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Abstract

We propose a novel method for consistent collective activity recognition

in video images. Collective activities are activities performed by multiple

persons, such as queuing in a line, talking together, and waiting at an inter-

section. Since it is often difficult to differentiate between these activities using

the appearance of only an individual person, the models proposed in recent

studies exploit the contextual information of other people nearby. However,

these models do not sufficiently consider the spatial and temporal consis-

tency in a group (e.g., they consider the consistency in only the adjacent

area), and therefore, they cannot effectively deal with temporary misclassi-

fication or simultaneously consider multiple collective activities in a scene.

To overcome this drawback, this paper describes a method to integrate the

individual recognition results via fully connected conditional random fields

(CRFs), which consider all the interactions among the people in a video

clip and alter the interaction strength in accordance with the degree of their

similarity. Unlike previous methods that restrict the interactions among the
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people heuristically (e.g., within a constant area), our method describes the

“multi-scale” interactions in various features, i.e., position, size, motion, and

time sequence, in order to allow various types, sizes, and shapes of groups

to be treated. Experimental results on two challenging video datasets indi-

cate that our model outperforms not only other graph topologies but also

state-of-the art models.

Keywords:

Collective activity recognition, Fully connected model, CRFs, Spatial and

temporal consistency

1. Introduction1

Vision-based human activity recognition is of scientific and practical im-2

portance, and has been actively studied in the research field of computer3

vision. Many previous studies focused on recognizing actions performed by a4

single person in a video clip (Blank et al., 2005; Niebles et al., 2006; Schuldt5

et al., 2004). However, in real-world applications, such as surveillance moni-6

toring, the previous methods are inapplicable, since human actions are rarely7

performed by a single person, but instead by multiple persons. For exam-8

ple, it is difficult to differentiate between the activities of the two persons9

shown in Fig. 1(a), by considering the appearance of the individual person.10

In order to recognize activities performed by multiple persons, which we call11

“collective activities,” it is necessary to exploit the contextual information of12

the people nearby. When we have identified the activities of people nearby,13

it immediately becomes clear that the left person in Fig. 1(a) is queuing and14

the right person is talking, as shown in Fig. 1(b).15
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Figure 1: Useful contexts for collective activity recognition. It is often difficult to differ-

entiate between collective activities by the appearance of only an individual person (a).

When we have identified the activities of people nearby, it immediately becomes clear that

the left person is queuing and the right person is talking (b).

In some recent studies, methods have been proposed for collective ac-16

tivity recognition using the contextual information of people nearby. Choi17

et al. (2009), Lan et al. (2010a), and Kaneko et al. (2012b) encoded the18

contextual information by exploiting the feature descriptors extracted from19

a focal person and his/her surrounding area. These descriptors are more ef-20

fective than feature descriptors without contexts (e.g., histogram of oriented21

gradients (HOG) (Dalal and Triggs, 2005)). However, in the models, the22

activity of each person is classified independently, and therefore, the spatial23

and temporal consistency in a group is not always ensured.24

In order to obtain this consistency, the question “Which people are in25

the same group?” must be answered, and an activity in each group must be26
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optimized. To answer the question, Amer and Todorovic (2011) optimized ac-27

tivities around deformable grids, while Lan et al. (2010b), Choi et al. (2011),28

Choi and Savarese (2012), Khamis et al. (2012a,b) used graph structures29

that describe the interactions between persons. However, the models used30

in these studies cannot describe the “multi-scale” interactions in various fea-31

tures, such as position, size, motion and time sequence, although there exist32

various types, sizes, and shapes of groups, as shown in Fig. 2. The model pro-33

posed by Amer and Todorovic (2011) depended on the density and position34

of the grids, and therefore, it was difficult to exploit long-range relationships.35

In the model proposed by Lan et al. (2010b), the person-person interactions36

were latent and learned automatically; however, their model was restricted37

to modeling contextual information in a single frame, and was not designed38

such that temporal consistency was ensured. Choi et al. (2011) and Khamis39

et al. (2012a,b) considered temporal consistency for a person or group; how-40

ever, in their model, the person-person interactions that were considered were41

restricted only in consecutive frames to compute reasonably. The results of42

these models are likely to be affected by temporary misclassification. Choi43

and Savarese (2012) exploited a hierarchical model to classify collective activ-44

ities jointly; however, they assumed there exists only one collective activity45

in a certain time frame. Therefore, the method cannot model multiple collec-46

tive activities in a scene, such as that shown in Fig. 2(b), where some persons47

are waiting at a street intersection, while others are crossing. Considering48

real-world applications, such as surveillance monitoring, this assumption is49

not natural.50

In contrast, our proposed model describes the “multi-scale” interactions51
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Figure 2: Which people are in the same group? For dividing people into groups, various

criteria, such as (a) position, (b) size, (c) motion, and (d) time sequence, can be used.

in various features, i.e., position, size, motion, and time sequence. This52

means that our model is able not only to describe the long-range relationships53

among people in both time and space, but also to consider multiple collective54

activities in a certain time frame. In particular, we use fully connected55

conditional random fields (CRFs), which consider all the interactions among56

the people in a video clip, and alter the interaction strength according to the57

degree of their similarity. This model is able to represent the various features58

over a “multi-scale” in a single unified model. In general, the calculation cost59

of a fully connected model is intractable when strict estimation is conducted;60

however, the cost is reduced to linear in the number of detected persons using61

a highly efficient approximation method in which the pairwise potentials are62

modeled using Gaussian kernels (Krähenbühl and Koltun, 2011).63
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We summarize the main contributions of this paper. (1) We propose a64

novel method for consistent collective activity recognition in video images65

using a fully connected model. In the model, we do not restrict the person-66

person interactions that are considered heuristically, but instead consider all67

the interactions among the people in a video clip. (2) We describe the person-68

person interactions over the multi-scale, using various features: position,69

size, motion, and time sequence. The interaction strength among the people70

is altered according to the degree of their similarity in the features. (3)71

We perform the inference with linear complexity in the number of detected72

persons, using an approximation method in which the pairwise potential are73

modeled using Gaussian kernels. (4) We evaluate our model on two publicly74

available datasets. The experimental results show that our fully connected75

model outperforms other graph structures, such as the unary only model,76

and the adjacently connected model, as well as state-of-the art models (Choi77

et al., 2009, 2011; Khamis et al., 2012a,b; Lan et al., 2010a; Kaneko et al.,78

2012b). Portions of this paper appeared previously in Kaneko et al. (2012a).79

In this paper, we additionally evaluate our model on the dataset (Choi and80

Savarese, 2012) and report the results to make our contribution stronger.81

We also present comparisons with other graph structures, and an additional82

analysis of the qualitative results, having clarified the characteristic of our83

model. Moreover, we evaluate a novel combination of our fully connected84

model and a state-of-the art feature descriptor (Kaneko et al., 2012b), and85

report the results of a comparison of our proposed model and state-of-the art86

models.87

The rest of the paper is organized as follows. First, in Section 2, we88

6



present our framework of consistent collective activity recognition in video89

images. Next, in Section 3, the details of learning and inference of the model90

are given. In Section 4, we report our experimental results quantitatively and91

qualitatively. Finally, we summarize our paper and present our conclusions92

in Section 5.93

2. Consistent Collective Activity Recognition with Fully Connected94

CRFs95

2.1. Model Overview96

The main goal of our study is to ensure the spatial and temporal consis-97

tency of the activity in each group in collective activity recognition. For this98

purpose, our method uses CRFs (Lafferty et al., 2001). CRFs are a proba-99

bilistic framework for labeling and segmenting structured data and able to100

deal with arbitrary dependencies on the observation sequence in a single uni-101

fied model (He et al., 2004; Shotton et al., 2006). Specifically, in order to102

handle “multi-scale” interactions, our method uses fully connected CRFs. In-103

stead of specifying the interactions among the people heuristically, our model104

describes the interactions in position, size, motion, and time sequence as the105

variable potentials, according to the degree of their similarity, in order to106

allow various types, sizes, and shapes of groups to be treated.107

We now give a brief overview of our model. In the preprocessing step,108

persons in a video clip are found. Next, features (e.g., HOG (Dalal and109

Triggs, 2005) and optical flow) are extracted from the detected bounding box.110

The unary potentials and the pairwise potentials are calculated using the111

features, and integrated via fully connected CRFs. We present the technical112
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details of our model in the following sections.113

2.2. Model Formulation114

Fully Connected CRFs Model. Given a video clip, our method first detects115

persons using an efficient human detector. In our implementation, we use the116

approach of Felzenszwalb et al. (2008). The observed data of the detected117

persons are defined as x = {x1, ..., xN}, where xi is the observed data of the118

i-th person and N is the number of detected persons in the video clip. Let119

the corresponding activity classes be given by y = {y1, ..., yN}. The domain120

of each variable yi is a set of activity classes L = {l1, ..., lK}, where K is the121

number of activity classes. A conditional random field (x,y) is characterized122

by a Gibbs distribution:123

P (y|x) = 1

Z(x)
exp(−E(y|x)), (1)

where Z(x) =
∑

y′ exp(−E(y′|x)) is the partition function that normalizes124

the distribution, and E(y|x) is the Gibbs energy, which is associated with125

a configuration y conditioned on x. In the fully connected pairwise CRF126

model, the Gibbs energy is defined as127

E(y|x) =
∑
i

ψu(yi)︸ ︷︷ ︸
unary potential

+
∑
i

∑
j>i

ψp(yi, yj)︸ ︷︷ ︸
pairwise potential

, (2)

where ψu(yi) is the unary potential and ψp(yi, yj) is the pairwise potential.128

For notational convenience, we omit the conditioning in the rest of this paper,129

and use ψc(yc) to denote ϕc(yc|x) for each clique c.130

Unary Potential. The unary potential ψu(yi) is computed independently for131

each person by a classifier that produces a distribution over the activity label132
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yi given a contextual feature descriptor133

ψu(yi) = − log(P (yi)), (3)

where P (yi) represents the probability that the activity of i-th person is134

yi. P (yi) is calculated by normalizing the classifier scores on the descriptor135

using a softmax function. In our implementation, we use the descriptors that136

encode information about not only the action of an individual person, but137

also the behavior of other people nearby (Choi et al., 2009; Kaneko et al.,138

2012b). The details are described in Section 2.3.139

Pairwise Potential. Since the output of the unary classifier for each person is140

produced independently of the outputs of the classifiers for other people, the141

recognition result achieved by the unary classifiers alone is generally noisy142

and inconsistent. To obtain consistency, we exploit the pairwise potential.143

The pairwise potential ψp(yi, yj) represents the interactions between persons.144

In our fully connected model, the graph structure is the complete graph on145

y, and the pairwise potential is computed for all the sets of persons in a146

video clip. The detailed explanation of our graph structure is described in147

Fig 3. In our model, the pairwise potential is defined as148

ψp(yi, yj) = µ(yi, yj)k(fi,fj), (4)

where µ(yi, yj) is the label compatibility function given by the Potts model149

(Boykov and Jolly, 2001): µ(yi, yj) = [yi ̸= yj]. It introduces a penalty for150

similar persons that are assigned different labels. The vectors fi and fj are151

feature vectors for the i-th and j-th persons, and k(fi,fj) is the Gaussian152

kernel defined by the positions pi and pj, sizes si and sj, motions mi and mj,153
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times ti and tj, and weight w:154

k(fi,fj) = w exp

(
−|pi − pj|2

2θ21
− |si − sj|2

2θ22

−|mi −mj|2

2θ23
− |ti − tj|2

2θ24

)
. (5)

The kernel is inspired by the observation that the persons in the same group155

have similarities in position, size, motion, and time sequence, as illustrated156

in Fig 2.157

It should be noted that we normalize positions and sizes according to158

the median size of all the persons in the video clip, in order to describe159

the interaction strength as a relative rather than an absolute quantity. The160

motion is computed using different methods according to whether a video clip161

is captured using a moving or a fixed camera. When using a moving camera,162

the motion is calculated by subtracting the median optical flow without the163

bounding boxes from the mean optical flow within the bounding box. The164

former optical flow represents the camera motion, while the latter optical165

flow represents the person motion in the image. When using a fixed camera,166

the motion is defined as the mean optical flow within the bounding box. The167

optical flow is computed using the approach of Sun et al. (2010).168

2.3. Contextual Feature Descriptors169

In this section, we describe our method for encoding contextual informa-170

tion into feature descriptors, and calculate the probability in equation (3).171

We use two descriptors: The action context (AC) descriptor proposed by Lan172

et al. (2010a); and the combination of the action context and relative action173

context descriptors (AC-RAC) that we previously proposed (Kaneko et al.,174
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2012b). In the experiments, we use the AC descriptor as the baseline to eval-175

uate our model in comparison with other graph topologies. In Kaneko et al.176

(2012b), it was shown that the AC-RAC descriptor outperforms other previ-177

ous descriptors (Choi et al., 2009, 2011; Lan et al., 2010a). We integrate our178

model with this efficacious descriptor and compare it with state-of-the-art179

methods.180

The Action Context Descriptor. The AC descriptor (Lan et al., 2010a) is181

a per-person descriptor; each descriptor is calculated by concatenating the182

action descriptor, which captures the action of the focal person, and the183

context descriptor, which captures the behavior of nearby people.184

The action descriptor has a bag-of-words style. We employ the person185

descriptors (e.g., HOG (Dalal and Triggs, 2005)) as the underlying repre-186

sentation. We then train a multiclass SVM classifier associated with action187

labels. In the experiments, we use a linear SVM implementation of LIBLIN-188

EAR (Fan et al., 2008). Using the score returned by the SVM classifier, the189

i-th person is represented as the K-dimensional vector Fi = [S1i, S2i, ..., SKi],190

where K is the number of action classes, and Ski is the score of classifying191

the i-th person to the k-th action class.192

When the action descriptor has been computed for each person, the con-193

text descriptor is calculated by integrating the action descriptor of nearby194

people in the “context region.” The context region is further divided into195

M regions, called “sub-context regions,” in space and time, and then the196

context descriptor is represented as the M ×K dimensional vector:197

Ci = [D1i, ..., DMi]
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=

[
max

j∈N1(i)
S1j, ..., max

j∈N1(i)
SKj, ..., max

j∈NM (i)
S1j, ..., max

j∈NM (i)
SKj

]
, (6)

where Dmi is called the “sub-context descriptor” representing the context in198

them-th sub-context region of the i-th person, and Nm(i) denotes the indices199

of people in the sub-context region.200

The AC descriptor of the i-th person, Ai, is computed by concatenating201

its action descriptor Fi and its context descriptor Ci: Ai = [Fi, Ci]. We202

then run the multiclass SVM classifier on the AC descriptor associated with203

activity labels. The classifier scores are normalized using a softmax function,204

and incorporated as the unary potential in equation (3).205

The Relative Action Context Descriptor. The relative action context (RAC)206

descriptor (Kaneko et al., 2012b) is a refinement of the AC descriptor. Unlike207

the AC descriptor, the RAC encodes the relative relationship (e.g., if the208

focal person is facing left and another person is facing right, the relative209

relationship is defined as facing the opposite direction), and therefore, the210

descriptor is invariant under a change in the viewpoint, and consistent within211

the same category of collective activity.212

Similarly to Lan et al. (2010b), we define actions by concatenating poses213

and activities (e.g., talking and facing right). This means that the action de-214

scriptor and the sub-context descriptor are K(= U×V ) dimensional vectors,215

where U is the number of activity classes and V is the number of pose classes.216

Using U and V , we redefine the action descriptor Fi, and the sub-context217

descriptor Dmi in the AC descriptor:218

Fi = [S1i, S2i, ..., SKi]

= [S11i, S12i, ..., Suvi, ..., SUV i] , (7)
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Dmi =

[
max

j∈Nm(i)
S1j, ..., max

j∈Nm(i)
SKj

]
=

[
max

j∈Nm(i)
S11j, max

j∈Nm(i)
S12j, ..., max

j∈Nm(i)
Suvj, ..., max

j∈Nm(i)
SUV j

]
. (8)

The RAC descriptor is calculated by shifting the AC descriptor based on the219

pose of the focal person. First, the pose of the i-th person, v̂i, is calculated220

from the person descriptor (e.g., HOG (Dalal and Triggs, 2005)) using a221

multiclass SVM classifier. In terms of pose v̂i, the i-th person’s relative222

action descriptor F̂i and its relative sub-context descriptor D̂mi are defined223

as224

F̂i =
[
S1v̂ii, ..., S1V i, S11i, ..., S1(v̂i−1)i, ...,

SUv̂ii, ..., SUV i, SU1i, ..., SU(v̂i−1)i

]
, (9)

D̂mi =

[
max

j∈Nm(i)
S1v̂ij, ...., max

j∈Nm(i)
S1V j, max

j∈Nm(i)
S11j, max

j∈Nm(i)
S1(v̂i−1)j, ...,

max
j∈Nm(i)

SUv̂ij, ...., max
j∈Nm(i)

SUV j, max
j∈Nm(i)

SU1j, max
j∈Nm(i)

SU(v̂i−1)j

]
.(10)

The relative context descriptor of the i-th person, Ĉi, is computed by225

concatenating its relative sub-context descriptor: Ĉi = [D̂1i, ..., D̂Mi]. Fi-226

nally, the RAC descriptor of the i-th person, Ri, is computed by concate-227

nating its relative action descriptor F̂i and its relative context descriptor Ĉi:228

Ri = [F̂i, Ĉi].229

The Combination of the AC and RAC Descriptors. We now describe the230

method for combining the AC and RAC descriptors (AC-RAC) (Kaneko231

et al., 2012b). After extracting the AC and RAC descriptors, we run the232

multiclass SVM classifier on each of the descriptors associated with activity233

labels, and transform classifier scores into probabilities via softmax transfor-234

13



mation. We then combine them via the MAX rule (Hatef et al., 1998):235

ŷi = arg max
yi

Pi(yi) s.t. Pi(yi) = max
k
Pi(yi|dk), (11)

where Pi(yi) is the probability that the activity of the i-th person is yi, and236

Pi(yi|d1) and Pi(yi|d2) are the probability calculated from the AC and RAC237

descriptors, respectively. The probability Pi(yi) is incorporated as the unary238

potential in equation (3).239

It should be noted that, when we use the AC-RAC descriptor in our im-240

plementation, we employ two post processes (threshold processing and Gaus-241

sian filtering) on the AC and RAC descriptors to accelerate the performance242

(Kaneko et al., 2012b).243

3. Inference and Learning244

3.1. Inference245

In inference, the maximum a posteriori (MAP) labeling of the random246

field is estimated:247

ŷ = arg max
y∈LN

P (y|x). (12)

The exact distribution P (y|x) for all the sets of labels LN is computation-248

ally intractable; however, the calculation cost is reduced to linear in the249

number of detected persons via the highly efficient approximation method250

described in Krähenbühl and Koltun (2011), because we define the pairwise251

potentials in our model as Gaussian kernels. The approximation method252

uses cross bilateral filtering techniques within a mean field approximation253

framework. The mean field approximation finds a product of independent254

14



marginals Q(y) =
∏

iQi(yi) close to P (y) in terms of minimizing the KL-255

divergence D(Q||P ) (Koller and Friedman, 2009). By considering the fixed-256

point equations that hold at the stationary points of KL-divergence, the257

following iterative update equation is derived for Qi(yi = l) given Qj(yj) for258

all j ̸= i:259

Qi(yi = l) =
1

Zi

{
−ψu(yi)

−
∑
l′∈L

µ(l, l′)
∑
j ̸=i

k(fi,fj)Qj(l
′)

}
, (13)

where Zi normalizes the marginal at node i. A naive implementation of this260

approximation has quadratic complexity in the number of variables N , when261

calculating a message passing step: Q̃i(l) =
∑

j ̸=i k(fi,fj)Qj(l). However, in262

Krähenbühl and Koltun (2011), it is shown that the message passing step can263

be expressed as a convolution with a Gaussian kernel Q̃i(l) = [G⊗Q(l)](fi)−264

Qi(l), where G is a Gaussian kernel and ⊗ is the convolution operator, and it265

is possible to leverage high-dimensional filtering, such as the permutohedral266

lattice method (Adams et al., 2010). This reduces the calculation complexity267

from quadratic to linear in the number of variables N . It should be noted268

that Krähenbühl and Koltun (2011) report that the inference time is less269

than one sec for several tens of thousands of variables.270

3.2. Learning271

In learning, we use piecewise training (Sutton and McCallum, 2005). In272

piecewise training, the model is divided into several components, each of273

which is trained independently. Theoretically speaking, piecewise training274

minimizes an upper bound on the log partition function of the model. The275
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experimental results presented in Shotton et al. (2006) and Sutton and Mc-276

Callum (2005) show that piecewise training often performs comparably to277

global training, even when joint full inference is used. In our model, the278

unary potentials are trained first, using the contextual feature descriptors279

described in Section 2.3. Next, we learn the kernel parameters w, θ1, θ2, θ3,280

and θ4 in the pairwise potentials. w can be found efficiently by exploiting281

expectation maximization and high-dimensional filtering. However, it is not282

easy to optimize the kernel widths θ1, θ2, θ3, and θ4 globally, due to their non283

convexity on log-loss criteria. Therefore, we use a grid search on the training284

set with cross-validation for all the kernel parameters.285

4. Experiments286

4.1. Datasets and Experimental Setup287

We evaluated our model on the Collective Activity Dataset introduced in288

Choi et al. (2009) and the dataset introduced in Choi and Savarese (2012).289

Hereafter, we call the former the “Dataset I,” and the latter the “Dataset290

II.” These datasets were considered appropriate for our evaluation, since291

they include activities performed by multiple persons in a natural setting.292

In most previous studies in the human action recognition field, the proposed293

algorithms were evaluated on standard benchmark datasets such as the KTH294

(Blank et al., 2005) and Weizmann (Schuldt et al., 2004) datasets. However,295

these datasets include a single person performing a specific action, and the296

video clips in the datasets were recorded in a controlled setting with a small297

amount of camera motion and a clean background. The Hollywood human298

action dataset (Laptev et al., 2008) and UT-Interaction dataset (Ryoo and299
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Aggarwal, 2010) are more challenging and contain actions performed by more300

than one actor; however, the actions (e.g., hand shaking, hugging) are not301

collective, but rather two persons perform one action together.302

The Dataset I is composed of 44 short video clips, including five activity303

classes: crossing, waiting, queuing, walking, and talking. The video clips in304

the dataset were recorded using low resolution hand-held cameras under real-305

istic conditions, including camera shaking, background clutter, and transient306

mutual occlusions of persons. Some video clips include multiple collective307

activities in a scene or activity transition. All the persons in every tenth308

frame of the videos are labeled with the ground truth: pose, activity, and309

bounding box information.310

The Dataset II is composed of 32 short video clips, including six activity311

classes: gathering, talking, dismissal, walking together, chasing, and queuing.312

The video clips in the dataset were recorded using a fixed camera in the out-313

doors. We omitted the activity queuing and used the remaining 30 short video314

clips for evaluation, because the number of video clips containing queuing is315

only two, and therefore, too small to evaluate using a leave-one-video-out316

cross-validation scheme. It should be noted that each of the other activities317

is contained in more than five video clips, respectively. While the pose label318

and bounding box information are annotated per person, the activity label319

is annotated per frame, since Choi and Savarese (2012) assumed there exists320

only one collective activity in a certain time frame, and their goal was to clas-321

sify the activity per frame. However, this assumption is not always natural,322

because some video clips contain multiple activities in a single frame, e.g.,323

one person is passing by, while the others are chasing. We therefore added324
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the walking alone activity class and re-annotated each person with six ac-325

tivities: gathering, talking, dismissal, walking together, chasing, and walking326

alone.327

We evaluated our model in a way similar to that of Choi et al. (2009,328

2011), Khamis et al. (2012a,b), Lan et al. (2010a), and Kaneko et al. (2012b).329

For each dataset, we used the leave-one-video-out cross-validation scheme.330

This means that when we classified activities in one video, all the other331

videos in the dataset were used for training and validation. We report ac-332

tivity classification results on a per-person basis. It should be noted that, in333

some previous studies (Lan et al., 2010b; Choi and Savarese, 2012), it was334

assumed that there exists only one collective activity in a certain time frame,335

and activity classification results were reported on a per-frame basis. This336

experimental protocol is inadequate to evaluate our model, because our goal337

was to segment collective activities in a scene where multiple groups exist,338

as shown in Fig. 2.339

The experiments were conducted on an Intel Core i7 processor clocked at340

2.2 GHz. The calculation complexity of inference using our fully connected341

model was O(N), where N (the number of detected persons) was typically in342

the order of tens, hundreds, or thousands, and inference time was less than343

0.1 sec per video sequence for both the datasets. It should be noted that,344

in Choi and Savarese (2012), the classification and target association take345

about 1 min per video sequence, given tracklets and observations.346

4.2. Evaluation of Graph Structures347

In order to evaluate the performance of the proposed model comprehen-348

sively, we compared it with several baseline models. The first baselines use349
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(b) Connected Per Frame (c) Adjacently Connected (d) Fully Connected

Time

(e) Simple Fully Connected

Time

(a) Unary Only

Time

Figure 3: A structure of person-person interactions in each graph model. Each node

represents a person in a video. Dashed lines represent that the interaction strength between

persons is altered according to the degree of their similarity, while solid lines represent

that the interaction strength between persons is constant, regardless of the degree of their

similarity. (a) The unary only model (no connection between any pair of nodes); (b) nodes

are connected in a frame; (c) nodes are connected in adjacent frames; (d) and (e) all the

nodes are connected in a video.

various ways of setting the structures of the person-person interactions. The350

structures that we considered are shown in Fig. 3(a)-(c), including (a) the351

Unary Only model (no pairwise connection); (b) the graph obtained by con-352

necting persons in a frame (the Connected Per Frame model); (c) the graph353

obtained by connecting persons in adjacent frames (the Adjacently Connected354

model). It should be noted that in our proposed Fully Connected model, all355

the persons in a video are connected, as shown in Fig. 3(d). In the three356

models shown in Fig. 3(b)-(d), pairwise potentials are defined as Gaussian357

edge potentials, and therefore, the interaction strength between persons is358

altered according to the degree of their similarity.359

In order to evaluate the Gaussian edge potentials, we also compared the360

proposed model with the other baseline (which we call Simple Fully Con-361

nected), fully connected CRFs with constant edge potentials, as shown in362

Fig. 3(e). In the model, the pairwise potential in equation (2) is defined363

as ϕp(yi, yj) = wµ(yi, yj). Unlike in the proposed model, the interaction364
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strength between persons in this model is constant over a video. In order to365

analyze the efficacy of the graph structure models, we used the AC descrip-366

tor (Lan et al., 2010a) as the baseline, and calculated the unary potential in367

equation (3) based on this descriptor.368

Table 1: Comparison of activity classification accuracy levels for different graph structures.

Each graph structure has a different structure of person-person interactions or different

interaction strength between persons. The details are illustrated in Fig. 3.

Method/Dataset Dataset I Dataset II

(Choi et al., 2009) (Choi and Savarese, 2012)

Unary Only 67.4% 56.2%

Connected Per Frame 68.6% 56.7%

Adjacency Connected 69.6% 57.6%

Fully Connected 72.2% 59.3%

Simple Fully Connected 68.7% 55.5%

Quantitative Results. The comparison results of our approach and the base-369

lines are summarized in Table 1. The results shows that our model (Fully370

Connected) outperforms the baselines on the two datasets. The Simple Fully371

Connected model has a fully connected graph structure, as does the Fully372

Connected model; however, the former is significantly outperformed by the373

latter, since the former exploits the long-range interaction but cannot deal374

with multiple collective activities and activity transition. The confusion ma-375

trices of our model and the baseline (the Unary Only model) are illustrated376

in Fig 4. These confusion matrices show that our proposed Fully Connected377

model achieves a significant improvement over the baseline. It should be378
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Figure 4: Confusion matrices for activity classification on the two datasets. (a) and (b)

show the confusion matrices for collective activity using the baseline (the Unary Only

model) and proposed method on the Dataset I (Choi et al., 2009), respectively. (c) and

(d) compare the two methods on the Dataset II (Choi and Savarese, 2012). In both

cases, our fully connected model significantly outperforms the baseline method. In a

confusion matrix, rows represent ground truth and columns represent prediction. Each

row is normalized to sum to 1.

noted that walking vs crossing for the Dataset I is still ambiguous in our379

model, because whether a person is walking or crossing often depends not on380

the person-person interactions but on the environmental setting, such as a381

sidewalk or a pedestrian crossing. In both our model and the baseline, walk-382

ing alone on the Dataset II is confused with dismissal and walking together,383

because walking alone is a single person activity and the neighbors of the384

person have a variety of appearances, e.g., one person passing by other peo-385

ple often seems like dismissal. However, the number of confusions is reduced386

using our model.387

Qualitative Results. We also visualize the qualitative results using different388

structures of person-person interactions in Figs. 5–7. Fig. 5 shows typical389

success and failure examples, Fig. 6 shows examples of the scenes where mul-390

tiple groups exist, and Fig. 7 shows examples of the case where the activities391
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transition from one to another.392

Fig. 5 shows typical success and failure examples for the Dataset I. Fig. 5(a)–393

(b) demonstrates that the classification result achieved by the Unary Only394

model is often noisy and inconsistent, since the activity of each person is395

classified independently in the model. In the Connected Per Frame model396

and the Adjacently Connected model, collective activities are optimized in397

a frame and consecutive frames, respectively; however, misclassification of398

some persons in the duration of the video clip often causes misclassification399

of others. In contrast, in our Fully Connected model, the misclassification400

is fixed, and we obtain the temporal and spatial consistency of the activity401

in a group by leveraging the cues over the multi-scale. However, the wrong402

classification in the Unary Only model causes any graph structure to classify403

everyone incorrectly, as shown in Fig. 5(c).404

Fig. 6 visualizes examples of the scenes where multiple groups exist in405

the Dataset I. Fig. 6(a)–(b) shows that the Fully Connected model yields406

misclassification errors, but achieves consistency in each group, while the407

other models fail to obtain consistency. This is because the Connected Per408

Frame model and the Adjacently Connected model are likely to be influenced409

by the misclassification of some persons in the same frame and consecutive410

frames, respectively. However, the high level of confidence in the wrong label411

in the Unary Only model causes any structure to fail to obtain consistency,412

as shown in Fig. 6(c).413

Fig. 7 visualizes examples of the case where the activities transition from414

one to another in the Dataset II. In particular, the activity transitions from415

gathering to talking. Since the point at which gathering changes to talking is416

22



ambiguous, that of the Fully Connected model is not completely consistent417

with that of the ground truth; however, only our model succeeds in recog-418

nizing the transition between the two activities, in contrast to any other419

model.420

23



U
n

a
ry

 O
n

ly
F

u
lly

 C
o

n
n

e
c
te

d

Time

A
d

ja
c
e

n
tl
y
 C

o
n

n
e

c
te

d
C

o
n

n
e

c
te

d
 P

e
r 

F
ra

m
e

G
ro

u
n

d
 T

ru
th

T
T

T

W
S

Q

W
Q

Q

Q
Q

Q

Q
Q

Q

S

S

S
S

S
S

S

S

S

S
S

S S S
S

S

S

S S
S S

S

S

S

S
S

S
S

S

S

S

S
S

S S S
S

S

S

S S
S S

S

Q

S

Q
Q

Q
Q

Q

S

S

Q
Q

Q Q Q
Q

S

S

Q Q
S Q

Q

Q

Q

S
S

S
Q

S

Q

Q

Q
Q

Q Q Q
Q

S

S

S S
S S

S

Q

S

Q
S

S
Q

S

Q

S

Q
S

S Q Q
Q

S

S

Q S
S Q

S

W W

C
C C

W W

C
C C

W W

W
C C

W W

W
W W

W W

W
W W

(a) (b) (c)

Figure 5: (Best viewed in color) Visualization of typical success and failure examples for

the Dataset I (Choi et al., 2009) using different structures of person-person interactions.

The labels C (magenta), S (blue), Q (cyan), W (red), T (green), and NA (white) indicate

crossing, waiting, queuing, walking, talking, and not assigned, respectively. The first row

shows the ground truth; the second row shows results using the Unary Only model; the

third row shows results using the Connected Per Framemodel; the fourth row shows results

using the Adjacently Connected model; the fifth row shows results using our proposed Fully

Connected model. The first three columns (a) represent results in the consecutive frames

in the same video clip, and the last two columns (b)-(c) represent results in other video

clips. In the first four columns (a)-(b), temporary misclassification in the Unary Only

model is fixed in the Fully Connected model. In the fifth column (c), any structure fails

to classify collective activities, affected by the wide and continuous misclassification in the

Unary Only model.
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Figure 6: (Best viewed in color) Visualization of examples of the scenes where multiple

groups exist in the Dataset I (Choi et al., 2009). The labels C (magenta), S (blue), Q

(cyan), W (red), T (green), and NA (white) indicate crossing, waiting, queuing, walking,

talking, and not assigned, respectively. The first row shows the ground truth; the second

row shows results using the Unary Only model; the third row shows results using the

Connected Per Frame model; the fourth row shows results using the Adjacently Connected

model; the fifth row shows results using our proposed Fully Connected model. The first

three columns (a) represent results in the consecutive frames in the same video clip, and

the last two columns (b)-(c) represent results in other video clips. In the first four columns

(a)-(b), the Fully Connected model achieves consistency in a group, although the other

models fail to obtain consistency in some scenes. In the fifth column (c), the high level

of confidence in the wrong label in the Unary Only model causes any structure to fail to

obtain consistency.
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Figure 7: (Best viewed in color) Visualization of examples of the case where the activities

transition from one to another in the Dataset II (Choi and Savarese, 2012). In particular,

the activity transitions from gathering to talking. The labels G (magenta), T (green), D

(cyan), and W (red) indicate gathering, talking, dismissal, and walking together, respec-

tively. The first row shows the ground truth; the second row shows results using the Unary

Only model; the third row shows results using the Connected Per Frame model; the fourth

row shows results using the Adjacently Connected model; the fifth row shows results using

our proposed Fully Connected model. Since the point at which gathering changes to talking

is ambiguous, that of the Fully Connected model is not completely consistent with that of

the ground truth; however, only our model succeeds in recognizing the transition between

the two activities, in contrast to any other model.
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4.3. Comparison with State-of-the-Art Methods421

We also compared our method with recent methods (Choi et al., 2009,422

2011; Khamis et al., 2012a,b; Lan et al., 2010a; Kaneko et al., 2012b). So423

that the comparison would be fair, we used the same leave-one-video-out424

scheme described in the studies; we report activity classification results on425

a per-person basis. In order to evaluate our fully connected model in com-426

parison with state-of-the art models, we calculated the unary potentials in427

equation (3) using not only the AC descriptor (Lan et al., 2010a) but also428

the combination of the AC and RAC descriptors (AC-RAC) (Kaneko et al.,429

2012b).430

Results. The comparison results of the activity classification accuracy levels431

for different methods for the Dataset I and Dataset II are summarized in432

Table 2. We analyzed our results mainly on the Dataset I, because in no433

previous study a model was evaluated using the same protocol as ours in the434

Dataset II.435

In the models using the AC descriptor as the baseline, our model (AC +436

FC-CRF) outperforms the other models: AC + Frame Cues (Khamis et al.,437

2012a), AC + Track Cues (Khamis et al., 2012b) and AC + Frame/Track438

Cues (Khamis et al., 2012a), although our baseline (AC) is inferior to those439

of (Khamis et al., 2012a,b). It should be noted that AC + Frame/Track440

Cues (Khamis et al., 2012a) connects only people with overlapping bounding441

boxes in consecutive frames to improve the inference speed, while our model442

can solve the fully connected model in less than 0.1 sec. AC + FC-CRF also443

outperforms STV + MC (Choi et al., 2009) and RSTV + MRF (Choi et al.,444

2011). It should be noted that these models (Choi et al., 2009, 2011) em-445
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ploy additional trajectory information of each person to obtain consistency.446

However, it is not easy to obtain the correct trajectory in a scene where447

transient mutual occlusions of persons exist. Mistakes produced during the448

tracking step can influence the performance of the model during recognition.449

Khamis et al. (2012a,b) also did not use the trajectory, and instead solved450

the identity maintenance problem and action recognition simultaneously.451

We also show the results obtained using our previously proposed descrip-452

tor (AC-RAC) (Kaneko et al., 2012b) and integration of our model and the453

descriptor (AC-RAC + FC-CRF). In the two datasets, AC-RAC outperforms454

the other feature descriptors, and the integration of our model and the de-455

scriptor (AC-RAC + FC-CRF) achieves the best performance. Choi and456

Savarese (2012) reported an accuracy (74.4%) that is competitive with that457

achieved by our method (74.7%) on the Dataset I. However, since their ac-458

curacy level was achieved using a different experimental protocol, i.e., they459

assigned the per-scene collective activity labels that they obtained with four-460

fold experiments to each individual, it is not directly comparable to the461

accuracy levels listed in Table 2.462

In the Dataset II, no previous method was directly comparable to our463

method, because, in no previous study, a model was evaluated on a per-person464

basis like ours, while Choi and Savarese (2012) evaluated their model on a465

per-frame basis, and reported an accuracy (74.3% mean-per-class using base-466

line method and 79.2% mean-per-class using their proposed method). The467

direct comparison between our method and their method using the same ex-468

perimental protocol would be an interesting topic, however, it would be hard469

to perform the direct comparison, because the assumptions of our and their470
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models are basically different and it is required to reformulate the problems471

significantly. Our model aims to recognize an activity in each group even472

in the scene where multiple activity groups exist, while their model aims to473

recognize one main collective activity per frame under the assumption that474

there is only one collective activity per scene per time stamp. It should be475

noted that our and their model require the different annotated information476

in training process. Our model requires the activity label annotated per per-477

son, while their model requires the activity label annotated per frame. In the478

scene where some activity groups exist, they assigned each frame into one479

activity label by taking the majority of activities of persons in that frame.480
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Table 2: Comparison of activity classification accuracy levels for different methods on the

Dataset I (Choi et al., 2009) and Dataset II (Choi and Savarese, 2012). The methods

without a plus sign (+) do not use graph structure, s.t., unary only models, such as shown

in Fig. 3(a), while the methods with a plus sign (+) use a graph structure, such as shown

in Fig. 3(b)–(e). The last four rows show the results obtained using our implementa-

tion. In the two datasets, our previously proposed descriptor (AC-RAC) (Kaneko et al.,

2012b) outperforms the other feature descriptors, and the integration of our model and

the descriptor (AC-RAC + FC-CRF) achieves the best performance.

Method/Dataset Dataset I Dataset II

(Choi et al., 2009) (Choi and Savarese, 2012)

AC (Lan et al., 2010a) 68.2% -

STV (Choi et al., 2009) 64.3% -

STV + MC (Choi et al., 2009) 65.9% -

RSTV (Choi et al., 2011) 67.2% -

RSTV + MRF (Choi et al., 2011) 70.9% -

AC (Khamis et al., 2012b) 68.8% -

AC + Track Cues (Khamis et al., 2012b) 70.9% -

AC + Frame Cues (Khamis et al., 2012a) 70.7% -

AC + Frame/Track Cues (Khamis et al., 2012a) 72.0% -

AC 67.4% 56.2%

AC + FC-CRF 72.2% 59.3%

AC-RAC 71.9% 66.4%

AC-RAC + FC-CRF 74.7% 70.7%

5. Conclusion and Discussion481

In this paper, we described a method for consistent collective activity482

recognition that uses fully connected CRFs, which consider all the interac-483

tions among the people in a video clip and alter the interaction strength484

according to the degree of their similarity. Our model leverages various fea-485

tures, such as position, size, motion, and time sequence, over a “multi-scale”486
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in a single unified model, in order to allow various types, sizes, and shapes487

of groups to be treated. The intractability of the fully connected model is488

overcome by describing the pairwise potentials as Gaussian kernels and using489

a highly efficient approximation method. Our experimental results showed490

that our model is robust against temporary misclassification and able to deal491

with multiple activities in a scene and activity transition. Quantitative eval-492

uation on the two publicly available datasets showed that our fully connected493

model outperforms state-of-the art models, as well as other graph structures,494

such as the unary only model and the adjacently connected model.495

Future directions include investigation of other useful contexts for collec-496

tive activity recognition, such as environmental settings; extension to online497

processing for online applications; and research on efficient learning tech-498

niques as a substitute for grid search to optimize the kernel parameters effi-499

ciently.500

References501

Adams, A., Baek, J., Davis, M. A., 2010. Fast high-dimensional filtering502

using the permutohedral lattice. In: Computer Graphics Forum.503

Amer, M. R., Todorovic, S., 2011. A chains model for localizing participants504

of group activities in videos. In: International Conference on Computer505

Vision (ICCV).506

Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R., 2005. Actions507

as space-time shapes. In: International Conference on Computer Vision508

(ICCV).509

31



Boykov, Y. Y., Jolly, M.-P., 2001. Interactive graph cuts for optimal bound-510

ary and region segmentation of objects in n-d images. In: International511

Conference on Computer Vision (ICCV).512

Choi, W., Savarese, S., 2012. A unified framework for multi-target tracking513

and collective activity recognition. In: European Conference on Computer514

Vision (ECCV).515

Choi, W., Shahid, K., Savarese, S., 2009. What are they doing?: Collective516

activity classification using spatio-temporal relationship among people. In:517

International Workshop on Visual Surveillance (VS).518

Choi, W., Shahid, K., Savarese, S., 2011. Learning context for collective519

activity recognition. In: IEEE Conference on Computer Vision and Pattern520

Recognition (CVPR).521

Dalal, N., Triggs, B., 2005. Histograms of oriented gradients for human detec-522

tion. In: IEEE Conference on Computer Vision and Pattern Recognition523

(CVPR).524

Fan, R. E., Chang, K. W., Hsieh, C. J., Wang, X. R., Lin, C. J., 2008.525

LIBLINEAR: A library for large linear classification. Journal of Machine526

Learning Research (JMLR) 9, 1871–1874.527

Felzenszwalb, P., McAllester, D., Ramanan, D., 2008. A discriminatively528

trained, multiscale, deformable part model. In: IEEE Conference on Com-529

puter Vision and Pattern Recognition (CVPR).530

Hatef, M., Duin, R. P., Matas, J., 1998. On combining classifiers. IEEE531

32



Transaction on Pattern Recognition and Machine Intelligence (PAMI) 20,532

226–239.533
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