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Abstract— There has been extensive research on active safety
systems in the ITS community in recent years that has sig-
nificantly contributed to reducing traffic accidents. However,
further reduction is needed, especially on residential roads,
where the reduction rate of traffic accidents is still quite small.
On residential roads, traffic accidents are caused primarily by
pedestrians suddenly running in front of cars and by the inat-
tention of drivers to such risks. Automatic emergency braking
systems activated by pedestrian detection are not always reliable
on residential roads due to physical limitations such as too
short a braking distance. To overcome the limitations of current
active safety management systems, we focus on risk anticipation
and defensive driving, key ideas to ensure safety on residential
roads. Since defensive driving requires careful deceleration in
advance of barrier lines and the corners of streets, long-term
driver behavior prediction is needed. In this work, we provide
a new framework of modeling risk anticipation and defensive
driving with inverse reinforcement learning (IRL). In contrast
to conventional driver behavior models such as hidden Markov
models and maximum-entropy Markov models, our framework
using IRL ensures accurate long-term prediction of driver
maneuvers since the IRL is based on the Markov decision pro-
cess (MDP), a goal-oriented path planning framework. Because
the predicted defensive driver behaviors obtained by an MDP
are appropriate only when the reward functions are carefully
designed, we use inverse reinforcement learning, where the
normative behavior of expert drivers is leveraged to optimize
the reward functions. In addition to the proposed formulation of
defensive driving with IRL, we provide new feature descriptors
for computing reward functions to represent risk factors on
residential roads such as corners, barrier lines, and speed
limitations. Experimental results using actual driver maneuver
data over 20 km of residential roads indicate that our approach
is successful in terms of providing precise learning models of
risk anticipation and defensive driving. We also found that the
behavior models obtained by expert/inexperienced drivers are
helpful for determining the factors in risk anticipation and
defensive driving.

I. INTRODUCTION

There has been extensive research on active safety systems
in the ITS community in recent years that has significantly
contributed to reducing traffic accidents. However, further
reduction is needed, especially on residential roads, where
the reduction rate of traffic accidents is still quite small [1].
In this work, we define a residential road as a road that
has a relatively small width and is generally used only by
people who live near the road for traveling within the area or
reaching a main road. On residential roads, car accidents are
caused primarily by pedestrians suddenly running in front of
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cars and by the inattention of drivers to such risks. Automatic
emergency braking systems activated by pedestrian detection
are not always reliable on residential roads due to physical
limitations such as too short a braking distance. To overcome
the limitations of current active safety management systems,
we focus on risk anticipation and defensive driving, key ideas
to ensure safety on residential roads. In other words, we
promote the idea that drivers on residential roads should
anticipate potential risks. Although there has been some
research that considers potential risks on roads, including
studies on pedestrian perception by vehicle-to-pedestrian
communications [2], [3], there has been little focus on the
idea of defensive driving based on the anticipation of risk.
Modeling risk anticipation and defensive driving is helpful
in terms of developing active safety systems such as an alert
system based on a defensive driving model. Thus, we model
defensive driving by skilled drivers and apply the model
for predicting defensive driving. It is obvious that modeling
defensive driving on residential roads is difficult due to the
many uncertainties stemming from pedestrians. For example,
it is not enough to merely follow traffic rules such as speed
limits and traffic signs on residential roads, and there are no
clear norms on when and how to change driving behavior.
For dealing with environmental uncertainties, diversities,
and ambiguous norms, a machine learning-based approach
would be more appropriate than history-based approaches or
approaches assuming an explicit model.

There has been some research on driving behavior mod-
eling using machine learning techniques. For example, be-
havior prediction using a dynamic Bayesian network was
able to forecast a driver maneuver a few seconds later [4].
However, prediction in a few seconds is not sufficient for
active safety systems on residential roads, and predicting
behaviors over a longer time range is needed in terms of
defensive driving. A machine learning-based method for
predicting turns at intersections has also been presented [5].
However, this method was not sufficient for predicting next
turns when it came to active safety on residential roads. In
other words, it is preferable to model driving behavior in
a scene that requires a balance of comfortable speed and
defensive speed, which is obviously much slower than the
legal speed limit, which is 30 km/h in Japan. That is, it is
especially important to model deceleration maneuvers based
on the anticipation of risk.

In this work, we represent driving behaviors as a se-
quence of decisions of acceleration/deceleration and states
of position and velocity with a Markov decision process
(MDP). In an MDP, given the reward in each state, relatively
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Fig. 1. The concept of our work. We learn risk anticipation and defensive
driving on residential roads with inverse reinforcement learning. In a novel
scene, an optimal driving plan is predicted using the learned model.

long-term driving behavior can be predicted by planning
an optimal state sequence toward the goal, incorporating
both an immediate reward and expected future rewards.
However, it is not trivial to design appropriate reward
functions for representing defensive driving. Therefore, we
have to handle the inverse problem, that is, an approach to
learning the reward function that represents the model of
decision making from actual driving demonstrations. As a
first step towards a practical risk-sensitive driving model,
we focus on acceleration/deceleration on residential roads.
Our modeling framework with inverse reinforcement learning
(IRL) is shown in Fig. 1. By using the trained model with
actual driving demonstrations, long-term driver behavior can
be predicted even in novel scenes.

In our experiment, we acquired actual driving data on
residential roads in Japan. The results indicate that our
approach is successful in terms of providing precise learning
models of risk anticipation and defensive driving. We also
applied our approach to data from an inexperienced driver
and found that our approach could successfully extract the
environmental factors to be focused on in defensive driving
by comparing the skilled driver model with the inexperienced
driver model.

The contributions of this paper are as follows. 1) We or-
ganized the requirements for machine learning-based driving
behavior modeling on a residential road, which has rarely
been the target in previous research. 2) We built a novel
driver behavior modeling framework with inverse reinforce-
ment learning to provide accurate long-range driver behavior.
3) We designed feature descriptors based on geographical
information. 4) We acquired data of driving behaviors on
actual residential roads and extracted environmental factors
to be focused on in defensive driving by comparing an expert
driver model with an inexperienced driver model.

The rest of this paper is organized as follows. In section II,
we discuss related work. Section III presents our model
formulation of the risk anticipation and defensive driving and
optimization method. In section IV, we describe environmen-
tal features, and in section V, we describe the experiments
we performed to verify our model. We conclude with a brief

summary in section VI.

II. RELATED WORK

Related work in terms of situations for active safety for au-
tomobiles and driving behavior modeling is briefly discussed
in this section. Specifically, we describe target situations of
existing research related to active safety systems and discuss
existing approaches to driving behavior modeling.

A. Target Situations
Target situations are classified roughly into highways,

urban streets, and residential roads in terms of the level of
difficulty of driving behavior modeling. Although residential
roads can also be urban streets, here we define a residential
road as a road in which there is a risk of crashing into
pedestrians stemming from the existence of both pedestrians
and vehicles.

Highways are tightly structured, are accessible only by
vehicles, and have no intersections. Therefore, driving be-
havior modeling is relatively easy on highways. Studies on
lane changes [6], [7] and driving at exits [8] are examples
of research related to highway scenarios.

Urban streets differ from highways in that they have
intersections. Many car accidents occur at intersections on
urban streets, and so there has been a lot of research on
how to avoid crashes at intersections, e.g., [5], [9]. Car-
following behavior models have also been researched [10],
[11] to address traffic jams at unsignalized intersections on
urban streets.

On residential roads, in contrast to urban streets, we have
to consider the potential risks of pedestrians and cyclists
as well as vehicle interactions. Pedestrian perception via
vehicle-to-pedestrian communication [2], [3] is one solution
to avoid potential risks on residential roads. Nevertheless, it
is still essential to perform defensive driving and to anticipate
potential risks. From this aspect, it should be noted that there
has been very little research that focuses on defensive driving
itself.

B. Modeling Methods
Approaches to driving behavior modeling can be classified

into three types: matching the current scene with previously
observed data [12], using simulation based on explicit mod-
els [9], and taking machine learning approaches to deal with
uncertain scenes and driving behaviors [4], [5].

Approaches using matching with previously observed
data [12] enable long-term prediction in known scenes where
data have been previously obtained. However, it can be
difficult to apply this approach to novel scenes. The approach
using an explicit model [9] can be used without data obtained
previously, but we still have to consider all possible scenarios
that may happen in a real situation when making this model.

Approaches using machine learning are attractive because
they can deal with uncertain environments and driving
behaviors by using stochastic analysis based on previous
data. As mentioned in section I, we have to tackle the
ambiguities inherent in defensive driving on residential roads.



Therefore, an approach using machine learning is appropriate
for modeling on residential roads. There has been some re-
search on driving behavior modeling with machine learning.
For example, there is a method that predicts car-following
behaviors and lane changes on a highway based on present
scenes such as the position of other vehicles by using a
dynamic Bayesian network [4]. A hidden Markov model-
based method proposed by H. Berndt and K. Dietmayer
predicts turns at intersections on urban streets [5]. Most com-
mon machine learning-based approaches based on Markov-
based assumption and location history can predict short-term
behavior, such as behaviors occurring in the next few seconds
or the next discrete step. Moreover, their target scenarios are
often tightly structured environments such as highways, and
the prediction targets are relatively rough behaviors such as
turns and lane changes. It should be noted that the modeling
of long-term acceleration/deceleration behavior on residential
roads has rarely been the target in previous research.

III. MODEL FORMULATION AND OPTIMIZATION

As stated in section I, our modeling target is decision mak-
ing in acceleration and deceleration. Our modeling assumes
that a global route is known (that is, we are not concerned
with route planning), since route searching and destination
estimation are becoming an active area of research [13], [14]
and navigation systems currently enjoy widespread use. Also,
in residential areas, residents usually drive the same route
every day. Under this assumption, we target driving behavior
in linear segments, as shown in Fig. 2. The segment starts
with a turn or stop line and ends with the next turn or stop
line. The driving maneuver of acceleration and deceleration
in a segment is considered a unit of behavior.

In this work, we model defensive driving with a Markov
decision process (MDP) that incorporates the dynamics of
decision-making into a Markov process. Fig. 3 shows under-
lying graphical model for an MDP. In an MDP, given reward
function R(s), we can plan the optimal state sequence using
dynamic programming [15] to incorporate both an immediate
reward and an expected future reward. Therefore, an MDP
enables long-term prediction and is appropriate for defensive
driving modeling. Note that the predicted defensive driver
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Fig. 3. Underlying graphical model for an MDP.

behaviors obtained by an MDP are appropriate only when
the reward functions are designed carefully.

It is quite easy to obtain the optimal path in an MDP when
the reward function is fixed, but it is extremely difficult to
design the reward function appropriately in the first place.
Therefore, in this work, we address the inverse problem―
namely, we learn the optimal reward function from an actual
driving demonstration. This inverse problem is able to be
solved by inverse reinforcement learning (IRL) [16], [17],
[18].

A. Model Representation with Markov Decision Process

In the behavior unit defined above, a driver should perform
acceleration and deceleration while looking ahead to a goal,
i.e., the next turn or stop. Therefore, we formulate defensive
driving as a planning problem from the current state to
a goal state in position-velocity space with an MDP. This
formulation represents the driver’s action selection sequence
to the goal. We represent state s as a combination of position
x and velocity v as s = (x, v). Both state s and action
a are discretized in a certain way (described in detail in
section V). We represent the dynamics of driving behaviors
with discrete states and actions, defining state transition
probability P (s′|s, a).

To make the connection between environmental factors
f(s) and reward function R(s|θ), the reward function is
assumed to be represented as R(s|θ) = θTf(s), where each
fk(s) is a feature based on an environmental factor that may
affect the driving behavior and θ ≥ 0 denotes a parameter of
weights. This means that R(s|θ) is represented as a weighted
combination of features f(s) = [f1(s)...fK(s)]T ≤ 0. The
details of fk(s) are described in section IV. The likelihood
for state sequence ζ = {(s0, a0), (s1, a1), ...} is represented
as [14]:

P (ζ|θ) = 1

Z(θ)
exp

(
∑

t

(θTf(st) + logP (st+1|st, at))
)

(1)
where Z(θ) is a normalizing function.

B. Planning in an MDP with Dynamic Programming

In an MDP, given initial states P (s0), transition probability
P (s′|s, a), and reward function R(s), we can predict a
state and action sequence ζ = {(s0, a0), (s1, a1), ...} with
dynamic programming [14]. As described next, we can
obtain optimal policy π(a|s) by using a backward pass and
can predict state sequence ζ and obtain the expected state



visitation count D(si) of si by performing state transition
s→ s′ according to policy π(a|s) with a forward pass.

1) Backward pass: Let weight parameter θ be determined.
At this time, we compute state log partition function V soft(s)
and state-action log partition function Qsoft(s, a) with a
backward pass so that the reward function of the final state
becomes φ(s).

As stated earlier, in this study, we assume the behavior unit
to start with a turn or stop line and to end with the next turn
or stop line. The final state means the state with low velocity
at an intersection or stop line. The final state is obviously
not always the same because actual humans are performing
the driving behavior. Therefore, we consider Gaussian kernel
Pg(s) with the center of goal state sg = (xg, vg) for state
s = (x, v) and represent the reward function at the final state
as φ(s) = log(Pg(s)), where the goal state sg is represented
as sg = (xg, vg) with goal position xg and minimum velocity
vg.

Intuitively, the backward pass evaluates the expected re-
ward from all states to the goal state. State log partition
function V soft(s) is a soft estimation of the expected reward
obtained when reaching the state near sg from state s,
and the state-action log partition function Q(s, a) is a soft
estimation of the expected reward obtained when reaching
the state near sg after performing action a at state s. After
V soft(s) and Qsoft(s, a) converge, the policy computed by
πθ(a|s) = exp(Qsoft(s, a)− V soft(s)).

2) Forward pass: Forward pass is used to compute D(s),
which is the expected state visitation count of state s. D(s)
is computed by propagating initial state P0(s) according
to policy πθ(a|s) computed with the backward pass de-
scribed above. Probability propagation is prevented by setting
D(s) = 0 after goal state sg in implementation, otherwise,
the propagation continues after goal state sg .

C. Training with Inverse Reinforcement Learning
In the learning step, we optimize weight parameter θ

by minimizing negative log likelihood −L(θ) with reg-
ularization term Ω(θ) and then compute optimal policy
π(a|s). As the regularization term, we use L1 regularization
Ω(θ) = λ

∑
i |θi| for feature selection. We first compute op-

timal weight parameter θ∗ by minimizing objective function
−L(θ) + Ω(θ), as

θ∗ = argmin
θ

{−L(θ) + Ω(θ)} (2)

= argmin
θ

⎧
⎨

⎩−
∑

ζ̃i∈D

logP (ζ̃i|θ) + λ
∑

i

|θi|

⎫
⎬

⎭ , (3)

where D denotes a dataset of M sequences of a driver’s
demonstration data are represented as D = {ζ̃1, ..., ζ̃M}
with ζ̃i = {(s̃i,0, ãi,0), ..., (s̃i,Ti , ãi,Ti)}. The gradient of log
likelihood ∇L(θ) is formulated as

∇L(θ) = f̃ −
∑

ζ

P (ζ|θ)f(ζ) = f̃ −
∑

si

D(si)f(si), (4)

where f̃ is an expected empirical feature count represented
as f̃ = 1

M

∑
i f(ζ̃i). The learned model is also used

to extract the environmental factors that affect defensive
driving by obtaining non-negative weight parameters corre-
sponding to the features of the environmental factors. For
this reason, we use exponentiated gradient descent: that is,
we compute optimal weight parameters by repeating θ ←
θ exp(η(∇L(θ) − ∇Ω(θ))) with step width η. D(si) is
computed with backward pass and forward pass, as described
above. Once the weight parameter is determined, we can use
the two algorithms to predict driving behaviors, as well.

IV. DESIGNING FEATURE DESCRIPTORS

We based the feature descriptors on road configuration and
traffic signs, as these two items have an effect on the potential
risks inherent in driving on residential roads. These environ-
mental factors are assumed to be prospectively known by pre-
driving because they never change. We focus our attention
on intersections, the blind corners near intersections, and the
positions of the start and goal, as shown in Fig. 4 (a), where
red and blue lines respectively indicate the position-velocity
space of an expert driver and an inexperienced driver in an
actual driving demonstration. The positions of intersections,
blind corners, the start, and the goal are annotated with
vertical lines.

We extract five kinds of features from these geographical
factors. An example of each is shown in Figs. 4 (b)(f), where
the blue region indicates a low reward and the red region
indicates a high reward. Intuitively, the red region is more
likely to be passed in driving behaviors. The value at s is
used as feature f(s) and the final reward function R(s) is
learned as a weighted combination of these features with
sparse weight parameters, as described in section III. All
features are represented with Gaussian kernels. For example,
the feature related to velocity repression at start position xs

is generated as f(s) = − exp
(
−(s− ss)TΣ−1(s− ss)

)
,

where s = [x, v]T is a vector corresponding to s = (x, v)
and ss = [xs, vmax]T is a vector corresponding to start
position xs and the speed limit vmax. Σ is the covariance
matrix. We generate multiple features with different widths
of kernels by changing Σ and then determine the optimal
width by obtaining sparse weights θ using learning with
the L1 regularization term described above. Note that these
features can be computed online using GPS and map data
since the only information required is the position of each
environmental factor.

a) Velocity repression at start and goal: We generate
features related to start position, goal position, and maximum
speed. This is based on the observation that skilled drivers
slow down the velocity near the start and goal. Fig. 4 (b)
shows an example with a certain width.

b) Velocity repression at blind corners near unsignal-
ized intersections: Defensive drivers may slow down the
speed before a blind corner near unsignalized intersections.
Fig. 4 (a) shows the expert driver finishing deceleration at the
position of the blind corners. We generate features related to
this point, an example of which is shown in Fig. 4 (c).

c) Features related to velocity upper limit: We assume
drivers obey the legal speed limit over the entire road. To



represent this, we generate features according to the distance
from the upper limit of velocity. An example of this feature
is shown in Fig. 4 (d).

d) Features related to acceleration and deceleration
from start to goal: To represent acceleration and deceleration
from start to goal, we generate a feature whose distribution
varies according to the distance from the start and the goal
position in the region near from the start and goal. The
distribution is constant in the region far from the start and
goal, as shown in Fig. 4 (e).

e) Features related to acceleration and deceleration at
intersections: To represent acceleration and deceleration re-
lated to intersections, we generate features whose distribution
changes according to the distance from intersections. An
example is shown in Fig. 4 (f).

(a) Annotated state space and demonstrations (b) The feature f(s) related to velocity repression
at start and goal

(c) The feature f(s) related to velocity repression
at blind corners

(d) The feature f(s) related to velocity upper limit

(e) The feature f(s) related to acc. and dec.
from start to goal

(f) The feature f(s) related to acc. and dec.
at unsignalized intersections
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Fig. 4. Annotated state space, demonstrations, and extracted features.

V. EXPERIMENTS

A. Experimental Setup

The experimental vehicle we set up for acquiring actual
driving data is shown in Fig. 5. A LIDAR, a GPS sensor,
and cameras are attached to the experimental vehicle. The
data are used to extract the features described in section IV.
The position is calculated by accumulating the velocity data
obtained via a controller area network (CAN) bus.

We selected four courses on residential roads in Tokyo,
Japan. Each course starts with a turn or stop line and ends
with the next turn or stop line. Each course contains two or
three unsignalized intersections. The distance and width of
the whole course, the distances between intersections, and
the sizes of the intersections are unique to each course.

We selected two drivers as subjects: one who is an expert
driver working as a taxi driver and the other who is an
inexperienced driver who drives only a few times per year.
The total travel distance of the two drivers was about

20 km and each passed through roughly 200 unsignalized
intersections. We performed the experiments based on a
leave-one-out validation, namely, we used three courses as
training data and the rest as test data, and repeated all four
combinations.

GPS

Inertial sensor CAN data

All-round LIDAR

All-round camera

On-board
camera 1

PC

On-board
camera 2

Fig. 5. Experimental vehicle and setting sensors.

B. Implementation

The state space of the MDP in this work is discrete space,
as shown in Fig. 6. Let the current space s = (x, v). The next
step is then sa = (x+ v+1, v+1) if the driver accelerates,
sm = (x+ v, v) if the driver maintains the speed, and sd =
(x+v−1, v−1) if the driver decelerates. Thus, P (st+1|st, at)
is defined in a deterministic manner. We discretize the state
at 0.5 m/s intervals into 17 steps in velocity from 0.5 m/s =
1.8 km/h to 8.5 m/s = 30.6 km/h. This covers the range
from walking speed (4.0 km/h) to legal maximum speed
(30.0 km/h). We discretize the time at 5 Hz intervals. Gener-
ally speaking, drivers need about one second to start braking
after detecting risk. The discretization enables prediction in
a shorter time than one second. Position is discretized from
0.5 m/s× 0.2 s = 0.1 m to 8.5 m/s× 0.2 s = 1.7 m with
these discretizations. Namely, 0.1 m is one distance unit and
the position changes by 1-17 units according to the velocity
in one step.

In the experiment, the positions of the intersections were
manually annotated with 3D point cloud data from LIDAR.
Much research on detecting various objects has recently been
performed [19], and we can combine these techniques for the
automatic extraction of environmental features.

x

v

Position

V
e
lo
c
it
y

s

Accelerate

Maintain

Decelerate

(x, v)

(x+v+1, v+1)

(x+v, v)

(x+v-1, v-1)

sa

sm

sd

aa

am

ad

Fig. 6. State and action representation.



C. Evaluation Metric
We use modified Hausdorff distance (MHD) [20] as the

metric to evaluate similarity between the state sequence
of the actual driving demonstration and the state sequence
generated with learned policy π(a|s) in the position-velocity
space. MHD is an extension of Hausdorff distance that
enables the matching of time-series data. MHD represents
the distance between time-series data P = {pt}0≤t<Tp and
Q = {qt}0≤t<Tq as

hα(P,Q) = ordαp∈P

(
min

q∈N(C(p))
d(p, q)

)
, (5)

where N(q) denotes the set of neighbor points to point q in Q
and C(p) denotes a point q in Q related to p in data sequence
P . ordαp∈P f(p) is the value of f(p) below which the α of the
values may be found. Since this is a directed metric, we use
Hα(P,Q) = max(hα(P,Q), hα(Q,P )) for the evaluation as
an undirected metric. We compute the MHDs between state
sequence P in actual demonstration and 100 state sequences
obtained by random sampling with the learned policy π(a|s)
from starting state. We use the average of the MHDs for
evaluation. We set α, a parameter of MHD, as α = 0.5, 0.9.
Note that when α = 0.5, the MHD represents the median
distance of the sequences, and when α = 0.9, the MHD
represents the 90 percentile in order of increasing. From now,
we write them as MHD50 and MHD90, respectively.

D. Compared Methods
We use the location-based Markov model (LBMM) and the

maximum-entropy Markov model (MEMM) as comparative
methods.

1) Location-Based Markov Model: The location-based
Markov model (LBMM) is a history-based method that
does not use any features. It computes policy π(a|s) from
observed action in the training set according to locations.
With this model, first, we divide the roads into four regions:
ls, which is the nearest region to the start position, lb, which
is the nearest region to an intersection position and start side
from the intersection, la, which is the nearest region to an
intersection and the goal side of the intersection, and lg ,
which is the nearest region to the goal. We calculate lc, which
is the region of current state s, and determine policy π(a|s)
as π(a|s) ∝ clc(a, slc)+α, where state slc is represented by
slc = (xlc , v), xlc denotes the distance from the reference
point of lc, clc(a, slc) is the count at which the action a is
observed in state slc , and α is a pseudo count determined
using cross-validation.

2) Maximum-Entropy Markov Model: With the
maximum-entropy Markov model (MEMM), the policy is
computed by π(a|s) ∝ exp{wT

aF (s)}, where F (s) is a
vector of features for the neighbor states of current state s.

We use the features for all six possible states at the next
step and the previous step in addition to the features for the
current state s. That is, we incorporate the features for all of
the seven states in this model.

Although our proposed method selects the optimal action
looking ahead to the goal incorporating immediate reward

and expected future rewards, MEMM incorporates the fea-
tures only for the next and previous steps. Note that it is
intractable to incorporate all features towards the goal in
MEMM because we would have to compute the features for
all possible state sequences from the current state to the goal
state, which is not feasible.

E. Experimental Results

We conducted experiments to determine how well our
method could model defensive driving. Driving behaviors
were modeled using data from an expert driver and an
inexperienced driver. None of the data used contained any
dynamic environmental changes. The modeling results are
shown in Fig. 7, where the background color indicates D(s),
which is the expected state visitation count from current
state using learned policy π(a|s). A lighter background color
indicates a higher D(s). The white lines show the actual
demonstrated maneuvers of the expert driver and the inexpe-
rienced driver and the map below corresponds to the position
of the upper figure. The white lines are well accorded
with the lighter regions, and the expert driver diminished
the velocity before passing the intersections (Fig. 7(a)); the
inexperienced driver, however, did not. These results imply
that our approach is successful in terms of providing precise
learning models of risk anticipation and defensive driving.
Also, the difference between the two drivers is helpful in
terms of developing an active safety system such as an alert
system for inexperienced drivers.
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Fig. 7. Predictions of future visitation expectations given current states
and policies. Maps cited are from Google Maps [21].

Fig. 8 shows highly weighted features when data on the
Course 1 is used as the test data. The top four features
are shown. Fig. 8 (a) shows the model of the expert driver
where, beginning at the top, the feature related to velocity
upper limit, the two features related to velocity repression
at blind corners near unsignalized intersections, and the fea-
ture related to acceleration and deceleration at unsignalized
intersections are shown, and Fig. 8 (b) shows the model
of the inexperienced driver where, beginning at the top,
the feature related to velocity upper limit, the two features
related to velocity repression at start and goal, and the feature
related to acceleration and deceleration from start to goal are
shown. The features related to unsignalized intersections are
highly weighted in the expert driver model compared with



that of the inexperienced driver, indicating that the expert
driver was more likely to perform defensive driving while
considering potential risks at unsignalized intersections. This
demonstrates that our model is also useful for extracting
which environmental factors to focus on with defensive
driving by examining highly weighted features.
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Fig. 8. Highly weighted features.

Table I lists the qualitative results of the expert driver’s
model compared to other approaches using MHD, which
represents similarity between the state sequence of actual
driving demonstration and the state sequence generated with
learned policy π(a|s). The values indicate mean MHDs and
their standard deviations of all the courses. The results show
that the feature-based methods (the proposed method and
MEMM) outperform LBMM. Though the proposed method
and MEMM show comparative performances, MEMM may
have the label bias problem when test data have excep-
tional events stemming from uncertainty factors such as
pedestrians suddenly running in front of cars. Our proposed
method would deal with this problem since it is goal-oriented
method. Further experiments are needed in order to confirm
the performence against uncertainty factors.

TABLE I
COMPARISON WITH DIFFERENT METHODS.

Method MHD50 MHD90

LBMM 3.189± 0.572 6.617± 0.749
MEMM 0.836± 0.039 1.540± 0.099

Proposed 0.879± 0.042 1.477± 0.111

VI. CONCLUSION

We proposed an approach for modeling risk anticipation
and defensive driving based on actual driving demonstration
data and environmental factors using inverse reinforcement
learning for active safety systems on residential roads. Ex-
perimental results using actual driver maneuver data on
residential roads demonstrate that our approach is success-
ful in terms of providing precise learning models of risk

anticipation and defensive driving. Our method achieves
comparative performance among state-of-the-art methods.
The results also show that our approach enables us to extract
environmental factors on which to focus in defensive driving
from model parameters by comparing a skilled driver’s
model with an inexperienced driver ’s model. Our future
work will include large-scale experiments with a wide range
of drivers, areas, and times. To make our approach more
practical, online implementation of driver behavior prediction
with inexpensive and reliable sensors as well as extension
to practical scenes including pedestrians and bicycles where
redesigned feature descriptors for such moving objects as
pedestrians and bicycles would be useful.
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