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ABSTRACT
Crowdsensing technologies are rapidly evolving and are ex-
pected to be utilized on commercial applications such as
location-based services. Crowdsensing collects sensory data
from daily activities of users without burdening users, and the
data size is expected to grow into a population scale. How-
ever, quality of service is difficult to ensure for commercial
use. Incentive design in crowdsensing with monetary rewards
or gamifications is, therefore, attracting attention for moti-
vating participants to collect data to increase data quantity.
In contrast, we propose Steered Crowdsensing, which con-
trols the incentives of users by using the game elements on
location-based services for directly improving the quality of
service rather than data size. For a feasibility study of steered
crowdsensing, we deployed a crowdsensing system focusing
on application scenarios of building processes on wireless in-
door localization systems. In the results, steered crowdsens-
ing realized deployments faster than non-steered crowdsens-
ing while having half as many data.
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INTRODUCTION
The proliferation of smart phones makes it increasingly feasi-
ble to build context-aware systems that gather large-scale sen-
sory data. One of the important applications of context-aware
systems is location-based services such as enhanced local
search and recommendation, games, and social network ser-
vices. Numerous research prototypes of context-aware sys-
tems have been demonstrated, enabling, for example, meter-
level localization based on wireless technologies [11, 12, 13,
21], prediction of location categories that participants visit
(e.g., workplaces, homes, or cafes) [15], and understanding
of building-scale behavior analysis [25]. On the other hand,
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the quality of collected data is becoming a bottle-neck for pro-
moting the application of the context-aware systems to com-
mercial services.

One approach for solving the data quality problems is to
utilize advanced machine learning methods such as semi-
supervised learning, and transfer learning to reduce the quan-
tity of necessary data. The main idea of these learning meth-
ods is to extract knowledge from unlabeled data or other field
data that are more abundant or lower cost. For example,
Lane et al. [23] show activity recognition such as “Walking”
and “Exercising” can be improved by transferring knowledge
from other users who have similar with demographic infor-
mation or sensory data. Even with these methods, the sensor
data need to cover spatial, temporal, and demographic areas.

In recent years, alternative mainstream approach is Oppor-
tunistic Crowdsensing, which aims to increase the quantity of
data collected by sensing users daily activities without bur-
dening users. The most important related work for oppor-
tunistic crowdsensing system is CrowdSense@Place devel-
oped by Chon et al. [14]: one of the largest examples of
mobile crowdsensing. They recruited 85 participants to col-
lect data for two months in Seoul, South Korea. According
to their reports, the crowdsensing can provide relatively high
coverage levels in popular places even with a small number
of contributors. Almost places in the real world are, how-
ever, unpopular and uncovered by directly increasing quan-
tity of data. Therefore, some researchers proposed to utilize
Gamification, which has been mainly used just to improve
user experience or user engagement. The gamifications in
most proposals aim to improve quality of data indirectly by
directly increasing quantity. In contrast, Chon et al. [14] also
reported that it is difficult for only growth of a population to
achieve high place-temporal coverage of data collection, and
is necessary to recruit spatially distributed participants. Just
increasing quantity is not able to be scaled up due to mon-
etary cost and time consumption. That is, as shown Figure
1, it is important to control the incentives by rewards such
as game points or money for directly improving the quality
of service rather than the size of data (e.g., localization and
categorization accuracy).

To control users incentives for quality of services, incentive
design has started to attract attention in crowdsensing field in
recent years [30, 28, 27, 31, 22, 20]. In this context, gam-
ifications are also used to guide users to uncovered location
[30, 28, 27]. Due to noise of sensor data or sensing skills of
users, increasing the coverage does not always directly im-



Figure 1. Comparison between existing crowdsensing and steered
crowdsensing.

prove the quality of the services. In contrast, Koutsuopoulos
[22] formalized the incentive mechanism as an auction model
in crowdsensing by directly considering the quality. The auc-
tion model arisen from crowdsourcing context is appropriate
for complex collection task. In contrast, it is inappropriate for
Opportunistic Crowdsensing, because the auction process is
unnatural and troublesome for the users.

In this paper, we propose a framework called Steered Crowd-
sensing, which directly increases the quality of service even
in natural crowdsensing settings that keep the process simple
to collect data. The simple process is as follows: the sys-
tem determines the rewards for data collection such as game
points and coupon points, then users decide whether partici-
pate to collect. We formalize the calculation of points paid for
users by introducing a quality indicator of service in online
machine learning setting. In this paper, by illustrating ap-
plication scenarios, we confirm the feasibility of introducing
steered crowdsensing to commercial location-based services
in the real world and the merits for both the users and services
of improving the quality of crowdsensing. In the formaliza-
tion, by considering the probabilistic model of users and a
trade-off of the explicit rewards of the services, we show pos-
sibilities to reduce both the users workload and the system
payment to users.

For the first step of quantitative evaluation of steered crowd-
sensing, we deployed a crowdsensing system focusing on
building processes of wireless indoor localization. We re-
cruited 18 people for five weeks, and conducted the experi-
ment on six floors of a university facility building. To assess
the incentives of gamification and the direct controls of the
quality separately, we gradually introduced them to the sys-
tem week by week. Based on our deployment experience and
analysis of the collected dataset, we report the following find-
ings: 1) gamification with monetary rewards in our field trials
strongly motivated some participants to collect data, 2) the
strength of incentives is controllable by adjusting the game
elements, and 3) quality of localization can be raised thanks
to the user incentives controlled by our framework.

The contributions of this paper are as follows: 1) Proposal
and formalization of a steered crowdsensing framework for
effective data collection, 2) the quantitative evaluation of in-
centive design such as gamification on crowdsensing in the
real world, and 3) illustration of effectiveness of controls for
quality of service rather than quantity of data. We believe

the analysis and findings we present provide valuable insights
useful for builders of crowdsensing systems.

RELATED WORK
In this section, we describe place-centric crowdsensing and
researches into steered crowdsensing. First, we explain place-
centric crowdsensing and show the necessity of effective data
collection scheme. Then, we illustrate incentive design ideas
considered effective for improving the crowdsensing system.

Place-centric Crowdsensing
Place-centric crowdsensing has been widely studied [11, 14,
30, 28, 27, 26]. For example, Azizyan et al. [11] pro-
posed SurroundSense, in which smartphone sensors are used
to build a localization system on the basis of sensor finger-
prints. Tuite et al. [30] introduced an online real world game
called PhotoCity to motivate its participants to take photos
at targeted locations to create 3D building models. In these
applications, the systems need to gather data by considering
noises and variances analyzed from collected data as well as
quantity and coverage of data. In present systems, the incen-
tive designs are elaborated and manually controlled for guid-
ing to locations lacking data. In this paper, we formalize the
incentive design by introducing quality indicator and realize
systematical crowdsensing.

Incentive Designs making Crowdsensing Practical
Recently incentive designs succeeded in other fields are ex-
ploited to make the crowdsensing practical. We illustrate two
directions: quantity-oriented design and quality-oriented de-
sign. These technologies discussed in both directions are able
to be applied to direct control of data quality in steered crowd-
sensing.

Quantity-Oriented Incentive Design
There are many ideas to increase the quantity of data of
crowdsensing, such as paying monetary rewards, embedding
the collection process in the location-based services. Gamifi-
cation is one of most popular ideas for increasing the quantity
of data [17]. For example, gamification is applied to many so-
cial networks services, wearable devices for health services,
and so on [4, 3]. Many useful heuristic design guides have
been developed thanks to gamification for a long time in the
video game field [32]. From gamification, research into quan-
titative evaluation for gamification has emerged. For exam-
ple, Anderson et al. [10] build user behavior models for re-
ceiving badges on a Q&A website. Some researchers have
applied gamification to crowdsensing [30, 28]. However, the
game elements indirectly increase the quality by directly in-
creasing quantity and coverage. We present formalization for
directly increasing quality of data.

Quality-Oriented Incentive Design
Quality-oriented incentive design has been studied mainly in
crowdsourcing field. In the crowdsourcing field, there are var-
ious commercial internet marketplaces for and researches into
improving quality of data and reducing cost. In the crowd-
sensing field, a few commercial services [5, 2] and analytic
researches [31, 22, 20] have just begun to emerge. Espe-
cially, Koutsuopoulos [22] formalized the incentive design on



Figure 2. The flow of steering users.

crowdsensing as an auction model by considering costs paid
to users and quality of service. The auction model includes
a type of price negotiation process to reduce the cost and en-
sure the quality of data. This is appropriate for the system that
one unit of collection task needs higher cost and to reduce the
cost is necessary (e.g., writing a review of a restaurant, us-
ing special devices for measuring air pollution). However,
in many crowdsensing settings, one unit of collection task is
very low cost (e.g., choosing a category of users’ current lo-
cation, sensing with a common smart phone on background
processes). In these settings, the negotiation process is trou-
blesome for users and unnatural. Therefore, crowdsensing
on auction model prolong the time until collection and might
miss up-to-date data (e.g., real-time weather forecasting, ur-
ban parking space management). To remove the troublesome
and collect data without burdening users, we omit the negoti-
ation process and propose the calculation of the price directly
in our formalization.

Reddy et al. [27] also formalized a recruitment process for
crowdsensing to select participants for improving the quality
of data and quantitatively evaluated the system by omitting
negotiation processes. Instead of the negotiation processes,
the system considers availability predictions of participants
for the recruitment and reputations as data collections are in-
troduced for incentivization. Therefore, the system relies on
past coverage and participant behavior. Moreover, the rep-
utation model cannot be used to directly control incentives
for data collection or improve quality of data. In contrast,
we directly formalize the way to incentivize participants for
high-quality data, and the formalization does not necessarily
require the participants’ past information.

STEERING CROWDS IN LOCATION-BASED SERVICES
The process of steered crowdsensing is illustrated by Figure
2. Users on location-based services are given incentives by
points of each location for data collection (e.g. game points,
coupon points). Then, the users decide whether and where
to collect data on the basis of the points of each location.
The important part on steered crowdsensing is the feedback
to the points on the basis of data analysis to directly improve
the quality of services. In this section, we show application
scenarios of steered crowdsensing and confirm that display-
ing points on each location to the users is useful to control
their incentives to collect for data. Even if only monetary re-
wards and gamification are utilized, incentives are able to be
largely raised. However, it is necessary to ensure the quality
of service is improving. Then, for showing how to control the
points, we formalize the scenarios by introducing a quality
indicator for the location-based services. Finally, we spec-
ify the calculation of the points by introducing a simple user
behavior model and improvements in quality.

Application Scenarios
In this section, by illustrating application scenarios, we con-
firm the feasibility of introducing steered crowdsensing to
commercial location-based services in the real world and the
merits for both the users and services by the improving the
quality of crowdsensing.

For checking the feasibility of introduction, we need to con-
sider the three following elements: 1) the systems must be
able to display points to users to motivate them to move to
a specific location, 2) the location information must be ob-
tainable by check-in or authentication, and 3) the users must
collect accompanying information of the location, for exam-
ple, scanning Wi-Fi, taking pictures, inputting a category or
writing a review of a store. There are mainly three types of
location-based services: (a) game/social network services, (b)
local search and recommendation, and (c) crowdsourcing the
market for sensing.

Games and Social Network Services
We can find many commercial services: Ingress [6] and
Colopl [1] for games, and Foursquare [4] and Yelp [8] for
social network services. Users of the services are commonly
given a kind of points by visiting specified locations. In many
games, as a proof of being at the right location, localization
embedded in smart phone or photography of monuments is
requested. On most social networks services, the locations
are reported by users themselves, since the accuracy of the
localization technologies is at the building level (∼ 100 me-
ters). The improvements of data quality should increase the
accuracy of automatic check-in [19].

Search and Recommend
There are many commercial services for local search and rec-
ommendations [7, 8].These services can motivate users by
giving higher ranks or point cards to visit stores that need
more data. Additional offers can be shown to users, for ex-
ample, reviewing the stores or photographing meals. These
data are able to improve search and recommendation.

Crowdsourcing Market for Sensing
There are a few commercial services that explicitly give mon-
etary incentives to participants to recruit [5, 2]. Unlike games
or coupons, frequent changes of monetary rewards might pro-
voke user’s antipathy. Recently, incentive design researches
for these situations has emerged [31, 22, 20]. Improving of
crowdsensing might reduce not only monetary rewards of the
system but also man-hours of the users. Our formalization
can be also used for crowdsourcing market and might be able
to accelerate the speed of data collection.

Formalization towards Quality-Oriented Crowdsensing
In this section, we formalize a mechanism displaying points
(coupon) that motivate users to improve the quality of data.
For this formalization, we quantify the quality of data in on-
line machine learning settings [18]. Note that the formaliza-
tion proposed in this section is applicable to both problems of
setting place categorization and wireless indoor localization.
For simplicity, we focus on wireless localization here. In this
paper, locations are given as labels l ∈ L = {l1, l2, . . . }.

Points displayed to users are denoted by at ∈ R
|L|, where



|L| is size of all location labels L. Wireless fingerprints are
denoted by x. Here we consider a setting of crowdsensing
where sensory data can be continuously collected and an-
alyzed. Sensory data arrive at regular time intervals, i.e.,
additional data obtained at t-th session are represented by

Dt = {x(t)
j , l

(t)
j }j=1:Nt

. The additional data Dt are gathered
by crowds while the points at are displayed with probabil-
ity p(Dt|at). We define a quality indicator for quantifying
quality of location-based services given by data until t-th ses-
sion, and it is represented by Q(∪τ=1:tDτ ). We also consider
improvements in the quality to be differences in the quality
caused by additional data Dt. That is, the improvements are

defined by St(Dt) � Q(∪τ=1:tDτ )−Q(∪τ=1:t+1Dτ ). Op-
timized points displayed to users ãt are obtained by max-
imizing the expectation of St(Dt) over the distribution of
p(Dt|at) as follows:

ãt = argmax
at

EDt
[St(Dt)|at]

= argmax
at

∫
p(Dt|at)St(Dt)dDt. (1)

When effectively developing crowdsensing for indoor local-
ization systems, the quality of the services Q(∪τ=1:tDτ )
should be defined as the expected loss of the localization. It
is generally difficult to calculate the improvements directly
from all the additional data Dt [29]. We assume that the all
the improvements St(Dt) can be approximated by factoriz-
ing with the improvements of the one sample st(x, l). When

N
(l)
t is defined as the number of samples of l including Dt,

the approximation can be represented by

St(Dt) �
∑

(x,l)∈Dt

st(x, l)− λ
∑
l∈L

ρ(N
(l)
t ), (2)

where ρ(N
(l)
t ) is a regularization function preventing concen-

trate data to one label since the effects of multiple samples on
the same class becomes small, and λ is a trade-off parameter
of the regularization effect. The designs of the improvements
st(x, l) will be explained at the end of this section. The opti-
mized points are rewritten as

ãt = argmax
at

EDt
[

∑
(x,l)∈Dt

st(x, l)|at]

− λEDt
[
∑
l∈L

ρ(N
(l)
t )|at]. (3)

For simplicity, we assume that the probabilities of each lo-
cation are also independently calculated. Naturally, sensory
data x are independently generated for each measurement.

When D
(l)
t represents the data of location l included in data

Dt, the probabilities of whole data generation become the fol-
lowing stochastic point process:

p(Dt|at) =
∏
l∈L

p(D
(l)
t |at)

=
∏
l∈L

⎛
⎜⎝p(N

(l)
t |at)

∏
(x,l)∈D

(l)
t

p(x|l)

⎞
⎟⎠ . (4)

Here, we assume this point process can be factorized into the
number of samples on all locations and sensor data. The prob-

ability p(N
(l)
t |at) is representing a user behavior model: how

often users visit the location l. Note that, from the indepen-
dencies for locations and measurements, dDt can be divided

into
∑

l∈L dD
(l)
t , and dD

(l)
t can be also divided into dx and∑

N
(l)
t . Then, by substituting the above, the first term of

Equation 3 becomes

EDt [
∑

(x,l)∈Dt

st(x, l)|at]

=
∑
l∈L

∫ ⎛
⎜⎝p(D

(l)
t |at)

∑
(x,l)∈D

(l)
t

st(x, l)

⎞
⎟⎠ dD

(l)
t

=
∑
l∈L

⎛
⎜⎝

∞∑
N

(l)
t =0

p(N
(l)
t |at)N

(l)
t

∫
p(x|l)st(x, l)dx

⎞
⎟⎠

=
∑
l∈L

(
E

N
(l)
t
[N

(l)
t |at] Ex[st(x, l)|l]

)
. (5)

E
N

(l)
t
[N

(l)
t |at] is the expectation of N

(l)
t , i.e., the frequency

of visits to locations l. Ex[st(x, l)|l] is an expectation of the
improvements by a sample measured on location l and only
depends on location l. For simplicity, we here rewrite it as
follows:

s
(l)
t � Ex[st(x, l)|l]. (6)

Similarly, the second term becomes

EDt
[
∑
l∈L

ρ(N
(l)
t )|at] =

∑
l∈L

E
N

(l)
t
[ρ(N

(l)
t )|at]. (7)

E
N

(l)
t
[ρ(N

(l)
t )|at] also depends on the user behavior models.

Then, the optimized points at can be represented by

ãt = argmax
at∑

l∈L

(
s
(l)
t E

N
(l)
t
[N

(l)
t |at]− λE

N
(l)
t
[ρ(N

(l)
t )|at]

)
. (8)

Since this equation shows the optimized points at depend on
the user behavior model, we consider the model in the next
section.

User Behavior Modeling
In this section, by considering the specific model of the ef-

fects of displaying points to user behavior E
N

(l)
t
[N

(l)
t |at], we

show how to calculate points to users to improve the quality.
We assume the points motive users to collect data. We simply
consider the frequencies of collection by users are propor-
tional to the points of the location.

E
N

(l)
t
[N

(l)
t |at] = ca

(l)
t , (9)

where c is a constant number representing the effects of the
points. To avoid concentrating the points in the same location,



for a regularization function ρ, we apply two norms com-

monly used as ρ(N
(l)
t ) = (N

(l)
t )2. By instituting the above,

Equation (8) becomes the quadratic programming of a; like
below

ãt = argmax
at

∑
l∈L

a
(l)
t s

(l)
t − cλ(a

(l)
t )2. (10)

By solving the above and resetting the constant variable, the
steered elements become

ã
(l)
t =

1

2cλ
s
(l)
t . (11)

That is, the points are simply proportional to the expected
improvements of location l and inversely proportional to the
effects c of the point to the user. The resultant point displayed
to the users is intuitive. However, the point can be controlled
by installing accurate user behavior models. Specifically, the
probabilities of the user behaviors become more complex.
For example, the effects of the points c can vary in accor-
dance with locations, time, and users. Costs can be reduced
by selecting the most effective time or users even in the same
location. Because, we did not have data for estimating the
parameters, we do not consider these differences in the paper.
We will instead show the analysis of the experiment below
for the next steps of deployments.

Formalization with Location-based Services
Thus far, we have considered only the quality of the crowd-
sensing system. For collaborating with location-based ser-
vices, the rewards, promotion, and the cost of the services
should also be considered. When Rt(Dt) denotes a reward or
cost function given additional data Dt such as purchases of
products or payment of points, the reward function consider-
ing the quality of crowdsensing becomes

R̃t(Dt) = Rt(Dt) + μSt(Dt), (12)

where μ is the rate to change the quality to the rewards. In
general, the points have constraints such as minimum amin

and maximum amax (amin ≤ at ≤ amax). Then, the opti-
mized steered element can be calculated by

ãt = argmax
at

EDt
[R̃t(Dt)|at]

s.t. amin ≤ at ≤ amax. (13)

This can integrate the short-term profits of services and the
long-term profits due to the quality of crowdsensing. For
example, when the system pays the costs to users such as
coupons or monetary rewards, the cost function becomes

Rt(Dt) = −
∑
l∈L

a
(l)
t N

(l)
t . (14)

By substituting the above, Equation (13) also shows quadratic
programming of a, and the optimized steered elements also
becomes

ã
(l)
t = max(amin,min(amax, c

′s(l)t )), (15)

where c′ is a rewritten coefficient. This form is almost the
same as Equation (15) except for the limitation of the mini-
mum amin and the maximum amax.

Improvements in Quality
As described above, the improvements s(x, l) in quality by
one sample (x, l) become important for calculating the points.
The designs of the improvements st(x, l) from one sample
(x, l) can be done in various ways depending on the domain
of crowdsensing. Here, referencing ideas in Active Learning
[29, 24] fields, we introduce examples in some crowdsens-
ing problem settings. Cohn et al. [16] show that the vari-
ance of estimation errors is the most effective way to support
the expected error reduction. For example, on wireless in-
door localization, one sample (x, l) consists of location l and
Wi-Fi fingerprint x. The crowdsensing system estimates the

probability p(l̃|x) that fingerprint x is measured on location

l̃. When δloc(l, l̃) denotes a error function that is commonly a

distance between l and l̃, the improvements are defined as

s(x, l) = Varl̃[δloc(l, l̃)|x]. (16)

In place categorization, a category c labeled by a user is also
given with sensor data x. Thus, one sample can be written
as (x, c, l). The crowdsensing systems estimate probability
p(c̃|l, x) that location l with sensor data x is categorized to
c̃. When δ(c, c̃) is an error function (which commonly be-
comes 1 if c̃ is a misclassified label), the improvements can
be denoted by

s(c, x, l) = Varc̃[δcat(c, c̃)|l, x]. (17)

Many crowdsensing systems directly estimate locations or
categories, not probability. In these cases, Abe et al. [9] pro-
posed a bagging method that builds multiple estimators from
multiple datasets resampled randomly and calculates pseudo
probability outputs from the estimations.

EXPERIMENTAL SETTINGS
We built a crowdsensing system on a university facility by fo-
cusing on deployment of wireless indoor localization as one
of the fundamental technologies of mobile sensing. The sys-
tem is designed to act like a gamified location-based service
in retail facilities. For the first step of quantitative evaluation,
we compare steered crowdsensing with crowdsensing without
data analysis feedback and analyze the relationship of user
behavior with contexts such as time, place, and users.Game
elements for controlling the incentives of users were amounts
of points at each measurement location. Conditions of game
elements were changed each week. There are mainly three
types of crowdsensing: Naı̈ve CS, Gamified CS and Steered

(a) Game: scoring and
ranking.

(b) Poster locations
on the 2nd floor.

Figure 3. System overview.



Measure Wi-Fi by Touch
for Location based Service

(a) Appearance
example.

(b) Tapping with
smartphone.

Figure 4. Smartposters with NFC.

(a) Show
points.

(b)
Confirmation.

(c) Collected.

Figure 5. Screenshots of Smartphone App.

CS. In Naı̈ve CS, participants were provided a mobile app that
only had measurements functions implemented. On Gami-
fied CS, the app shows the score depending on the amount of
points of a measurement location and the ranking of the score
(Figure 3(a)). On Steered CS, the points are controlled to re-
flect contribution toward data quality as shown by Equation
(15). The experiment had 18 participants and was held on six
floors of a building for five weeks. The size of one floor is
about 60 meters × 70 meters (Figure 3(b)). In the follow-
ing, we detail the design of the crowdsensing system and the
conditions of data collection in this study.

Mobile App
To eliminate the effects of skill variances, actions such as
checking-in on the location-based service are realized by sim-
ply tapping a smartposter. When tapping on the poster with
a mobile phone installed with the app, the embedded location
information is read as soon as it starts to scan Wi-Fi networks.
NFC tags are used to embed location information. Figure 4
shows an example (the size is A4 = 297 mm × 210 mm) of
one of our posters. Figure 5 shows basic functions of the app.
Poster locations and points were shown on a floor map (Fig-
ure 5(a)). The range of the points was set from 0 to 100, i.e.,
amin = 0 and amax = 100. When a poster was touched, the
app asked the user for confirmation to save the sensor data
(Figure 5(b)). The color of locations sensed that day became
green (Figure 5(c)). The scores and ranking are calculated
every 15 minutes, i.e., the session intervals are set to 15 min-
utes. We updated the functions of the app by using a service
for privately distributing mobile apps.

Data Collection
Location
The location was a 12-floor university facility building that
has entrances on the 1st and 2nd floors. We used six floors:
1st to 5th and 8th. There are mainly lecture rooms on the 1st

to the 4th floors, a library on the 5th floor, and laboratories
on the 8th floor. A total of 190 posters were placed at inter-
vals of about five meters on the walls of the hallways since
this corresponds to distance between shops in retail facilities
(Figure 3(b)). There are many campus access points.

Participants
We recruited 18 undergraduate students studying in the fa-
cility. Nine participants mainly use the 1st to the 3rd floors,
and the rest use the 4th floor. Participants were informed that
the aim of the experiment was to evaluate crowdsensing for
wireless indoor localization and were paid at least JPY 5,000
(≈ USD 50) for all five weeks. The gamification was started
in the middle of the experiment, and participants were told
the rules of the game and payment amounts at the same time.
Thirteen participants used Nexus 7 tablet computers (2012),
and the other five used smart phones including one Nexus 5,
two SHARP SH series devices, and two Sony SOL series de-
vices. Eleven participants were lent Nexus 7 tablets (2012)
from our laboratory, and the rest used their own devices.

Collection Rules
Similar to real world commercial applications, the number of
measurement times were limited to three times in every ses-
sion (= 15 minutes) and once for the same poster per day.
Each participant was requested to gather at least 25 measure-
ments every week. The intentions of this rule were to simulate
passive incentives not affected by gamification and to obtain a
sufficient amount of data in non-gamified weeks. We limited
the collection during the night and weekends for safety rea-
sons; participants were allowed to collect data between 8:00
and 20:00 from Monday to Friday. We sent reminder mails to
participants each Thursday.

Flow of Experiment
The experimental period was from January 10th to February
14th, 2014. The conditions of game elements were changed
each week, and the scores were reset at the beginning of each
week. The 1st week was Naı̈ve CS; the functions of the
mobile app were provided only for measurement. The 2nd
week was Gamified CS. After the end of the 1st week, we
announced the rules of the game and payment amount and
updated the mobile app. To accelerate the incentives of the
participants, we designed additional payments: the top ranked
participant of each week was paid JPY 10,000 (≈ USD 100),
the 2nd JPY 7,000 (≈ USD 70), the 3rd JPY 4,000 (≈ USD
40), the 4th JPY 2,000 (≈ USD 20), and the 5th to 7th JPY
1,000 (≈ USD 10). The points of the posters were fixed to
at = 10 in this week. From the 3rd week, the points of the
posters varied for steering participants. We announced it to
the users at the beginning of the week 1. The points are cal-
culated on the basis of the analysis of collected data in this
week. We give details in the next sections.In the 4th week, to
confirm whether differences between the 2nd and 3rd weeks
were caused by novelty effect or not, we set back to Gamified
CS to evaluate the effects of point variance without data anal-
ysis, but the points randomly varied.Thus, the points were set

1On the 4th day of the 3rd week, we received some complaints from
participants that almost all points were below 10. We therefore lim-
ited minimum points of posters to 10 on the 5th day of this week.



Week Name Gamification Points at calculation Notes

1st Naı̈ve CS - - -

2nd Gamified CS score & rank const. -

3rd Steered CS score & rank steer (Eq. (15)) -

4th Gamified CS score & rank
rand. (1st day),

-
const. (2-5th day)

5th Mixed CS score
const. (1-3rd day), The 2nd day was a

steer (4-5th day) national holiday. Some

students returned home.

Table 1. The flow of the experiment.

uniformly random from amin = 5 to amax = 50 on the 1st

day and were fixed a
(l)
t = 10 on the other days. In the 5th

week, to evaluate the effects of the ranking, we eliminated the
ranking and the payments were in proportion to their scores.
The calculation of points was constant on from the 1st to 3rd
days while steering was applied on the 4th and 5th days. From
this week, many students had started to return home. Since
the 2nd day of this week was a national holiday, the assign-
ments were reduced to 20 times for this week. Table 1 sum-
marizes the flow of the experiment.

Points Calculation for Steered CS
In steered CS, the points are calculated on the basis of Equa-
tion (15) in every session. In this simple equation, the

points are simply proportional to the expectation s
(l)
t �∫

st(x, l)p(x|l)dx of improvements in quality on each loca-
tion except for the limitation of the minimum amin = 10 and
the maximum amax = 100 in this experiment. The expecta-

tions s
(l)
t of improvements in quality can be calculated by a

sampling method. The generation models of RSSIs on each
location are built by Gaussian distributions from collected
data. By setting prior distribution of the mean of Gaussian
distribution, the points of locations that have no data become
relatively high. Therefore, the coverage of data tends to in-
crease rapidly in the first stage of data collection. After the
coverage is accomplished, the points reflect the variances of
localizations and keep increasing the quality of localizations.

Localization Performance on Controlled Experiment
In this section, we report a preliminary experiment to con-
firm the basic performances of wireless indoor localization in
our system. Many wireless indoor localization methods have
been developed. Since our steered crowdsensing algorithm
can be thought of as meta-algorithm of online training for
wireless localization methods, any localization method can be
applied to our system. We used a method proposed by Kawa-
jiri et al. [21]. The method perform well thanks to exploiting
a loss metric for the learning step in proportion to distance
error. However, their classification method can only predict
poster locations, not locations among posters. Therefore, we
extend the classification method to a regression method that
can predict middles of posters by averaging some classes of
candidates [13].

We collected test data and training data for evaluating lo-
calization accuracy. Considering data variance according to
time, we collected the test data for two days at one-week in-
tervals. Considering data variance according to devices, we

(a) Cumulative distance
error.

(b) Locations with large
errors (> 10 meters).

Figure 6. Performance of localization.

used two types: a smartphone (Nexus 4) and a tablet com-
puter (Nexus 7, 2012). Test data were collected in a total of
719 samples by inputting locations at intervals of about five
meters by tapping a display showing floor maps. Training
data were collected by using the smartposters. To tap once
each poster by one worker needs more than one hour labor.
We collected training data in a total 3678 samples, containing
at least 11 samples per poster for few weeks. Figure 6 shows
the results. Figure 6(a) shows cumulative distance error. The
median of the errors is 2.9 meters, and the 95 percentile of the
errors is 11.2 meters. Figure 6(b) shows locations estimated
with errors of more than 10 meters on the 2nd floor. Blue
circles show locations estimated on different floors.

ANALYSIS AND DISCUSSION
On the basis of our deployment experiments and analysis of
the collected dataset, we report three findings: 1) gamifica-
tion with monetary rewards in the experimental settings can
reinforce the incentive of some participants for collection, 2)
user behaviors are controllable by adjusting the game ele-

ments thanks to the measurement frequency E[N
(l)
t |a(l)t ] in

relation to points, and 3) quality of localization can be raised
thanks to the user incentive controlled by our framework. Fi-
nally, we discuss the limitations of the experiment.

Incentive Reinforcement
Comparing data collected for each week, we consider the
incentivization of participants by gamification and confirm
that skills variances and novelty effects are vanishingly small.
Figure 7 shows the amount of data according to weeks: 629
samples in the 1st week, 1946 in the 2nd, 1066 in the 3rd,
2085 in the 4th, and 733 in the 5th. Figure 8 shows the
amount of data according to days, and Figure 9 shows the
amount of data according to participants for each week. The
vertical black lines show their assignments. The partici-
pants are sorted by the number of samples. The horizon-
tal black lines divide participants into those who received
additional payment and those that did not from the 2nd to
4th weeks. Figure 10 shows the transition of points and the
poster coverage for each week. The poster coverage is de-
fined by (# measured posters)/(# all posters). The blue
lines show the median of the points at that time, and blue re-
gions show the points range from the 30th to 70th percentile.
In the 1st week on Naı̈ve CS, most participants had done
only their basic assignments. In the 2nd week on Gamified



Figure 7. Amount of data according to weeks.

CS, there is a marked increase on the 1st week. The differ-
ences in the weeks strongly depend on each person (Figure 9).
However, some people remarkably increased data and seemed
to be strongly encouraged by gamification and monetary re-
wards. In the 3rd week on Steered CS, a lot of data were col-
lected too. The points became very high early time in the first
day and reduced later in the week. After a few measurements,
all points of the posters quickly became low. By the end of the
1st day, most points of posters were around 10 points. How-
ever, as shown in below analyses, these low scores means the
quality of localization is sufficient. The amount of data in the
3rd week was, however, less than that in the 2nd week. In the
4th week on Gamified CS with random points, the amount
of data increased again and was more than that in the 2nd
week. This result shows that the novelty effect is negligible
and the differences are mainly caused by the ways to control
the points. In the 5th week, some people returned to their
homes. Therefore, the amount of the data is reduced.

After the experiments ended, we presented participants with
a questionnaire about what motivated or discourage them to
collect data. Fifteen participants responded. Questions and
answers were written in Japanese. Many participants com-
monly mentioned that the competition motivated them in the
early days of each week, but the large point differences be-
tween them and the top ranked participants discourage them.

“I tried to become a top ranker at first, but when I realized
it was impossible to go up in the rankings, I could not get
motivated at all.”

Especially in the 3rd week on Steered CS, the large differ-
ences in the points compared with the early days had a dis-
couraging effect.

“The variance of points is not bad, but the big difference in
points depending on days really discouraged me.”

Incentive Control and User Behavior Model
We first confirm that the incentives of users for collecting data
are controllable by changing the points. Then, for more ef-
ficient data collection, we illustrate that user behaviors are
different among floors, people, and weeks. Figure 11 shows

the relationship between points a
(l)
t and frequency of mea-

surements E[N
(l)
t |a(l)t ]. The horizontal axes show points dis-

played to participants, and the vertical axes show the fre-
quency of measurements. Figure 11(a) shows the relation-
ship in all data. To calculate the points for Steered CS in this
experiment, we assume the user behavior models in which
the frequencies of collection by users are proportional to the
points of the location. In fact, the frequency tends to increase

(a) All data. (b) Weekly.

(c) 2nd floor. (d) 4th floor.

Figure 11. Points a(l)t and frequency E[N
(l)
t |a(l)t ] according to contexts

(weeks, floors, users).

as a function of points. This shows that the incentive for col-
lecting can be controlled by the game elements. In the below
section, we explore spatial, temporal, and demographic vari-
ances for further analyses.

Weekly Variances
Figure 11(b) compares the incentives among the 3-5th weeks.
The differences in each week can be seen. In the 4th week,
the frequency of collection in low points (around 10 to 20) is
comparatively higher than in the other weeks. Some partici-
pants reported that they had time for collection because they
did not have lectures this week. On the other hand, in the 5th
week, more than 30 points are required to incentivize partici-
pants strongly. In the application scenario of a retail facility,
for example, holding an opening day or avoiding unpopular
weeks are more effective for collecting data.

Variances of People and Locations
Figures 11(c) and 11(d) compare the relationships between
points and the frequency with the two groups of users on each
floor. Group 1, shown by green circles, mainly uses the 1st
to 3rd floors, and group 2, shown by blue circles, mainly uses
the 4th floor for lectures. Group 2 is very active on the 4th
floors but quite inactive on the 2nd floors. In contrast, group
1 is active on from the 2nd floors but quite inactive on the
4th floor. These results show that the reactions of points vary
in accordance with locations and users. In fact, some partici-
pants mentioned the following in the survey:

“I just completed the assignments every week, so I always
collected at similar places (e.g. nearby lecture rooms).”

For effective collection by using this analysis, for example,
group 2 can be mainly targeted on the 4th floor with low
points. If there is a deadline for deployment of the localiza-
tion system, the points of the 1st and the 2nd floors should be
set comparatively high.



(a) 1st week
(Naı̈ve CS).

(b) 2nd week
(Gamified CS).

(c) 3rd week
(Steered CS).

(d) 4th week
(Gamified CS).

(e) 5th week
(Mixed CS).

Figure 8. Amount of data according to dates.

(a) 1st week
(Naı̈ve CS).

(b) 2nd week
(Gamified CS).

(c) 3rd week
(Steered CS).

(d) 4th week
(Gamified CS).

(e) 5th week
(Mixed CS).

Figure 9. Amount of data according to participants: The vertical axes are sorted by the number of samples.

(a) 1st week
(Naı̈ve CS).

(b) 2nd week
(Gamified CS).

(c) 3rd week
(Steered CS).

(d) 4th week
(Gamified CS).

(e) 5th week
(Mixed CS).

Figure 10. Transitions of points and coverage of data.

Quality Improvements by Steering
This section explains that steering can realize a high quality
of data, especially the accuracy of the indoor localization.

Coverage
Figure 12 shows locations of 0 samples when the first 200
samples were given on 2nd floor. There is no big difference
between Naı̈ve CS in the 1st week (Figure 12(a)) and Gam-
ified CS in the 2nd week (Figure 12(b)). Gamified CS with
random points in the 4th week (Figure 12(d)) and on 1st day
of the 5th week (Figure 12(e)) slightly distributed the loca-
tions of 0 samples. However, the number of the locations of
0 samples was not affected. On the other hand, Steered CS
on the 3rd (Figure 12(c))f and 4th day of the 5th week (Fig-
ure 12(f)) reduced the locations of 0 samples. Specifically on
the 4th day of the 5th week, the 2nd floor has no locations of
the 0 samples. These results show that controlling the quality
improvements can reduce location bias of data.

Localization accuracy
Figure 13 shows the relationship between the number of sam-
ples and the error of estimations in each week. The hori-
zontal axis shows the number of samples, and the vertical
axis shows the error of estimation. The filled markers show
95 percentile errors, and the unfilled markers show median

(a) 1st week
(Naı̈ve CS).

(b) 2nd week
(Gamified CS).

(c) 3rd week
(Steered CS).

(d) 4th week
(Gamified CS).

(e) First 3 days
of 5th week

(Gamified CS).

(f) Last 2 days
of 5th week
(Steered CS).

Figure 12. Uncovered locations with first 200 samples on the 2nd floor.

errors. The horizontal dashed line and the dotted line re-
spectively show the 95 percentile error and median error on
the preliminary controlled experiment. Naı̈ve CS in the 1st
week and Gamified CS with constant points in the 2nd week



Figure 13. The accuracy of localization and the number of samples.

median 95%tile

1st & 2nd 0.05 0.061
1st & 4th 0.15 0.31
2nd & 4th 0.93 0.69

(a) Not Steered CSs.

median 95%tile

1st 1.2 × 10−4 1.6 × 10−4

2nd 2.1 × 10−5 2.1 × 10−6

4th 5.4 × 10−6 1.5 × 10−6

(b) Steered CS and others.

Table 2. The p-values obtained from paired t-test applied to the per-
formances of each week from 100 to 950 samples with intervals of 100
samples.

draw similar curves. Gamified CS with random points in the
4th week shows comparatively small errors until around 100
samples and draws similar curves from around 100 samples.
According to a paired t-test, the differences between them
are not statistically significant at the 0.01 level (Table 2(a)).
In contrast, Steered CS (the 3rd week) draws curves almost
below the other curves. The 95 percentile errors of Steered
CS shows especially large improvements: less than 20 meters
with 250 samples. Other CSs require more than 500 samples
for the same performance, i.e., Steered CS needs only half
the amount of data. The differences between steered CS and
others are statistically significant at the 0.01 level according
to a paired t-test (Table 2(b)). In addition, we compare the
estimators of each week with 500 samples. The estimator of
Gamified CS in the 2nd week shows 2.5% (18/719 samples)
with errors of more than 25 meters, whereas the estimator of
Steered CS in the 3rd week shows only 1.9% (7/719 sam-
ples). The above shows that simple gamification is not suffi-
cient and requires and the control of game elements for high
quality of data. On the other hand, even with less than 1000
samples, the curves of Steered CS are close to the lines of the
controlled experiment using the dataset of 3678 samples col-
lected by hard work as shown preliminary experiment. Col-
lecting data on the basis of quality may possibly lead to data
being collected more efficiently than in the naively controlled
experiment.

Discussion and Limitation
In this section, we discuss the possibilities to collect data
more effectively and the limitations of this experiments.

Our experiment could achieve the best effects for only gamifi-
cation. Especially on Steered CS, there were largely different
scores among participants early on. This reduced the total

number of samples. This is not a problem for the quick de-
ployment of the system in the short-term. However, in the
case of long-term deployments (e.g., detecting the variance
of categories and Wi-Fi access points), users’ engagements
is required. One solution for this is that participants in the
bottom of ranking should be treated favorably. However, too
much balancing might make the top participants feel unmoti-
vated. For this kind of problem, dynamic game difficulty bal-
ancing is proposed in gamification [32]. Additionally, for the
simplicity of the computation, we used the same models for
all users, times, and locations in this experiment. However,
as shown above, user behavior depends on various contexts.
Therefore, embedding user behavior models could lead to the
efficiency improvements of data collection.

The experiment described in this paper was limited in spa-
tial scale (one building) and to a single application scenario
(wireless localization). In larger scale crowdsensing, the mo-
bility cost cannot be negligible for incentivizing users to col-
lect. There are other applications for which the demands of
the data collection vary more dynamically (e.g. parking avail-
ability reporting, real-time weather forecasting). To evaluate
in those application scenarios, we will require precise fore-
casting technologies for user behaviors (e.g. mobility pat-
terns) and objectives for sensing (e.g. variances of weather).
Our formalization can be, however, compatible with other
user behavior models and the quality definitions.

CONCLUSION
In this paper, we proposed a new crowdsensing framework
with incentive design, called steered crowdsensing. To in-
crease the quality rather than quantity of data directly, the
framework controls incentives by introducing gamifications
to location-based services, while continuous data analyses
consider the data qualities. We also proposed the application
scenarios of steered crowdsensing and the formalization of
steered crowdsensing with online learning settings for raising
the quality of services. For the first step of quantitatively eval-
uating steered crowdsensing, we deployed a crowdsensing
system focusing on wireless indoor localization. We recruited
18 people for five weeks on six floors of a university facility
building. We varied scoring methods and used gamified and
non-gamified conditions to compare them. Based on our de-
ployment experiment and analyses, we found the following
findings: 1) gamification with monetary rewards in our field
trials strongly incentivized some participants to collect data,
2) strength of incentives is controllable, and 3) quality of lo-
calization can be raised thanks to the user incentive controlled
by our framework. In the results of our experiment, steered
crowdsensing realized deployments of wireless indoor local-
izations faster than non-steered crowdsensing while having
only half the amount of data.

Our future work includes a long-term demonstration experi-
ment in real location-based services and retail facilities. In
addition, as mentioned on our analysis, embedding user be-
havior models may possibly further improve the efficiency of
data collection. For application to commercial services, con-
straints such as budgets or deadlines should be considered for
deploying crowdsensing systems.
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