, 10].
Though the contextual information is useful for recognition, the most of previous
works have focused only on local relationships. The methods with whole activity
appearance [14, 16] are close to our approach. However, though the methods
use only whole appearance information as global relationship, our method is
explicitly able to include much richer contextual information, such as “facing
each other”.

Though pairwise relationship is widely used as an contextual information
(e.g. [4, 10, 12, 13, 15]), a recent work [4] reports that not all possible pairwise
relationships are useful for activity recognition. Therefore, several recent works
estimate the hidden structure of person relationships to improve activity classi-
fication accuracy [4, 5]. These hidden structure can be interpreted as “who are
related in the scene”, i.e. “who participates in the same activity” or “who are
related in the target activity”. Our method estimates the structure by detecting
activity groups and by extracting sufficient relationships from the whole of an
activity group, therefore the proposed method can be regarded as an extension
of these structure-inference based methods.

Here we summarize the main contributions of this paper. (1) Collective activ-
ity localization: the most of works in collective activity recognition have focused
on image-level or single-person activity classification. Since several works [6, 7]
mention activity localization in collective activity recognition tasks, they do not
give localization performance evaluations. We present an activity localization
model from multiple person detections, also we give performance evaluation of
activity localization methods. (2) A new context descriptor extracted from the
whole of an activity: we present a new context descriptor named contextual spa-
tial pyramid model (CSPM). CSPM provides rich contextual cue for activity
localization (e.g. person layout in the whole of an activity).

2 Modeling activity localization

In this section, we introduce our activity localization model. Inspired by slid-
ing window classifiers, the proposed method enumerates possible person groups
(activity windows), and assigns scores to them (Figure 3).
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The method first detects people in the image (Felzenszwalb’s object detectors
[9] are employed in our experiment). Assume Np people are detected in the image.
We write the kth detected person as hk ∈ H, where H represents set of detected
people. The location lhk

of hk is given by a rectangle on the image, i.e. its left,
top, right, bottom (xl,hk

, yt,hk
, xr,hk

, yb,hk
).

The ith activity window ai is defined by selecting activity participants from
H. The activity participants pi of the activity window ai can be written as
pi

T = (pi1, pi2, ..., piNp). pik ∈ {1, 0} is the indicator variable, which represents
the kth person hk is the participant of activity window ai or not. The location
lai of ith activity window ai is defined as the rectangle which surrounds the all
participants of ai.

Activity localization is the task to compute score that an activity window
belongs to an activity category c. Our method computes scores by features ex-
tracted from each person (unary features) and features extracted from the whole
of the activity (group features). The score S(ci = c) when the activity window
ai belongs to an activity category c is computed as follows:

S(ci = c) =
∑

k∈Pi

wu(c)Tφu(hk) + wg(c)Tφg(ai) (1)

where φu(hk), and φg(ai) depict the unary features of the person hk and the
group features of the activity window ai, respectively. Pi ∈ {1, ..., Np} is the set
of indices where pik = 1. Roughly speaking, the first term of Eq.(1) represents
the appearances of people in an activity group, and the second term represents
the global relationships in an activity group. To detect activities on a image, the
method enumerates the activity windows with scores over a threshold in each
activity category.

Eq.(1) can be rewritten as a linear SVM form (e.g. [17]):

S(ci = c) = w(c)Tφ(ai) (2)

where w(c)T = (wu(c)T,wg(c)T) and φ(c)T = (
∑

k∈Pi

φu(hk)T, φg(ai)T).

Implementation: By the scoring procedure, we usually get multiple overlap-
ping detections for each instance of an activity. We apply greedy nonmaximum
suppression procedure [9] for activity windows in the same activity category with
50% over overlap.

Our method needs to compute Nc(2Np−1) scores when Nc activity categories
are defined. This computation is NP-hard. However, the person detector is reli-
able and Np is not so large in our application, so we can enumerate all activities
in our study. Also, we empirically find that the effect of the maximum Np is
low if the value is not too small, because detecting all people in the crowded
situation is infeasible due to occlusions. We set maxNp = 10 for computational
efficiency. Note that search techniques such as branch-and-bound or A* would
be able to applied for general cases.



Collective Activity Localization with Contextual Spatial Pyramid 5

3 Contextual feature descriptors

In this section, we introduce contextual feature descriptors of the proposed
method. To compute scores, we extract unary features and group features from
activity participants. Rather than directly using certain raw features (e.g. HOG
features [8]), we use contextual features, i.e. action classification scores of each
person, etc. Action denotes a simple, atomic posture performed by a single person
(e.g. standing and facing right, etc.). Action classification scores are computed
by pre-trained SVM classifier based on HOG features extracted from detected
people’s bounding boxes.

Unary features: φu(hk)T = (φa
u(hk)T, φpd

u (hk)T, 1). φa
u(hk) is a feature gen-

erated by action scores, φpd
u (hk) ∈ R is person detection score of the person

detector [9], 1 is bias term.
In this work, we employ 2 types of features as φa

u(hk). The first feature is
bag-of-word style feature φbow

u (hk) ∈ R
K [4], where K is the number of action

categories. φbow
u (hk) of the person hk is computed as follows:

φbow
u (hk)

T
= (S1k, ..., SKk) (3)

where Sik ∈ R represents person hk’s classification score of ith action. φbow
u (hk)

represents the focal person’s posture information by histogram representation.
The second feature is action context (AC) descriptor [4] φac

u (hk) ∈ R
3K in

an image. The original AC descriptor encodes both of spatial information and
temporal information, we employ spatial information only, to detect activities in
each image independently. φac

u (hk) of a person hk is computed as follows:

φac
u (hk)T = (S1k, ..., SKk, max

m∈N1(hk)
S1m, ..., max

m∈N1(hk)
SKm,

max
m∈N2(hk)

S1m, ..., max
m∈N2(hk)

SKm) (4)

where N1(hk) and N2(hk) are “sub-context regions” of kth person (in this work,
we define N1(hk) and N2(hk) as circles of 0.5h and 2h respectively (h is per-
son hk’s height), according to Lan’s parameter [4]). φac

u (hk) can capture the
information of people nearby as well as the focal person’s posture information.

Group features: φg(ai)T = (φcspm
g (ai)

T, 1). φcspm
g (ai) ∈ R

KNcd represents fea-
tures in activity window ai extracted by contextual spatial pyramid model. Ncd

is the number of subregions of CSPM. Figure 4(a) represents an overview of
CSPM. To handle people layouts, φcspm

g (ai) has representations similar to spa-
tial pyramids [11]. φcspm

g (ai) represents action layout in the activity window ai by
computing bag-of-words like features in the subregions (e.g. in “talking” activity,
right-facing persons are on the left side and left-facing persons are on the right
side). φcspm

g (ai) is computed as the following average-pooling representation:
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Fig. 4. Contextual spatial pyramid model (CSPM). (a) An overview of CSPM. CSPM
encodes global relationships of an activity, by extracting action scores of participants
in the subregions. For example, if “talking-and-facing-right” score is high in the left
region and “talking-and-facing-left” score is high in the right region, the overall feature
represents “talking and facing each other”. (b) Spatial pyramid representations. In this
work, CSPM takes regions with different separation level (total Ncd = 9 subregions).

φcspm
g (ai)

T = (
1

MR1

∑

m∈R1(ai)

S1m, ...,
1

MR1

∑

m∈R1(ai)

SKm, ...,

1
MRNcd

∑

m∈RNcd (ai)

S1m, ...,
1

MRNcd

∑

m∈RNcd (ai)

SKm) (5)

where Rj(ai) is the jth subregion in the spatial pyramid and MRj is the number
of people in the jth subregion. The proposed method regards the person hk is
in the subregion Rj(ai) if hk participates the activity window ai (i.e. pik = 1)
and if hk’s bounding box intersects subregion Rj(ai). If the subregion Rj(ai)
contains no people, the bin values of the subregion are set to zero.

φcspm
g (ai) is generated by extracting actions of participants in each subregion,

so each bin value of CSPM represents global relationships of an activity group.
For example, if the participants of an activity group are globally “facing each
other”, the bin values of “facing-right” in the left region and “facing-left” in
the right region will be high. Therefore, CSPM descriptor can encode global
interactions between people in an activity group.

Figure 4 shows the spatial pyramid representation of φcspm
g (ai). φcspm

g (ai)
takes subregions from level 0, 1h, 1v and 2h (Ncd = 9).

4 Experiment

We demonstrate our method on the extended version [6] of the collective activity
dataset [3]. The dataset contains 72 annotated video clips acquired by low reso-
lution hand held cameras. In the original dataset, all the people in every tenth
frame of the videos are assigned one of the following seven activity categories:
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Table 1. Per-class and mean average precision (AP) scores on the collective activity
dataset. Left: baseline with bag-of-words style features (BoWS), right: baseline with
action context (AC) descriptors. The bold scores represent best scores in each baseline
setting, the italic scores represent lower scores than baseline scores. CSPM improves
mean AP scores in both of BoWS and AC feature settings.

Class BoWS BoWS + CSPM

Crossing 0.090 0.104

Dancing 0.215 0.697

Jogging 0.426 0.429

Queuing 0.115 0.216

Talking 0.107 0.381

Waiting 0.065 0.097

Walking 0.020 0.053

Mean AP 0.148 0.282

Class AC AC + CSPM

Crossing 0.144 0.099

Dancing 0.353 0.734

Jogging 0.439 0.430

Queuing 0.044 0.122

Talking 0.046 0.087

Waiting 0.093 0.125

Walking 0.021 0.046

Mean AP 0.163 0.235

crossing, waiting, queuing, walking, talking, dancing and jogging, and one of the
following eight pose categories: right, front-right, front, front-left, left, back-left,
back and back-right. Following Lan’s definition [4], we define 56 action labels
(7 activity labels × 8 pose labels) by combining the pose and activity informa-
tion, i.e. the action labels include crossing and facing right, crossing and facing
front-right, etc. Note that actions are intermediate outputs: action classification
scores are used only for feature descriptions. We define ground truth activities on
each image, by assigning people participating to the activity and the activities’
category. We select one fourth of the video clips to form the test set, and the
rest of the video clips are used for training (total 2943 training images and 882
test images). Following PASCAL VOC Challenge’s localization criteria [18], the
detected activity is considered as a correct detection if the overlap ratio between
the bounding box of detected activity and the bounding box of ground truth
activity exceeds 50%.

Results: To evaluate our feature model, we compare localization accuracy with
several feature settings: unary features only (with bag-of-words style features
(φbow

g ) and with AC features (φac
g ) : variant of [4]) and unary features and CSPM

(with φbow
g and with φac

g ). We define “unary features only” feature set (i.e. local
relationships only) as baseline, and evaluate effectiveness of CSPM.

We compute precision-recall curves and the average precision (AP) scores
across activity classes. We show the precision-recall curves in Figure 5 and the
comparison of AP scores in Table 1. As seen in Table 1, the proposed CSPM
descriptor improves localization performance in all activity categories when bag-
of-words style features are used as unary features (Table 1 left), and improves
localization performance in 5 activity categories when action context descriptors
are used as unary features (Table 1 right). Also, CSPM descriptor improve mean
AP scores of activity categories in both baseline settings, therefore this result
shows CSPM provides useful cues for activity localization.

In the all feature settings, methods with CSPM record highest AP scores in 5
activity categories (with BoWS, 3 categories: queuing, talking, walking, and with
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Fig. 5. Precision-recall curves (best viewed in color). Note that several results (crossing,
waiting, walking) are shown in different scale for readability.

AC, 2 categories: dancing, waiting), and the method with AC descriptor only
records highest AP scores in 2 activity categories (crossing, jogging). Though AP
score decreases with CSPM descriptor in several activity categories when the AC
descriptor is used as baseline, it is because that AC and CSPM represent different
information in the activity groups. Though AC descriptor is a strong descriptor
(especially people in the scene participate in single activity, such as “crossing”
activity), the AC descriptor encodes person relationships regardless of the ac-
tivity group, therefore the AC descriptor may encode relationships inconsistent
with CSPM descriptors. More efficient feature combination is one of the future
works. We visualize the localization results in Figure 6 (correct detections) and
Figure 7 (false detections).

Though the proposed method of mean AP scores (roughly 26%) is lower
than precision scores on the state-of-the-art result of person-level classification
or image-level classification, it is because that activity localization task is much
more difficult. The localization task needs determining the “people in the same
activity” in addition to determining activity labels (e.g. in Figure 7, detection
results of crossing, dancing, jogging, talking are treated false detections due to
localization failure though the detected activities contain ground truth activi-
ties), so the activity localization task is a difficult task compared with activity
classification task.

5 Conclusion

This paper has described a novel activity localization method with a new con-
text descriptor named contextual spatial pyramid model (CSPM). CSPM en-
codes rich global relationships in an activity (such as “facing each other”), with
its spatial-pyramid-like representation. The experimental result shows CSPM
provides useful relationships to improve activity localization performance.
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Fig. 6. Examples of correct activity localization results with BoWS + CSPM feature
setting (best viewed in color).
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