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Abstract— One problem in multi-robot cooperative manipu-
lation is redundancy. Too many robots are waste of hardware
and increase control complexity. This paper solves the problem
of redundancy by robust caging. Robust caging calculates
caging positions from translational immobilization with respect
to translational constraints and rotational constraints. On the
one hand, robust caging helps to reduce the necessary number
of robots in cooperation. On the other hand, the initial positions
of necessary robots in robust caging are optimized to offer large
robustness to control errors. Our proposal with robust caging
is implemented to transport target objects over slopes. The
algorithm can choose least number of robots with respect to
shape of target objects and requirements of robustness. At the
same time, each robot may endure as much as 256ms time step
and 1cm control error, showing the superiority of robust caging.

I. INTRODUCTION

Multi-robot cooperative manipulation is tightly coupled

cooperation which aims to finish a complex manipulation

task with several simple robots. Classical works in this

realm relates to task allocation, application-specific control

analysis and sensor fusion [1][2][3][4]. The delicate analysis

and design, like prehensile manipulation in the realm of

robotic manipulators, are usually target-specific or robot-

specific. This makes it hard to implement general and in-

telligent systems. Many researchers introduce caging into

this field to alleviate the toughness in force and timing de-

sign. Caging-based multi-robot manipulation employs several

simple robots to transport a target object by enveloping it

[5][6][7][8]. With caging, system designer can be saved from

intensively designing force and control sequence of each

robot. Formation control is enough to take over everything.

Although caging-based multi-robot manipulation is

promising, researchers employ redundant robots to ensure

successful caging. Take Fig.1(a) for example of redundancy.

At each time step, many robots are alternatively wasted.

Only part of the robots contribute to manipulation while

most of the others are idle. We would like to decrease

the number of idle robots as well as maintaining caging

robustness as much as possible (see Fig.1(b)).

The problem of too many wasted robots may trace back to

the study of caging. Caging aims to capture a target object so

that it can be constrained in a certain area and may not escape

into infinity. Much theoretical study has been devoted to

caging, starting from one-parameter [9] caging to three-finger

caging [10][11] and multi-finger caging [12]. Most of these
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Fig. 1. Caging-based cooperative manipulation. (a) shows the manipulation
with traditional caging tests. In this case, many robots may become idle at
different time step. The green circles in (a) at time step (a).1 and time step
(a).2 illustrate the wasted robots. (b) shows the manipulation with robust
caging. Robust caging helps us to reduce the number of redundant robots
while maintain caging robustness at different time steps. In this case, at
most two robots may be in idle state at each time step.

works concentrate on whether caging is formed. Namely,

they try to solve a caging test problem that given several

fingers or positions of robots, whether target objects can be

constrained in a certain region. Following this originality of

caging, caging-based multi-robot cooperation aims to cage

target objects rather than reduce robot number.

We in this paper would like to go deeper into decreasing

the number of robots as much as possible. It is the same

as finding the optimal caging with least robots and large

robustness towards breaking. To solve this problem, we start

from the minimum state of caging, which is “translational

immobilization”, and take the optimal minimum state (op-

timal translational immobilizing positions) as initial robot

positions. The optimal minimum state is calculated with

respect to two kinds of constraints, namely the translational

constraints and rotational constraints. Since in minimum state

of caging the robot positions “translationally immobilize”

target objects, they certainly “cage” them. The translational

constraints and rotational constraints together optimize the

“cage” with large robustness. Minimum state of caging offers

us good initialization of “robust caging”. The robustness



from robust caging makes our system satisfying to perform

cooperative object manipulation by maintaining caging for-

mations.

Tbl.I compares classical and caging-based multi-robot

cooperative manipulation. Our proposal with robust caging

seeks the advantages from either of them while tries to

overcome the disadvantages. Thanks to robust caging, our

proposal owns superiority in all of the following aspects

1. Least number of robots

2. Application-independent

3. Robust to locomotion quality

4. Implicit force control

Our proposal helps us to reduce the number of necessary

robots as much as possible according to shape of target ob-

jects and requirement of user-defined robustness. It saves lots

of resources. Readers are welcome to apply this technique

to cooperative systems with limited agents.

TABLE I

Comparison of classical and caging-based multi-robot cooperation1

Classical solutions Caging solutions

Advantages Small robot number Application independent

Precise manipulation
Low requirements

on locomotion quality

Implicit force control

Disadvantages Application-specific Large robot number

High requirements
on control quality

Low manipulation precision

1Our proposal with robust caging owns superiority in all red fields.

Organization of this paper is as following. Related works

will be discussed in Section II. Section III discusses the

caging problem in Configuration space (C space). Minimum

caging and the least number of robots required for coop-

erative manipulation are presented in Section IV. Section

V shows an overview of our proposal. Implementations

and experiments are shown in Section VI, followed by

conclusions and future works in the last section.

II. RELATED WORKS

The most related works to our proposal are

[5][6][7][8][13] and [14]. Sudsang’s work [13] shares

nearly the same idea with robust caging in this paper. The

other works are caging-based cooperative manipulation with

redundant robots that falls into Fig.1(a). In this section, we

would like to discuss them in detail.

Sudsang [13] performed some initial work in this field.

He proposed to plan manipulations when jamming does

not occur during task execution. His proposal, Inescapable

Configuration Space (ICS), is actually the caging region.

Some preliminary idea of this work could be found in [15].

Like Daniel [14], Sudsang tries to model caging with two

assumptions. In the first place, each robot finally contacts

with target edges as target objects move. In the second place,

the contact edges should form a triangle. Note that like [10],

[11] and [16] these two assumptions are reasonable when

number of robots is three.

We are convincing in [13]’s ability in dealing with many

target objects. Some implementations on symmetric objects

or simple polygons could be found in Sudsang’s publication.

However, it could be too strict for certain polygons. For

instance, three-robot cooperative manipulation may have

larger ICS region along connecting edges in Fig.2 (see (b))

while Sudsang’s explicit mathematical expressions may limit

the actual result to a subset (see (a)). Moreover, when target

object is a circle, his proposal may fail as caging does not

fall into full contact with robots. Last but not least, the robots

no longer lie along edges as total number increases. Larger

number of robots go beyond the paper’s discussion.

Fig. 2. Sudsang’s explicit mathematical expressions could be too strict for
the polygon in this figure. By constraining to three edges, the result could
be the larger one of (a).1 and (a).2. It is a subset of actual caging robustness
shown in (b).

Compared with Sudsang’s work, our proposal does not

perform explicit mathematical computation. We find the min-

imum state of caging/optimal translational immobilization

with respect to both translational and rotational constraints.

What’s more, we do not limit robot number to three. When

maximum translational breaking robustness (see τmax in

Fig.7) is smaller than expectation of user, our system may

refer to extra robots for help.

Besides the work with three mobile robots and explicit

mathematical expressions, Pereira [5] and Wang [6] respec-

tively employed the potential rotational region to check

caging. Pereira proposed to consider the problem by exerting

rotational constraints. However, the work did not give any

rigid definition on the boundary of rotation. Wang smartly

employs CC space objects and proposed to check whether the

distance between point robots is smaller than the minimum

of ρ-θ curve in span θ ∈[θ -Δθ, θ++Δθ]. Despite its smartness,

the algorithm needs either (1) a predefined Δθ to limit

calculation or (2) checking the minimum value in θ ∈[0,2π)
without Δθ. In the first case, Δθ breaks the completeness

of caging test while in the second case, the algorithm

degenerates into a similar work as [12]. Conditions of the

second case is too greedy and requires redundant robots.

Reference [7] and the recent work [8] both try to calculate

the number of robots by (2πrcage)/(2r + Dmin(obj)). It is

actually the same as [5] and [6], and researchers need to

tune parameter r to get minimum value. It cannot guarantee

the minimum of robot number.
Our proposal is neither as strict as [13] nor as loose as

[6]. We maintain that the proposal is promising in coop-

erative manipulation with least number of robots as well



as high robustness towards various noises. Previous caging

cooperation and our work are compared in Tbl.II for better

comprehension.

TABLE II

Comparison of caging-based manipulation

Category I1 Category II1 Our work

Agent Number 3 Redundancy Least number

Assumption Contact/Triangle Sufficient agents 3-4 agents 2

Robustness 3 τ(1) < τ(2)
τ(1) < τ(2)

τ < τ(2)
τ(1) ≤ τ(3)

1Category I includes [13] and [14] ([10] and [11] could be loosely
classified into this category, too). Category II includes [5], [6], [7], [8] and
[12].
2Our proposal can cage an object with 3-4 agents according to its shape.
See following sections and our previous work [17] for details.
3τ(1) and τ(2) indicate the robustness of first and second categories while
τ(3) denotes the robustness of our work.

III. PRELIMINARIES

Caging is a pure geometric problem where researchers

would like to constrain an object in a certain area so that it

may not move into infinity. In C space of target object (Cobj)

[6][10], whether the target object is caged can be validated

by checking if its correspondent C space configuration is in

a compact free region enclosed by C fingers. Formally, these

concepts can be expressed by

Ri = {q|q ∈ Cobj ∧ (Wobj[q] ∩ ri � ∅)} (1)

Cfree = {q|q ∈ Cobj ∧ q �
n⋃

i=1

Ri} (2)

(Cfree = (Cfc ∪ Cff)) ∧ (Cfc � ∅) ∧ (Cff ∩ Cfc = ∅) ∧ (qinit ∈ Cfc)

(3)

Notations in these equations are as following.

Cobj: The C space of a given target object.

Wobj: The Work space (W space) object. It actually

indicates the target object.

ri: A W space point mobile robot.

q: q = {qx, qy, qθ}, a configuration in Cobj. {qx, qy}
denotes the position of Wobj while qθ denotes its

orientation. Wobj[q] represents Wobj at a configu-

ration q.

qinit: The initial configuration of target object.

Wobj[textbfqinit] represents the target object

before caging.

Ri: The C obstacle which corresponds to ri.

Cfree: The C space which is not obstructed by any Ri.

Testing whether a target object is caged can be validated

by checking if its correspondent initial C space configuration

qinit is in Cfc, an isolated subspace of Cfree. Expression (3)

corresponds to this caging test idea in Cobj. Caging is attained

when expression (3) is true.

Cobj is a R2 × S1 space for planar manipulation. In one

extreme case, Cfc may degenerates into an isolated point (this

point is equal to qinit) or an isolated periodic segment along

S1 of Cobj. We name this extreme case the minimum state

of caging (see Fig.3). The minimum state of caging is either

pure immobilization or stops target objects from translational

movement. Therefore, minimum state of caging can also be

viewed as “translational immobilization”.

Fig.3 illustrates the three-dimensional Cobj of the target

object in Fig.1. Changes of Cfc as Ri squeezes are shown

in Fig.3(a)→Fig.3(b)→Fig.3(c) order. In this case, the final

minimum state of caging is a single point which implies pure

immobilization.

Fig. 3. As Ri moves along the colored arrows, caging may finally
degenerates into “translational immobilization”, namely pure immobilization
or immobilization that stops target object from translational movement. In
the case illustrated in this figure, Cfc degenerates into an isolated point in
Cobj. It is pure immobilization.

IV. ROBUST CAGING

Robust caging calculates caging positions from minimum

state of caging with respect to translational constraints and

rotational constraints. It is actually the translational immobi-

lization with some constraints to guarantee large robustness

against caging breaking.

Firstly, let us discuss about the minimum state of caging

and the least number of robots in caging a planar target.

Since the minimum state of caging is translational immo-

bilization, the least robot number to cage an object is the

least robot number that can immobilize it or can stop it

from displacement in position. Without friction, we need at

least ndof + 1 robots for form closure while ndim+1 to 2ndim

robots for immobilization or caging. Here, we assume point

robots, convex polygons and zero friction (see [18] for non-

point fingers). ndof denotes the degree of freedom while ndim

denotes the dimension of W space.

Therefore, in applications of cooperative planar manip-

ulation, at least 2+1=3 (e.g. polygons with three edges

forming a triangle) to 2×2=4 (e.g. rectangles or semicircles)

point mobile robots are required to cage any polygon. More

specific provements could be found in our previous work

[17].

Then, let us consider about the optimal caging, namely the

caging with large robustness to caging breaking. Following

the idea that minimum state of caging is translational immo-

bilization, we start from all the translational immobilizing

multi-robot combinations and pick out the optimal one with

respect to certain constraints.



Intuitively, the constraints should be intersections of ad-

jacent Ri. Fig.4 demonstrates this idea. These intersections

imply the robustness of caging breaking. A smaller inter-

section is more sensitive to breaking as control errors may

vanish small intersections easily and connect Cfc to Cff.

However, it is hard to rigidly express the robustness of

caging breaking through intersections as (1) the intersections

are decided by relative positions of Ri and (2) the robustness

of breaking is the smallest movement for the disappearance

of these intersections.

Fig. 4. The orange mesh demonstrates the intersections of adjacent Ri.
Minimum caging is the translational immobilization state with respect to
these intersections. The intersections, indeed the smallest movement of Ri
for disappearance of any intersection, imply robustness of caging breaking.

Our solution is to decompose the constraints in an en-

gineering way into translational constraints and rotational

constraints.

Take a slice at qθ along S1 of Cobj for example. At a

certain slice qθ, the intersections of adjacent Ri are shown

in Fig.5. The smallest movement for the disappearance of

the intersections at qθ is denoted as a purple segment in

Fig.5(b). The purple segment represents translational con-

straints. Translational constraints denote the robustness to

translational caging breaking where motions of target objects

are limited to movements along x and y axis without rotation

(namely when S1 is fixed at a certain qθ).

Fig. 5. The intersections of adjacent Ri at a certain slice qθ. When motions
of target objects are limited to translation, the purple segment in (b) indicates
the robustness of breaking, namely the translational breaking.

When target objects rotate, rotational constraints take ef-

fect. The rotational constraints are complementary to transla-

tional constraints. These two constraints collaborate together

to approximate optimal minimum caging state. In the first

place, we filter out a set of candidate multi-robot positions

by the length of purple segments with translational con-

straints. Then, the positions with smallest scatter (rotational

constraints) are chosen as the optimal result. We choose

the smallest scatter as the second screening step since robot

positions with smaller scatter tend to add stronger constraints

to rotation when there’s no a priori information. Formally,

this procedure is expressed as following.

Tτ = {R|et
R > τ} (4)

er
R = min(E(|riu − riv |)S (|riu − riv |)), riu , riv ∈ R, R ∈ Tτ (5)

Notations in these two expressions are as following.

Tτ: The set of candidate multi-robot formations fil-

tered by value τ. The purple segment length (see

Fig.5) of any element in this set is smaller than

τ.
R: A vector denoting the positions of each robots. It

represents the multi-robot formation.

et
R: The length of purple segments in Fig.5. It denotes

the translational (superfix t indicates translation)

breaking robustness of R.

er
R: The smallest scatter of a given R. Similar as t in

et
R, the superfix r indicates rotation.

riu : The position of one robot.

E()S (): The method to calculate scatter of a given R. It is

to multiply the expectation E() and variance S ()

of the distance between adjacent robot positions.

The parameter τ plays an important role in collaborating

translational constraints and rotational constraints.

Fig. 6. The roles of translational constraints and rotational constraints in
obtaining minimum caging R. τ plays an important role in collaborating the
two constraints. In the first step, τ filters out a set Tτ. The magnitude of
this set varies as τ changes (see the horizontal black curve). In the second
step, rotational constraints filters out the element with minimum scatter er

R
as robust formation (see the green segment with blue dash).

Take Fig.6 for example. In one extreme case where τ→ 0,

the translational constraints become invalid. All immobiliz-

ing combinations pass through the translational constraints.

They are directly tested against rotational constraints. The



result degenerates into an immobilization grasp with least

inter-finger distance and variance. In the other extreme where

τ → τmax, Tτ only holds one element so that it makes the

rotational constraints invalid. Here, τmax denotes the maxi-

mum translational breaking robustness of all immobilizing

formations.

Either the two extremes produces sub-optimal results and τ
should be chosen carefully. The translational constraints filter

out some multi-robot formations Tτ from immobilizing com-

binations on target boundary while the rotational constraints

choose the formation with smallest er
R as optimal result. The

optimal result is the R for robust caging.

In the experimental section, we will see that robust caging

ensures satisfying tolerance to control errors. They make

cooperative manipulation with least number of robots and

large robustness possible.

V. OVERVIEW AND FORMATION CONTROL

In this section, we are going to integrate the fragments of

previous sections and discuss manipulation with formation

control.

A. Overview

Robust caging helps us to find the positions of multiple

robots with satisfying robustness to breaking. Besides the

core robust caging algorithm, we need the shape of target

object as input value and need to pre-compute τmax for better

choice of τ, see Fig.7 for details.

Core robust caging algorithm in this flow chart is em-

phasized with a bold dash box while the other external

components are denoted by solid boxed named external (a),

external (b) and external (c) respectively.

The external (a) component decides how many robots

should be employed at least to manipulate a target object

taking account of target shape and requirements of applica-

tions. On the one hand, as has been analyzed in Section IV,

the number could be 3 or 4 according to target shapes (see the

“Exist” switch in external (a) of Fig.7). On the other hand,

our proposal compares the maximum translational breaking

margin τmax with a user-defined robustness for flexibility (see

the “Is τmax large enough” switch in Fig.7). The external

(a) component may refer to more robots according to user-

defined requirements of robustness.

The external (b) component employs τmax to decide the

choice of τ. In our implementation, τ is chosen as a pro-

portion of τmax. The external (c) component perform fine

tuning of R to avoid jam. Rigid employment of R may

cause robots to collide with target object. External (c) adds

some disturbance to R to guarantee the safety of caging

initialization. After caging initialization, target objects could

be manipulated by mobile robots with a R
′

formation.

B. Formation control

Maintainence of R
′

falls into the research field of for-

mation control. Major topic of traditional formation control

can be viewed as maintaining the distance between adjacent

Fig. 7. The overview of our proposal. It is composed of the core robust
caging algorithm in a bold dash box with external (a), (b) and (c) algorithms
in solid boxes.

robots. Nevertheless, formation control in cooperative manip-

ulation requires more stuff. For example, since each robot is

controlled independently, there could be errors in relative

positions that cause into jam, namely robots may squash

target objects at a certain time step. Therefore, researchers

usually defined certain rules to avoid jam [6][15].

Our proposal does not need to follow rules owing to high

robustness from robust caging. In the formation control pro-

cedure, a leader robot is chosen. The other robots follow the

leader as well as maintain R
′
. Note that this implementation

may not guarantee maximum safety since we do not want to

incorporate explicit specification of motion orders, directions

and leaders. However, it could offer satisfying safety to jam

owing to optimal caging robustness.

Fig.8 demonstrates the idea of our formation control.

Motion of each robot is decided by decentralized planners

(such as paths produced by potential field planner between

initial positions and goal positions in Fig.8) and they could be

along any direction. If the motion of robots at one time step

are too drastic, jam may appear. We expect robust caging

could avoid jam and endure certain formation deviation

appeared in the movement of each single robot since it

offers satisfying robustness to caging breaking and enough



Fig. 8. Formation control strategy of our proposal. This strategy does not
employ any pre-defined rules and it is not of ultimate safety towards jam.
However, it could endure certain deviation appeared in the movements of
each single robot owing to robust caging and fine tuning. Readers may refer
to the experimental section for its tolerance to errors.

tolerance to control errors. Tolerance to motion at one time

step will be discussed in the experimental section. Of course

in real applications, practitioners could attain better perfor-

mance by defining motion orders, directions and specific

leaders.

VI. EXPERIMENTS AND ANALYSIS

Our experiments are performed with WEBOTS simulation

environment. The Open Dynamic Engine (ODE) embedded

in WEBOTS offers us a powerful tool to test cooperative

manipulation with least number of robots and minimum

caging.

A. Environment setup

Fig.9 shows the scene of our experiments. The task defined

in this scene is to move the target object cooperatively from

initial position to goal region at the other side of the slope.

The inclination of slope at either side is 0.2rad. Friction

coefficients of target objects are set to 0, indicating that target

objects may move freely in the cage formed by robots. The

free motion from 0 coefficient brings ultimate challenge and

ensures exhaustive tests against caging. Each robot is run as

an independent process so that they result into random errors

like mutiple robots in real world.

Four different kinds of target objects are employed in

our experiments. Their dimensions are shown in Fig.9(a),

Fig.9(b), Fig.9(c) and Fig.9(d).

Our core algorithm for robust caging works with the

Minkowski sum of target shape and robot dimension. The

target shape is its projection on ground. In that case, the ball

object suffers more from breaking. Height of mobile robots

is 0.28 and it is lower than boundary of ball projection (0.5).

Therefore, the fine tuning component in external (c) of Fig.7

should be smaller on the ball object while larger on the other

target objects. Empirically, we set the fine tuning of target (a),

(b), (c) and (d) with 0.1τmax, 0.1τmax, 0.01τmax and 0.1τmax

expansion.

In implementation, τ is set to 0.7τmax. We do not discuss

the performance of different τ in this paper. Interested readers

may refer to our previous work which concentrates on the

Fig. 9. Parameter settings and various objects employed in our experimental
environment. Readers may compare robot size and object size easily by
referring to each figure in the lower part.

Fig. 10. This figure shows the errors of formation control in manipulating
object (a). The curves in the upper-left figure shows the formation during
cooperative manipulation and the curves in the other figures shows the
variation of of inter-robot distance during manipulation.



Fig. 11. This figure shows the errors of formation control in manipulating
object (b). It follows the same form as Fig.10.

choice of τ [17]. Fig.10 and Fig.11 respectively shows the

tolerance of robust caging to errors of formation control

in manipulating object (a) and object (b). Similar as our

expectation, at least four robots are needed for object (a)

while at least three robots are required for object (b).

The left figures in Fig.10 and Fig.11 show the formation

formed by robots in manipulation. The other figures show

the variation in inter-robot distance during manipulation.

Initial inter-robot distance is tagged with blue straight lines

in these figures. These figures are taken from the first 70

time steps (see the horizontal axis). Although the distance

varies dramatically (see the vertical axis), our robust caging

manipulation can offer great tolerance and perform robustly.

The length of a single time step is set to 64milisecond,

namely the strategy shown in Fig.8 are performed every

64milisecond.

The curves in Fig.12 show the error in formation control

with different time steps. As the length of one time step

increases, the error increases accordingly. Deviation of for-

mation depends on the length of one time step. Although

larger deviation errors appear as the length of time step

increases, our robust caging algorithm can endure them. With

objects (a) and objects (b)), our caging algorithm can be

robust to any of the three different time steps shown in

Fig.12. The caging formation from our proposal can not

only reduce robot number as much as possible but also offer

satisfying robustness.

Object (c) is a special case as its size is relatively small

compared with robots and different from its projection on the

ground. In our experiments, only formation control of every

64miliseconds could guarantee successful manipulation. Ac-

tually, circular objects with small dimension could be most

challenging to formation control and could be vulnerable to

caging breaking. After changing the sphere into a cylinder

with larger size (Radius = 1, see object (d)), the robots

can perform successful manipulation at either 64miliseconds
or 128miliseconds intervals. Fig.13 shows the errors of

formation control in these two successful cases.

Fig. 13. Cooperative manipulation of the cylinder object (d) (Radius = 1) is
successful with both time steps in this figure. Namely, our caging algorithm
can endure the formation control error as much as 0.06 for this object.

By the way, our algorithm may suggest more robots to

obtain larger tolerance to formation control errors. As has

been discussed, the “Is τmax large enough?” switch in exter-

nal (a) of Fig.7 corresponds to this idea. By adding redundant

robots like previous works [6][7], both manipulation of the

ball and cylinder may endure formation control errors of

256miliseconds. Fig.14, which compares the results of 3-

robot and 4-robot manipulation of object (c), demonstrates

the idea.

Fig. 14. The algorithm may suggest more robots for larger tolerance to
formation control errors. By adding a redundant robot, manipulation of the
ball object with 256miliseconds becomes safer (see (c)).

In the end, we show certain frames of 3-robot manipulation

with object (b) in Fig.15 for an overview of a whole

experimental procedure. Readers may refer to the attached

video clip for details.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose to perform multi-robot coop-

erative manipulation with both (1) least number of robots

and (2) large robustness to control errors. The proposal

is realized with robust caging and we carried out various

experiments to validate its performance. Experiments show

that our proposal can satisfactorily fulfill our expectation

in multi-robot cooperative manipulation. Robust caging is

a promising tool in reducing agent numbers and maximizing

error tolerance. In the future, we would like to explore more

applications of this tool.



Fig. 12. The curves in these figures illustrate the variation of inter-robot distance during manipulation with respect to different time step (Each figure is
the overlay of all employed robots). Our caging proposal succeeds with any of these errors. Even with a loose formation control (reorganize the formation
at every 256miliseconds) and relative large control error (more than 0.1), the robots can manipulate object (b) and object (c) robustly.

Fig. 15. Some frames of 3-robot manipulation with object (b). It involves (1) motion planning and loose cooperation in figure (a), (b) and (c) and (2)
cooperative object manipulation with robust caging in figure (d), (e) and (f).
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