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Abstract— Predicting defensive driving is a promising tech-
nology for novel advanced driver assistance systems. In recent
years, modeling driving behavior in residential roads through
inverse reinforcement learning (IRL) has been attracting atten-
tion in intelligent vehicle community thanks to the superiority
of this approach providing long-term prediction of fine-grained
driving behavior. However, it suffers from poor performance
in diverse environment due to the fact that the single reward
function could not handle all the environment with large
diversity. Towards this issue, a novel IRL framework with
multiple reward functions to deal with environmental diversity
is proposed in the paper. Specifically, the model employs
Dirichlet process mixtures as a flexible and powerful Bayesian
model to divide the environment into clusters and learns the
parameters in each cluster simultaneously. Experimental result
with expert driver behavior data shows that our model with
multiple reward functions provides superior performance over
the IRL model with single reward function. It also suggests that
the clustering of environments based on the driving behavior
of professional drivers could be useful on evaluating driving
environments.

I. INTRODUCTION

Preventive safety technology has been advancing dramati-
cally in recent years contributing to a reduction in automobile
accidents. However, the accident reduction rate is still low
on narrow streets in residential areas (residential roads), also
known as Zone 30 [1]. Accidents in residential roads mainly
stem from the fact that pedestrians and cyclists are dashing
out onto streets while drivers negligent about safety. There
has been a lot of researches toward detecting pedestrians [2],
[3], however, automatic emergency braking systems based
on pedestrian detection are not always reliable on residential
roads due to physical limitations such as too short a braking
distance. There is therefore a need for preventive safety
technologies dealing with such accident factors unique to
residential roads.

One form of preventive safety technology that has been
proposed for dealing with risk factors on residential roads is
pedestrian-to-vehicle (P2V) communication [4]. This type of
communication has shown promise as an effective counter-
measure to pedestrian accidents on residential roads; how-
ever, practical considerations such as the need for construct-
ing an appropriate infrastructure have hindered its implemen-
tation.

On residential roads having many uncertainties, a skillful
driver would not only observe the legal speed limit but would
also practice both risk anticipation and defensive driving. In
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other words, a good driver would anticipate potential risks
such as pedestrians dashing out onto the street at a blind
intersection and would naturally reduce speed beforehand.
Consequently, if risk anticipation and defensive driving of
a professional driver could be predicted, we could expect it
to be applicable to preventive safety technology, that is, to
promoting speed reduction by giving warnings to careless
drivers and to dealing with risks such as people running out
onto the street and inattentiveness to safety. As a pioneering
work dealing with this issue, Shimosaka et al. [5], have
proposed a technique for modeling the driving behavior of a
professional driver on residential roads. They demonstrated
the effectiveness of a modeling technique using inverse rein-
forcement learning (IRL), however, their evaluation where
only four courses in the same urban region are used, is
severely limited. Since residential roads, the target of pre-
diction, are huge in number, which suggests a highly diverse
environment in nature, intensive evaluation with massive
driver behavior data and handling the diverse environment
are needed. From our observation, the preference on driving
through risk anticipation and defensive driving will dramat-
ically change with respect to the conditions such as road
width, number of lanes, one-way or two-way street, etc. For
this reason, we consider that it would be difficult to predict
driving behavior in all environment with the single driver
behavior model.

One solution to this problem would be to simply observe
the diverse environments and exploit the conditions described
above in the model as features. However, it is not completely
obvious as to how best to incorporate such environmental
characteristics and conditions in the model. In addition, it is
sometimes impractical to sense the detailed features of such
environmental factors. Even if such massive features could
be leveraged, it also raises the concerns about overfitting
issues.

Another solution would be to make an individual driver
behavior model fitting in each environment. This implies that
the model learned individually works successfully even if
the used features are limited as in [5]. Nevertheless, there
are still issues to aggregate the driver behavior data in
each environment, i.e. it is difficult to obtain a sufficient
amount of driving data for each course due to the limited
human or financial resources. This is because over-training
stemming from the poor amount of data obtained in each
course could lead the performance degeneration. Moreover,
from a practical point of view, there is a need for predicting
driving behavior even for unknown courses for which no
driving data has been obtained beforehand.



To solve the problem as mentioned above, we provide
a flexible way to deal with the environmental diversity
and insufficient data by grouping / separating courses hav-
ing similar / dissimilar driving behaviors and learning the
multiple reward functions simultaneously. In this regard, a
methodology that improves accuracy when simultaneously
learning similar tasks by sharing knowledge among those
tasks is generally referred to as multi-task learning, which
has been shown to be effective in a variety of applications
[6], [7], [8].

Grouping together courses having similar driving behavior
and learning the reward function of each group is beneficial
not only in improving accuracy but also in classifying
courses based on differences in the driving behavior of a
professional driver. Taking a similar approach, Straub et al.
group roads into clusters based on the driving characteristics
obtained for each road by applying the technique of topic
modeling to driving behavior [9]. Their technique classifies
roads according to the degree of congestion for different
time slots based on velocity data obtained through crowd
sensing. In our study, we consider that classifying courses
according to differences in the way a driver performs risk
anticipation and defensive driving could be used in evaluating
the potential risks of a road environment.

The rest of this paper is organized as follows: in section II,
formalization of driver behavior modeling with a Markov
decision process is described. Section III presents proposed
framework with multiple reward functions towards environ-
mental diversity. In section IV, we describe the experiments
for verifying our model. Finally, section V presents the
conclusion of this study.

II. EXPRESSING DRIVING BEHAVIOR BY A MARKOV
DECISION PROCESS

In this section, the formalization of the modeling target
and the framework with inverse reinforcement learning is
described as a base model of our model.

A. Modeling target

As described in section I, our objective in this study is to
predict risk anticipation and defensive driving where a driver
anticipates potential risks such as pedestrians dashing out
onto residential roads and reduces speed beforehand. To this
end, we take the acceleration and deceleration behavior of a
driver along a course as the target of modeling. Here, as for
what route should be taken to the driver’s destination, i.e., the
global route is given priori, thus prediction of the destination
could be omitted in this paper. This stems from the growing
popularity of car navigation technology in recent years. It
should be noted that many studies have been provided the
way of destination prediction [10], so it is conceivable that
we could apply the results of those studies to our research.

On the basis of these assumptions, we treat the portion
of linear travel from a left-or-right turn or stop line (start)
to the next stop line (goal) as an activity unit and model
acceleration/deceleration behavior in that interval (Fig. 1).

This can be treated as a route-planning problem from the
start to the goal in position-velocity space (Fig. 2).
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Fig. 1. Assumed situation and activity unit.
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Fig. 2. Target driving behavior.

B. Model formulation

In the base model, route planning in position/velocity
space is expressed through an MDP. The underlying graph-
ical model for an MDP is shown in Fig. 3. By using
an MDP, driving behavior can be expressed as a state-
transition problem where a driver selects certain actions
with a goal in mind. Specifically, the dynamics of driving
behavior through discrete expressions by denoting state s as
a combination of position x and velocity v is expressed, that
is, as s = (x, v), discretizing state s together with action a,
and defining transition probability P (s|s′, a). Moreover, to
connect environmental features f(s) = [f1(s)...fD(s)]T ≤ 0
that affect driving behavior with reward functions R(s|θ), we
make the following assumption.

R(s|θ) = θTf(s). (1)

The term fd(s) is described in more detail below. θ ≥ 0
denotes the weight parameter.

s0 s1 s2

a0 a1 a2

r0 r1 r2

Fig. 3. Underlying graphical model for an MDP.

Likelihood of state series ζ = {(s0, a0), (s1, a1), ...} and
likelihood in data group D = {ζ1, ζ2, ...} are expressed as



follows based on the maximum entropy principle [11].

P (ζ|θ) = 1

Z(θ)
exp

(∑
t

(θTf(st) + logP (st+1|st, at))

)

P (D|θ) =
∏
i

P (ζi|θ), (2)

where Z(θ) denotes a normalizing factor.
In the MDP as mentioned above, it is assumed that the

driver accelerates and decelerates along the course from the
start point to the goal so as to maximize the sum of the
reward functions R(s). Here, if reward functions R(s) are
given, the state series for maximizing the sum of the rewards
obtained from start to goal can be determined by dynamic
programming [12].

C. Environmental features

In this paper, we leverage the feature descriptors of state
space s proposed by Shimosaka et al. [5] as feature vector
f(s) connecting the environmental information onto the
reward functions. Specifically, four types of environmental
information are used: the start position, the goal position, the
position of the near side of an intersection, and the position
of the center of the intersection. We decided to use these
types of information considering their applicability to the
real world and the ease at which they can be obtained (they
are included in general maps used for car navigation).

Using the positions of the above environmental factors
as reference, we generate potential fields that express five
types of behavior in position-velocity space using Gaussian
kernels: speed suppression at start/goal points, speed suppres-
sion at an unsignalized intersection, suppression of maximum
speed, acceleration/deceleration from start to goal, and accel-
eration/deceleration at an intersection. Here, potential values
are taken to be features in each state s. We prepare multiple
potential fields that constitute variations in Gaussian-kernel
shape (covariance matrix).

III. INVERSE REINFORCEMENT LEARNING WITH
MULTIPLE REWARD FUNCTIONS

In this section, we extend the base model described in the
previous section to deal with the environmental diversity. In
the base model, the single reward function of IRL [13], [14]
can be optimized from the driver behavior data.

In contrast, as described in section I, the technique pre-
sented in this paper derives clusters of courses having similar
driving behavior and learns a reward function for each cluster
with the aim of dealing with environmental diversity and
the problem of insufficient data. On the other hand, it is
not immediately obvious how to cluster together individual
courses and how many clusters should be used, or how
that would differ according to environmental diversity and
the number of courses for collecting training data. For this
reason, our method learns multiple reward functions through
IRL based on Dirichlet process mixtures (DPMs) [15]. This
approach makes it possible to automatically segment the
training data and to estimate the number of the clusters of
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Fig. 4. Graphical model of Dirichlet process mixture inverse reinforcement
learning.

courses simultaneously. DPMs are known to be sophisticated
tools, hence they are often leveraged in the clustering prob-
lem from the vectorial data or discrete data. However, the
clustering problem on Markov decision processes remains
challenge due to the complexity of the models.

The technique most related to our framework is that of
Choi et al. [16]. Their technique uses the Dirichlet process
prior distribution in IRL and performs efficient optimization
by the Metropolis-Hastings (MH) algorithm. When multiple
state series are given as training data, the technique handles
each separately and learns how to allocate them to clusters.
In the framework of our study, however, it is assumed that
the data obtained from identical courses have been obtained
from the same reward function and that such data is to be
optimized by making them belong to the same cluster in the
learning process.

A. Optimization of multiple reward functions

We assume that training data consists of C courses. Let
Mc (c = 1, ..., C) be the number of trips in each course.
Let Dc = {ζ̃c,1, ..., ζ̃c,Mc} be the state space sequences in
course c and D = {D1, ...,DC} be the overall collection of
state space sequences. In addition, driving-behavior data ζ̃c,i
denotes a series consisting of state s and action a expressed
as ζ̃c,i = {(s̃c,i,0, ãc,i,0), ..., (s̃c,i,Tc,i , ãc,i,Tc,i)}. Here, Tc,i

denotes the number of frames of state series ζ̃c,i.
Our method divides these data into a number of clusters

using the Dirichlet process mixtures and learns multiple
reward functions. The weight vector of reward function in
c-th cluster is written as θk. Additionally, zc = k expresses
the assignment variable of course c to cluster k, which can
be written as z = {zc}. The graphical model of IRL using
the Dirichlet process mixtures is shown in Fig. 4. Here, α
denotes a hyperparameter of the Dirichlet process and b is
a parameter of the prior distribution P (θk|b) of reward-
function weight θk. The prior distribution is explained in
section IV. The joint posterior distribution of the model
parameters is defined as follows.

P (z, {θk}|D, α) = P (z|α)
∏
k

∏
c′∈{c|zc=k}

P (θk|Dc′) (3)

According to Bayes theorem, the posterior P (θk|Dc) ∝
P (Dc|θk)P (θk|b) could be factorized, where P (Dc|θk) is



given by (2).
Inference is performed using the MH algorithm and by

alternately sampling z and {θk}. First, zc is updated by
sampling from the following.

P (zc|z−c, {θk},D, α) ∝ P (Dc|θzc)P (zc|z−c, α), (4)

where P (zc|z−c, α) is expressed by the Chinese restaurant
process and z−c = {zi|i ̸= c for i = 1, ..., C} as follows.

P (zc|z−c, α) ∝

{
n−c,zc , if zc = zj for some j

α, if zc ̸= zj for all j
(5)

Here, n−c,zj = |{ci = cj |i ̸= c for i = 1, ..., C}|.
Next, θk is sampled from

P (θk|z,D) ∝ P (θk|b)
∏

c′∈{c|zc=k}

P (Dc′ |θk). (6)

Due to the fact that it is impossible to draw a sample directly
from the distribution P (Dc|θk), MH algorithm are employed
as a sampler of P (Dc|θk).

B. Prediction in unknown environments

Predicting driving behavior on an unknown course requires
that an appropriate decision be made as to which cluster
should be used from those already obtained. Here, we assume
that data from one or more runs has already been obtained
as evaluation data on the course targeted for prediction,
and using this data, we select the model with the highest
likelihood.

However, taking real-world applications into account, we
must also consider cases that are not included in training
data and for which evaluation data could not be obtained.
In these cases, predicting driving behavior on an unknown
course would require the use of environmental characteristics
to select which model to use from those previously learned
or to determine what weight to apply to a model. In this
regard, the field of crowd sensing has been quite active in
recent years and methods for obtaining a variety of road
characteristics from a crowd have been proposed [17]. Model
selection using road characteristics in this way is left as a
future topic of study.

IV. EXPERIMENT ON PREDICTING DRIVING BEHAVIOR

We performed an experiment to demonstrate the effec-
tiveness of predicting driving behavior by IRL consisting of
multiple reward functions taking environmental diversity into
account.

A. Experimental data

In the experiment, we recruited one expert driver from a
taxi firm and collected data of driving behavior. We recorded
the location and speed of the driver behavior from the vehic-
ular network. In addition, we manually added environmental
factors as annotations after the experiment based on data
obtained from a LIDAR system installed on the vehicle used
in the experiment (see Fig. 5).

We selected seven courses in total from two areas in
Tokyo, Japan. In each course, it begins from a start line
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Fig. 5. Vehicle and the installed sensors used in the experiment

or left / right turn and ends with a stop line. These courses
with background maps are shown in Fig. 6. Additionally
the course information and number of driving data obtained
in the experiment are listed in Table I. It should be noted
that each course includes several unsignalized four-way in-
tersections whereas the distance between intersections, width
of crossroads, etc. are different with respect to the courses.
Furthermore, when traveling along the same road in the
opposite direction, that trip is taken to be a separate course
since that visibility at intersections and other characteristics
will probably differ. As shown in Fig. 6, courses 2 and 3
and courses 5 and 6 are such courses representing travel on
the same road but in the opposite direction. Additionally,
with the aim of modeling driving that anticipates potential
risks on residential roads, we have excluded data on dynamic
environmental changes such as the appearance of pedestrians
that could affect driving behavior.

Course1 

Course2 

Course3 

Course4 

Course6 

Course5 

Course7 

Fig. 6. Experimental courses. The blue lines indicate stop lines. The
background maps are cited from Google maps[18].

B. Experimental settings

In this study, as described in section II, we formulated
the route-prediction problem in position-velocity space by
MDP in discrete state space. Borrowing from the procedure
presented in [5], we discretized velocity into 0.5 m/s in-
tervals in 17 steps ranging from 0.5 m/s = 1.8 km/h
to 8.5 m/s = 30.6 km/h . This range of velocities covers
speeds slower than 4.0 km/h―the speed of a human being



TABLE I
INFORMATION OF EXPERIMENTAL COURSES AND OBTAINED DRIVING

DATA.

Course ID Course length # of data
Course 1 90 m 7
Course 2 95 m 6
Course 3 95 m 9
Course 4 79 m 10
Course 5 65 m 9
Course 6 70 m 10
Course 7 135 m 4

taking a leisurely walk―as well as the legal speed limit
of 30.0 km/h. In addition, we discretized time into 5 Hz
intervals considering that a human being takes about one sec-
ond to brake after recognizing some sort of danger and that
predictions should be performed with even finer granularity.
Based on the above discretization, the distance covered by
the vehicle in 0.2 s steps range from 0.5 m/s×0.2 s = 0.1 m
to 8.5 m/s× 0.2 s = 1.7 m.

We also discretized behavior into accelerate, maintain
(speed), and decelerate. Thanks to leveraging the discretiza-
tion mentioned above, the velocity and the position as integer
values in the form of vd = 1, ...17 and xd = 1, ..., the
current state can be expressed as st = (xd, vd), as shown
in Fig. 7. The next state can then be expressed as st+1 =
(xd + vd + 1, vd + 1) if accelerating, st+1 = (xd + vd, vd)
if maintaining speed, and st+1 = (xd + vd − 1, vd − 1) if
decelerating. In other words, if we specify the minimum unit
of distance to be 1, the distance covered will range from 1-17
per step.
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Fig. 7. State and action representation.

Furthermore, for the same environmental factors, we gen-
erated multiple features by varying the width of Gaussian
kernels, and since we could expect the weights of most
potential fields to be 0, we used the Laplace distribution
with an average of 0 for the prior distribution of weights. We
determined the other parameters through cross-validation.

C. Evaluation metrics

We use the modified Hausdorff distance (MHD) [19]
in distance and velocity space to evaluate the degree to
which the state series in actual driving matches the state
series generated using learned reward functions. The MHD

extends the Hausdorff distance to match up data having time-
series properties. Given point sets P = {pt}0≤t<Tp and
Q = {qt}0≤t<Tq having time-series properties, the distance
between P and Q can be defined by the following equation.

hβ(P,Q) = ordβp∈P

(
min

q∈N(C(p))
d(p, q)

)
. (7)

Here, N(q) denotes the set of points near point q within
point sequence Q and C(p) denotes point q within point set
Q related to p within point set P . In addition, ordβp∈P f(p)
is the value of f(p) among those calculated for all points
within point sequence P for which the percentile of that
sequence arranged in ascending order is β. The above
measure, however, is a directed one, so in this study, we
perform our evaluation by calculating an undirected measure
using Hβ(P,Q) = max(hβ(P,Q), hβ(Q,P )). Specifically,
we first calculate the MHD between state series P in actual
driving behavior and 100 state series generated by sampling
from the start point using obtained reward functions and then
take the average of the MHD values so obtained to perform
our evaluation.

Parameter β of MHD is set to β = 0.5, 0.9. We point
out here that β = 0.5 represents the median of the MHD
between the two point sets while β = 0.9 represents the 90
percentile of the MHD with values arranged in ascending
order. In the following, the former is referred to as MHD50

and the latter as MHD90.
In the evaluation, we used one of the seven courses as a

test course and the remaining six as training courses to learn
models. For the test course, we used one run of driving-
behavior data as test data and attempted to fit remaining
driving-behavior data to obtained models. The model with
the maximum likelihood was used in the evaluation. We
applied cross-validation to all the combinations, and then
obtained the average as an evaluation criterion.

D. Experimental results

Table II shows the performance comparison of our pro-
posed that learns multiple reward functions by grouping all
data into clusters based on driving behavior method with
the existing technique that learns a single reward function
using all data. As shown in the table, the proposed tech-
nique exhibits superior performance for both MHD50 and
MHD90. These experimental results were found to have a
significant difference at a significance level of 5% by the
t-test. It was also found that courses were assigned to 3.14
clusters on average when performing learning from different
combinations of six courses out of a total of seven courses.

To qualitatively interpret the manner in which models are
separated, we performed additional experiment where all
the seven courses are used as training data. The results of
assigning these courses to clusters are given in Table III and
are shown in Fig. 8. In general, it is difficult to discuss the
validity of clustering results, but it makes sense that course
set 2 and 3 and course set 5 and 6 would each be assigned
to the same cluster since each represents courses on the
same road but running in the opposite direction. Although



TABLE II
EXPERIMENTAL RESULTS WITH MHD50 (MEDIAN OF MHD) AND MHD90 (90 PERCENTILE OF MHD).

Method MHD50 MHD90

Single reward function 1.016 ± 0.01510 2.176 ± 0.2183
Proposed 0.9737 ± 0.04295 1.943 ± 0.1940

visibility at intersections differs with respect to the direction,
factors such as road width, distance between intersections,
and number of pedestrians would remain the same, thus
the resulting driver behaviors are similar. We consider that
clustering courses based on trends in the driving behavior of
a professional driver in this way is essentially classification
based on course hazards that are potentially indicated by
differences in that driving behavior. In short, this clustering
approach could also be used in evaluating road environments.

TABLE III
CLUSTER ASSIGNMENTS OF EXPERIMENTAL COURSES.

Course ID 1 2 3 4 5 6 7
Cluster ID 1 1 1 2 3 3 2
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Course3 

Course4 

Course6 

Course5 

Course7 

グループ1 
グループ2 
グループ3 

Group 1 
Group 2 
Group 3 

Fig. 8. Clustering results. The background maps are cited from Google
maps[18].

V. CONCLUSION

This paper presented a novel driver behavior model on
residential roads by using inverse reinforce learning with
multiple reward functions in order to avoid insufficient
amount of training data on individual courses while taking
environmental diversity into account. The technique pro-
posed in the paper extends a maximum-entropy inverse re-
inforcement learning employing Dirichlet process mixtures,
which makes it possible to automatically infer the number of
reward functions. This paper also showed that clustering of
environments based on the driving behavior of professional
drivers could be useful on evaluating driving environments.

As future work, we have to extend our framework that
can automatically choose the appropriate cluster where no
driving data has been obtained. This type of model selection
would require environmental information other than the
driving behavior of a professional driver, so the relationship
between cluster assignment and environmental information
will have to be further studied. There is also the possibility

that the driving actions selected by a professional driver
will change not only because of environmental differences
between courses but also because of weather and time of
day. Accordingly, supporting diversity in factors other than
environmental ones is also a future topic of the study.
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