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Abstract. Living in society, to go out is almost inevitable for healthy
life. There is increasing attention to it in many fields, including perva-
sive computing, medical science, etc. There are various factors affecting
the daily going-out behavior such as the day of the week, the condition
of one’s health, and weather. We assume that a person has one’s own
rhythm or patterns of going out as a result of the factors. In this paper,
we propose a non-parametric clustering method to extract one’s rhythm
of the daily going-out behavior and a prediction method of one’s future
presence using the extracted models. We collect time histories of go-
ing out/coming home (6 subjects, total 827 days). Experimental results
show that our method copes with the complexity of patterns and flexibly
adapts to unknown observation.
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1 Introduction

Living in society and interacting with others, going outside one’s house is almost
inevitable for healthy life. There is increasing attention to this behavior, in many
fields of study. For example, Kono et al. [10] show that the frequency of going out
during one’s period of life preceding old age affects activities of daily living (ADL)
of several years later, and Gupta et al. [7] show that grasping going-out behavior
of households saves their heating bill. However, Kono et al. used questionnaires
about one’s going out to collect data in their work. As Krumm and Brush [11]
show modeling the rhythm of the behavior outperforms self-reported schedules,
we believe that introducing sensor data processing to it enables deeper analyses
in many fields such as pervasive computing, medical science, and life log, and
the more precise prediction reduces the unnecessary cost of energy.

To predict someone’s future behavior elementally needs estimation of some-
one’s state at current time. Most of these researches in pervasive computing can
be categorized into two approaches. One employs wearable sensors such as GPS
loggers [7, 11] and the other installs sensors in the environment [14, 16]. When it
comes to estimating the state of going out, it can be binarized as “home (inside)”
or “away (outside)”. Assuming most people go out through the individually same



place (i.e. most people go out through the front entrance), sensing the passage
of such places should be enough to estimate the state.

Modeling and predicting going out, can be thought as one of the problems
to model and predict one’s presence or occupancy. Recently, there are increasing
studies with probabilistic approaches on this topic in the field of pervasive com-
puting. In these approaches, methods predict the probability of future presence,
and so they have some flexibility to unknown observation, even if there are not
many training data. Krumm and Brush [11] introduced probabilistic models for
going out. The method classifies the going-out data by the day of the week and
also predicts one’s presence using the pattern of the day. Scott et al. [16] in-
troduced an occupancy prediction algorithm for controlling heating, ventilation,
and cooling (HVAC). The algorithm predicts the future presence probability via
matching the occupancy data by the current time to the past observation.

There are a lot of factors affecting one’s daily going out, such as the day of
the week, the condition of one’s health, and weather. The behavior is influenced
not by only one factor of them, but by the combination with one another. In
addition, the number of factors and how they affect it are individually different.
However, if we look at a person, there should be one’s rhythm or patterns of
it. For example, the rhythm of some people definitely differs between working
days and holidays. To extract the one’s own patterns and model the individually
different behavior, prior knowledge cannot be put directory (e.g. the number of
patterns). From a statistical point of view, intuitively deciding the number of
patterns sometimes causes low performance. Too many patterns cause overfit-
ting, and too few patterns cannot represent the complexity of the data. The more
accurate modeling is feasible by estimating the appropriate number of patterns
and correctly classifying the data.

There has been a significant amount of prior work in the field of statistics on
extracting patterns or rhythm from the sensor data. For example, Farrahi and
Gatica-Perez [5] used latent Dirichlet allocation and author-topic model, Ihler
et al. [8] used time-varying Poisson processes, and Gill and Hangertner [6] used
von-Mises distribution to extract the underlying rhythm. Actually, most of these
studies of probabilistic approaches need the number of rhythms or categories a
priori. There also exists work using event-mining approaches (e.g. the system of
Rashidi and Cook [14]), however, these approaches need large-scale data. The
nearest concept to that of ours is done by Shimosaka, et al. [18] with Dirichlet
process mixtures (DPM) [2]. We develop this approach from raw data of a sensor
as they used, to this abstracted behavior, going out.

In this work, we give three assumptions about daily going-out behavior. 1) It
is done in a 24-hour cycle. 2) Each behavior of a day belongs to a certain category.
3) The number of categories is different by each person. These assumptions can
also be used to predict the future observation: the target day itself also belongs
to one of the categories of the person. You may think some patterns can be
shared with other persons, and of course, it is often that going-out patterns of a
person are quite similar to those of another. However, thanks to the data-driven



approaches, our method eliminates such prior knowledge without performance
drawbacks.

Our contribution is summarized as follows: we develop a unified framework
for modeling and predicting going-out behavior, coping with the individual ten-
dency. There are two key points in our method. One is that the method math-
ematically represents this complicated behavior affected by many factors and
classifies the data with estimating the number of underlying categories simulta-
neously. The other is that the method predicts one’s future presence from current
observation of one day, by estimating to which category the day belongs. Our
framework only needs time histories of going out/coming home, and so it is
adaptable to many studies or systems in pervasive computing. We collect time
histories of total 827 days of 6 subjects to evaluate our method. Experimental
results show that our method flexibly copes with the complexity of going out
and predicts the future observation with robust performance.

2 Collecting Time Histories of Going out/Coming Home

We employ two systems to accumulate time histories of going out and coming
home: a tracking system and trail cameras. In this section, we show how these
systems accumulate the data. As a result, we collect the time history data of
350 days (subject 1) and 239 days (subject 2) with the tracking system, and 31
days (subject 3) and 69 days (subject 4 – 6) with the trail cameras.

2.1 Collecting Time Histories via Tracking System

In the first time histories collection, we employed a human location tracking
system [13] with range sensors and installed it into a one-bedroom type apart-
ment for living alone. The size of the apartment is 4.9 meters by 9.5 meters. We
installed five laser range finder (LRF) modules (Fig. 1-A), which are combina-
tions of URG-LX04 (Hokuyo Automatic Co., Ltd.) and Armadillo-220 (Atmark
Techno Inc.). The LRF modules are arranged at hip-height and located so that
most area of the house is covered (the locations of the modules are shown in
Fig. 1-B). The tracking system integrates the scan data, detects the resident
by background subtraction, and tracks one’s position by particle filter. In our
work, the system automatically estimates the resident is out, if the system stops
tracking at the entrance in more than 10 minutes. An example of trajectories
just before the resident go out is shown in Fig. 1-B. Two subjects, both of whom
were graduate students in their twenties from our laboratory lived in the house
in a different period. Subject 1 lived from Apr. 1, 2009 to Mar. 16, 2010 and
subject 2 from Apr. 14, 2010 to Dec. 23, 2010. Total number of days of each
subject is 350 and 239, respectively. The original number of days of subject 2
is 255, however, we eliminate 16 days of subject 2 due to unexpected lack of
trajectories.
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Fig. 1. Figure A shows the picture of a LRF module. Figure B shows the layout of
the experimental house to calculate trajectories. The red circles in this figure are the
position of the modules. The trajectory when the resident was just going out is written
as a red line (the blue circle is the start point of it and the green circle is the end
point).
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Fig. 2. Appearance of Trail Camera (Figure A) and Example of Captured Movie (Fig-
ure B): The movie was captured just before one of the subjects went out.

2.2 Collecting Time Histories via Trail Cameras

In the second time histories collection, we installed trail cameras SG-220V from
Shenzhen Siyuan Digital Technology Co., Ltd. (see Fig. 2-A) in the entrance of
houses. The camera has passive infrared ray sensors to detect people and records
movies when someone passes in front of the camera. Though it is originally used
to record behavior of wild animals, it can be also used as a simple security
camera. In our work, we recruited 4 volunteers in 3 households, all of whom are
elders, with some rewards. We met them, looked at the layout of their houses,
and carefully decided where to set up the cameras with simple questionnaires.
We also took care about their privacies, so that the camera recorded only the
behavior of their entrance passage. A frame example of the captured movies



is shown in Fig. 2-B. Since one’s going out and coming home were obvious
with the recorded movies, we collected time histories manually. As Krumm and
Brush [11] did, GPS loggers can substitute for this work. Recording started in
Aug. 21, 2011 at the earliest (subject 4 – 6: subject 4 and 5 lived together), not
later than Sep. 28, 2011 (subject 3) and we used the data by Oct. 28, 2011.

3 Modeling Going-out Behavior

3.1 Outline

As described in Section 1, a state of one’s going out at some time can be bina-
rized (whether someone is away from home or not). The states is described as
random variable x = {0, 1} (0 : home, 1 : away) following Bernoulli distribution
p(x|μ) = μx(1 − μ)1−x, where, μ = μ(t) (0 < μ(t) < 1) is the time-varying
parameter (e.g. if μ(t) = 0.9, the person is out with a probability of 0.9 at the
time t). For simplicity, the method discretizes μ(t), as a sequence {μ1, ..., μT }
with length T . Each content of the sequence corresponds to the probability of
going out at the corresponding time.

0:00 24:0012:006:00 18:00
Time

0

1

Home

Away

Fig. 3. Description Example of Going out

An example of parameter sequences is shown in Fig. 3. This example indicates
that the person is likely to go out around 8 o’clock and 18 o’clock, and stay
at home during night and around noon. Each category has its own pattern of
parameter sequence.

3.2 Mathematical Description

Let t = 1, ..., T be the time of a day, n = 1, ..., N be the day of each obser-
vation, k = 1, ..., K be the ID of the category, and μk = (μk,1 ... μk,T )T be
the parameter sequence of category k. We set the observation data of n-th day
xn = (xn,1 ... xn,T )T (xn,t = 0 : home, xn,t = 1 : away) by majority decision
of each time span of a day (if T = 24, t = 1 represents the time span from 0



Fig. 4. Graphical Model of Going out

o’clock to 1 o’clock) The likelihood of the parameters for the data is written as
the likelihood product of each time:

p(xn|μk) =
T∏

t=1

μ
xn,t

t (1 − μk,t)1−xn,t . (1)

In addition, suppose {Z}n,k = {zn,k|zn,k = {0, 1}, ∑kzn,k = 1} be the
parameters indicating to which category k the data of n-th day belong, zn

is a random variable following multinomial distribution M(zn|π). Then, let
M = (μ1 ... μK) be parameter sequences of the categories, and the likelihood of
the whole parameters are like the equation below:

p(xn|Z,M) =
K∏

k=1

T∏
t=1

[
μ

xn,t

k,t (1 − μk,t)1−xn,t

]zn,k

. (2)

Thanks to the simplicity of the model, it is possible to introduce hierarchi-
cal Bayesian representation for avoiding overfitting issues. This representation
utilizes prior distributions for flexibility to unknown observations. Specifically,
the method uses conjugate prior for each parameter, Dirichlet distribution for π
and beta distribution for μk,t:

π ∼ D(π|α) ∝
∏
k

πα−1
k , (3)

μk,t ∼ B(μk,t|β1, β2) ∝ μβ1−1
k,t (1 − μk,t)β2−1. (4)

Fig. 4 shows the graphical model of the representation. Each arrow represents
the dependency between the parameters, for example, parameter μk is generated
using hyperparameters β (i.e. β1, and β2). The method estimates the model,
by the posterior distribution of the parameters. For more details about this
graphical representation, see Ref. [3].

3.3 Simultaneous Estimation of Parameters and Cluster Number

As we mentioned in Section 1, we cannot give the number of categories a priori.
In this work, the method mentioned in Section 3.2 is extended to the simulta-
neous estimation of the model parameters and the cluster number. To tackle



this problem, we employ Dirichlet process mixture (DPM) [2], a framework for
Bayesian nonparametrics. DPM describes infinite Dirichlet distribution as a prior
of categories. Compared with other methods to estimate the category size such
as those introducing information criteria [1, 15], DPM parameterizes the cate-
gory size distribution itself and provides flexible manners to estimate the number
of clusters and parameters of each category simultaneously with less calculation
cost. To implement DPM, the upper bound of category number K is set as
an enough bigger number than that expected (we set K = 50). The method
estimates the number of them as k � K.

We use blocked Gibbs sampler [9], variational Bayes (VB) [4], collapsed Gibbs
sampler [12] to implement DPM. The VB has an advantage of calculating cost
since it provides obvious convergence and reduces the number of cycles, how-
ever, the solution of VB is completely affected by the initial state of learning
so there exist local optima. In theory, blocked/collapsed sampler never causes
the problems if the sampling cycles converge. Compared with each other, the
blocked sampler has more chances to reach global optima than the other, and
also more risks to diverge. As our prior experiment to evaluate the three, the
model by the blocked sampler has the highest likelihood to the observation, and
so we actually utilize this method.

The blocked Gibbs sampler for DPM utilizes truncated stick-breaking pro-
cess [17] to approximate the infinite-dimensional Dirichlet distribution. The pro-
cess represents beta distribution as a prior of each coefficient of multinomial
distribution. In this case, coefficients πk are represented as:

πk = vk

k−1∏
i=1

(1 − vi), vk ∼ B(vk|1, α), (5)

where, vK = 1 for the maximum number of categories, K. Learning by the
blocked sampler consists of two steps. Firstly, the method initializes the param-
eters. The method samples Z, so that all data are allocated randomly and equally
to each category. Lastly, the method iteratively alternate resampling from the
posterior distribution (6), and (7):

V,M ∼ p(V,M|X,Z), (6)
Z ∼ p(Z|X,V,M). (7)

In our model, the posterior distributions are expanded as:

vk ∼ B(vk|1 +
∑

n

zn,k, α +
K∑

i=k+1

∑
n

zn,i), (8)

μk,t ∼ B(μk,t|β1 +
∑

n

xn,tzn,k, β2 +
∑

n

(1 − xn,t)zn,k), (9)

zn ∼ M(zn|π∗), π∗
k :=

πkp(xn|μk)∑
kπkp(xn|μk)

. (10)

During the iteration, most of categories have no data allocated, and the
data aggregate into some classes. Since there cannot be complete convergence



in Gibbs sampling, the number of iteration is set to 100 in our experiment.
Finally, parameters of the posterior distribution vk ∼ B(vk|α�

k,1, α
�
k,2), μk,t ∼

B(μk,t|β�
k,t,1, β

�
k,t,2) are: {

α�
k,1 = 1 +

∑
nzn,k.

α�
k,2 = α +

∑K
i=k+1

∑
nzn,i

, (11)

{
β�

k,t,1 = β1 +
∑

nxn,tzn,k.

β�
k,t,2 = β2 +

∑
n(1 − xn,t)zn,k

. (12)

4 Predicting Going-out Behavior

4.1 Problem Setting and Outline

As we mentioned in Section 1, many practical applications need prediction of
future presence (e.g. controlling HVAC). In this section, we show our method of
predicting one’s future presence utilizing our going-out model (Section 3). We
assume that one’s observation of a new day should also belong to a category
of one’s own. The method represents the probabilistic distribution of future
observation as a linear sum of a pattern of each category. The coefficient of
patterns, sum of which is 1, is proportional to likelihood of each category given
the observation by the current time of the target day.

4.2 Calculating Probability of New Observations

Given new observations x�
1:T := (x�

1 ... x�
T )T of one day, the approximate param-

eter likelihood of the posterior distribution (Section 3) is represented as:

p(x�
1:T |α�, β�) =

∑
k

EV[πk]p(x�
1:T |β�

k,1:T,1, β
�
k,1:T,2). (13)

There, each term on the right can be expanded into the equation below.

EV[πk] = E[vk]
k−1∏
i=1

(1 − E[vi]), E[vk] =

{
1 (k = K)

α�
k,1

α�
k,1+α�

k,2
(otherwise)

, (14)

p(x�
1:T |β�

k,1:T,1, β
�
k,1:T,2) =

T∏
t=1

∫
p(x�

t |μ)B(μ|β�
k,t,1, β

�
k,t,2)dμ

=
T∏

t=1

Beta(x�
t + β�

k,t,1, 1 − x�
t + β�

k,t,2)
Beta(β�

k,t,1, β
�
k,t,2)

, (15)

where, Beta(·) is beta function Beta(x, y) =
∫ 1

0
tx−1(1 − t)y−1dt. Each term of

product in (15) follows beta-binomial distribution (the number of trials is fixed
to 1 in this case).



4.3 Prediction Algorithm

Given observation data from time t = 1 to t = tp (< T ), the probability that each
category pattern generates the data can be described using the representation
of Section 4.2 as p(x�

1:tp
, z�

k = 1|α�, β�) = EV[πk]p(x�
1:tp

|β�
k,1:tp,1, β

�
k,1:tp,2). Let

γk,1:tp be the probability that the target day belongs to category k, and this can
be described as:

γk,1:tp := p(z�
k = 1|x�

1:tp
) =

p(x�
1:tp

, z�
k = 1|α�, β�)∑

cp(x�
1:tp

, z�
c = 1|α�, β�)

. (16)

The method predicts the presence probability of time tf (> tp) by a linear
sum of category patterns, with coefficient γk,1:tp as,

p(x�
tf

= 1|x�
1:tp

, α�, β�) =
∑

k

γk,1:tpp(x�
tf

= 1|β�
k,tf ,1, β

�
k,tf ,2)

=
∑

k

γk,1:tp

Beta(1 + β�
k,tf ,1, β

�
k,tf ,2)

Beta(β�
k,tf ,1, β

�
k,tf ,2)

=
∑

k

γk,1:tp

β�
k,tf ,1

β�
k,tf ,1 + β�

k,tf ,2

. (17)

For practical applications, the method needs to decide one’s future state with
the probability. We set the parameter τ (0 ≤ τ ≤ 1), as a threshold to output
prediction. If probability of one’s going out exceeds τ , the method predicts the
one will be out, otherwise it predicts the one will be at home.

5 Results

5.1 Experiment Setting

The modeling and prediction performance of our method is evaluated with the
time histories data collections described in Section 2. To evaluate the modeling
method, we use log-likelihood as criteria, and to evaluate the predicting method,
we use the classification accuracy of future observation from the past observation.
The technical details are in following paragraphs.

For the former method, we see the convergence by the log-likelihood of pa-
rameters with all the data of each subject and the flexibility performance by
expectation value of log-likelihood leave-one-out cross validation (LOOCV). The
log-likelihood of training data shows the adaptation to the complexity of train-
ing data. The log-likelihood of LOOCV represents the flexibility to the unknown
observation.

For the latter method, we also use LOOCV to predict unknown observations
from the other data of the same subject. As more concrete setting, the method
predicts the future observation of a day, given the 6, 9, and 12 hours data of the
day. The method also predicts the presence by updating each time the method



is given the presence of time t. Since the threshold of probability highly depends
on applications, we set the threshold τ from 0 to 1 by 0.01 and evaluate the
performance by receiver operating characteristic (ROC) curves and the area
under the curves (AUC). Each predictive output is evaluated by the state of
every minute. For example, suppose that a subject is out in 20 minutes of a
time duration t and at home in the rest 10 minutes and the method predicts the
one is out, then true positive frames will be 20 and false positive frames will be
10. Note that the performance does not necessarily improve as the observation
time of the day progresses, since the applied time of prediction varies from each
experiment (e.g. if 6 hours given, the method predicts the rest 18 hours, and if
given 12 hours, the method predicts shorter time, 12 hours).

Throughout the experiment, we set the start time of days to 0 o’clock, each
time span of a day to 30 minutes (i.e. T = 48), the modeling hyper parameters
α = 0.1 empirically, and β1 = β2 = 1 so that prior knowledge about one’s
home/away presence is eliminated. In this condition, prior of μ ∼ B(μ|β1, β2)
will be the uniform distribution from 0 to 1.

For comparison to our methods, we implement the presence model of Krumm
and Brush [11] (we call this, KB model) for the experiments of both modeling
and predicting, and the algorithm for predicting presence by Scott et al. [16]
(we call this, Scott’s algorithm) for experiment of predicting. In the modeling
experiment, we also implement KB mixture model, the mixture model of each
pattern of the day of week, the coefficient of which are the ratio of number
of days of each pattern to the total number, usually one seventh). Since KB
model does not use the current observation of the target day and this might be
unfair, we modify KB mixture so as to utilize the current observation. The future
distribution is the linear sum of each pattern, and coefficients are proportional
to the likelihood of patterns for the given observation. Actually Krumm and
Brush also utilize the drive time prediction [7] to improve their performance. In
this experiment we do not implement this method since we collect the presence
data not by GPS loggers. The Scott algorithm could be affected by how many
nearest neighbors are used to estimate future observation, so we set the number
k to not only 5 (as Scott et al. used), but also 3, 7 for prediction.

5.2 Modeling Going out

In this section, we evaluate our modeling method by likelihood to the unknown
data. With our implementation, learning the model converges in less than 1
second for each subject.

Table 1 shows log-likelihood expectation values of training data by using all
data of each subject and Table 2 shows those during LOOCV of each subject.
We examine the performance by separating the subjects into two groups. One is
the group of subjects who has long-term data (subject 1 and 2) and the other is
that of subjects who has short-term data (subject 3 – 6). With the group of long-
term data, our method has high performance in both training data and test data.
This suggests that KB model and its mixture, which classify the data by the day
of the week, cannot represent the long-term data since seven is not necessarily



Table 1. Log-likelihood Expectation Value for Training Data

Subj. 1 2 3

Proposed −16.2 ± 5.5 −9.5 ± 5.2 −8.8 ± 4.9

KB −31.7 ± 5.2 −22.2 ± 12.7 −8.4 ± 5.1

KB mixture −30.4 ± 4.1 −20.0 ± 9.0 −7.9 ± 5.2

Subj. 4 5 6

Proposed −9.0 ± 5.2 −5.5 ± 4.3 −10.9 ± 5.3

KB −7.9 ± 5.1 −4.8 ± 4.4 −13.5 ± 7.7

KB mixture −8.4 ± 5.5 −5.1 ± 4.7 −13.1 ± 7.1

Table 2. Log-likelihood Expectation Value of LOOCV

Subj. 1 2 3

Proposed −18.7 ± 7.4 −11.1 ± 7.3 −9.8 ± 5.6

KB −32.7 ± 5.5 −24.5 ± 18.5 −52.7 ± 76.6

KB mixture −30.6 ± 4.1 −20.2 ± 9.2 −9.1 ± 6.6

Subj. 4 5 6

Proposed −9.7 ± 6.5 −6.3 ± 5.6 −12.7 ± 7.6

KB −22.8 ± 46.3 −15.9 ± 26.6 −32.4 ± 59.7

KB mixture −11.0 ± 12.5 −5.5 ± 5.2 −20.4 ± 47.8

enough number of the category. With the group of short-term data, especially
in subject 4 and 6, the KB model and its mixture overfit the training data
(low likelihood for test data in spite of high likelihood for training data). Even
though the compared methods have great gaps of likelihood between training
and test data of these subjects, our method flexibly copes with the unknown
observation with low gaps. In contrast, with subject 3 and 5, our method has
slightly lower LOOCV performance than KB mixture model. The main cause
of this result is related with hierarchical Bayes. We set parameter β1 = β2 = 1,
and this means all category patterns have additional information about one’s
presence, one home observation and one away observation (i.e. the probability
of one’s home cannot be 0, even if the person is at home during the all data).
In this regard, KB mixture gets higher score in subject 3 and 5. However, the
disadvantage of additional information in prior distribution seen in these subjects
is trivial, compared with the advantage of flexibility with the data size and
appropriateness about categorizing data seen in subject 1, 2, 4, and 6.

Clustered patterns of subject 2 and 6 by our method are shown in Fig. 5. Each
graph in the figure represents the going-out pattern of the corresponding category
and each value in the graph is the expectation value of posterior distribution
(i.e. the probability of being away from home). Patterns of each subject are
sorted into descending order by the number of allocated days and patterns with
less than 3 days are eliminated. For example, type 8 represents the subject goes
out around 10 o’clock and comes home around 20 o’clock. The figure shows that
our method can extract peculiar patterns such as type 3 (the subject are out
almost all day) and type 6 (the subject are at home almost all day). The patterns
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Fig. 5. Examples of Extracted Typical Patterns (Upper: Subj. 2, Lower: Subj. 6):
To emphasize the patterns of the subjects are extracted separately, we use different
representation about categories between each subject.

of subject 2 sum up to be 98 percent of total days (236/239), so it can be said to
the subject that the number of the patterns is 9. The 3 outliers are allocated into
two groups (two days and one day), both of which are the patterns of going-out
twice in different periods of a day. Similarly, the number of patterns of subject
6 is 3. For other subjects 1, 3, 4, and 5, the number is 22, 2, 2, 2, respectively.
The number of patterns has to do with the size of data. Visualization examples
of continuous 140 days of subject 2 and all days of subject 6 are shown in Fig. 6.
Categories in the figure corresponds to those in Fig. 5. Not only our method
automatically classifies the data into appropriate groups, but also it enables us
to analyze long-term going-out data by visualizing each pattern and the sequence
of classification result, for example, from the end of the 2nd week to the start of
the 3rd week, subject 2 might be traveling.
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Fig. 6. Examples of Classification Result (Upper: Continuous 140 Days of Subj. 2,
Lower: All 69 Days of Subj. 6)



Table 3. Area under the ROC Curves (upper-left: using first 6 hours, upper-right: using
first 9 hours, lower-left: using first 12 hours, lower-right: by updating from observation
of each time)

Subj. 1 2 3 4 5 6 1 2 3 4 5 6

Proposed 0.68 0.87 0.79 0.78 0.77 0.79 0.63 0.79 0.73 0.76 0.75 0.80

KB 0.60 0.83 0.68 0.73 0.69 0.79 0.55 0.78 0.66 0.73 0.69 0.79

KB mixture 0.62 0.82 0.80 0.78 0.76 0.78 0.56 0.75 0.77 0.76 0.76 0.79

Scott(k = 3) 0.65 0.81 0.77 0.57 0.52 0.67 0.62 0.76 0.67 0.57 0.52 0.74

Scott(k = 5) 0.66 0.86 0.77 0.56 0.54 0.76 0.63 0.77 0.74 0.57 0.55 0.76

Scott(k = 7) 0.67 0.87 0.79 0.54 0.54 0.78 0.63 0.78 0.75 0.59 0.57 0.79

Subj. 1 2 3 4 5 6 1 2 3 4 5 6

Proposed 0.62 0.74 0.84 0.78 0.80 0.85 0.90 0.97 0.93 0.84 0.85 0.91

KB 0.50 0.71 0.71 0.74 0.65 0.82 0.60 0.82 0.72 0.78 0.73 0.83

KB mixture 0.54 0.74 0.86 0.78 0.86 0.84 0.70 0.90 0.94 0.86 0.90 0.88

Scott(k = 3) 0.60 0.71 0.70 0.55 0.68 0.81 0.91 0.94 0.91 0.79 0.72 0.90

Scott(k = 5) 0.60 0.72 0.72 0.57 0.69 0.82 0.92 0.95 0.92 0.81 0.72 0.91

Scott(k = 7) 0.61 0.74 0.79 0.58 0.72 0.84 0.92 0.95 0.92 0.82 0.76 0.91

5.3 Presence Prediction

In this section, we evaluate our method of predicting future presence of new
data. Fig. 7 shows the ROC curves with different conditions and subjects by
changing the threshold τ from 0 to 1. The frames of true positive, true negative,
false positive, and false negative are summed up with two groups by the term
of data. One group contains subject 1 and 2 (subjects of long-term data, graphs
on the left), and the other contains the rest subjects (subjects of short-term
data, graphs on the right). The AUC values with individual subject are shown
in Table 3. From the results, our method has stable high performance by all
subjects and all conditions. KB or KB mixture is not good at incremental pre-
diction of subjects of long-term data. The main cause of this result is the same
as that of the modeling experiment in Section 5.2. That is, KB model cannot
handle the complexity of long-term data. Scott algorithm is not good at subject
of short-term data, except the incremental prediction. The main cause is that
this algorithm relatively needs plenty of past observation for stable prediction
since the core of the algorithm is k-nearest neighbor. Compared with KB or KB
mixture, our method has an advantage of handling long-term data. Compared
with Scott algorithm, our method has an advantage of handling short-term data.
It can also be said that our predictive output is the real number (more finer than
that of Scott algorithm, which is the rational number), so our method have more
flexibility in the trade-off between the true positive and the false positive. It is
found that our method does not have the best performance in all subjects and
conditions, however, our method achieves the best or nearly the best of all, in
all subjects and conditions.
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Fig. 7. Receiver Operating Characteristic Curves of Prediction



6 Discussion

We give as little prior knowledge as possible for one’s going out to our method.
Indeed, there are few parameters in our modeling and predicting method. In our
method, there are four parameters α, β1, β2, and τ . However, under the precon-
dition that there are no information about one’s going out (uniform distribution
from 0 to 1 as we did in the whole experiment), the parameters are in effect only
α and τ . α is the parameter indicating the degree of category separation. As this
parameter grows, our method tends to make more categories. τ is the threshold
of prediction, and the proper value differs according to the kinds of applications.
Thus, our methods can avoid the troublesome parameter estimation. Experi-
mental results comparing our methods with existing methods suggest modeling
going out definitely by the day of the week may cause low performance. There
should have relationship between the day of the week and going-out behavior,
however, there should also be other unignorable factors affecting the rhythm of
the behavior. We believe that even if there is a person whose going-out patterns
are entirely decided by the day of the week, our method can classify the date as
so. However, we still need the larger data sets of more people to find correspon-
dence between the behavior rhythm and factors such as weather, the day of the
week, and social events.

There are two additional advantages of our method in practical use: easiness
of updating the model and possibility of making another category. When new
data are given, the method updates the parameters by only two steps: assigning
the data to the categories with probabilities that each category generates the
data (i.e. γk,1:T in Section 4.3), and updating the parameters of the posterior
distributions. That is, the method does not need to cluster all the data again.
In addition, if the data are too different from the patterns of the categories, our
method can make another category and assign the data to it. This can be used
to detect the anomaly of one’s life.

As we mentioned in Section 1, we regard the problem of modeling and pre-
dicting going out, as one of the problems of modeling and predicting one’s pres-
ence or occupancy (someone is there or not there at that time). Our method
can also be used to predict one’s occupancy at certain places such as rooms in
a house, an office, and a laboratory. In addition, it can be possible that our
method represents other behavior of people that can be binarized.

7 Conclusion

In this work, we propose a unified framework for modeling and predicting one’s
going-out behavior. We assume that it is cyclic and observation of a single day
independently belongs to a certain category. Our modeling method estimates
the number of categories and assigns the data into the corresponding category
simultaneously. Our predicting method outputs the future state of one’s going
out of a day by estimating the category of the day. We collected the going-out
data of 6 subjects and total 827 days by employing a tracking system and trail



cameras. Experimental results comparing our methods with existing methods
and improved existing methods show that our method achieves the best or nearly
the best of all, in all subjects and conditions stably. In addition, since patterns
extracted by our framework are easy to understand, the results also show the
possibility of helping people analyze the long-term data of one’s going out.

As our future work, we will collect the larger dataset of more people, not
only for more accurate evaluation of our framework, but also for finding corre-
spondence between going-out behavior rhythm and underlying factors.
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