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ABSTRACT
Understanding people flow in a city (urban dynamics) is of
great importance in urban planning, emergency management,
and commercial activity. With the spread of smart devices,
many studies on urban dynamics modeling with mobility logs
have been conducted. It is predictive analysis, not analysis of
the past, that enables various applications contributing to a
more prosperous society. To deal with the non-linear effects
on urban dynamics from external factors, such as day of the
week, national holiday, or weather, we propose a low-rank
bilinear Poisson regression model, for a novel and flexible
representation of urban dynamics predictive analysis. The re-
sults obtained from an experiment with one year’s worth of
mobility records suggest the high prediction accuracy of the
proposed model. We also introduce the following applica-
tions: regional event detection via irregularities, visualization
of urban dynamics corresponding to urban demographics, and
extraction of urban demographics of unknown point of inter-
ests.
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ACM Classification Keywords
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Miscellaneous
INTRODUCTION
Understanding people flow in a city is of great importance in
urban planning, emergency management, and commercial ac-
tivity [25, 28, 12, 32, 33, 29]. Modeling people transitions in
a specific area leads to understanding the characteristics of the
area. It can be assumed that people flow in business and res-
idential districts obviously differ in both size and peak time.
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In this paper, we define these dynamic behaviors as urban dy-
namics. With the spread of smart devices, a large amount of
mobility logs, such as GPS or cell tower logs, has been accu-
mulated. Therefore, many studies on urban dynamics mod-
eling with such mobility logs have been conducted [28, 12,
32, 22, 21]. In these studies, models were designed to help in
the analysis of the cities, a person’s daily activities, effect of
disasters and so on.

Studies focusing on improvement of city planning against dis-
asters [28, 12, 32] and traffic congestion [25] have been ex-
plored over the past decade. Though these studies help us
understand urban dynamics in a past disaster situation, they
did not focus on future prediction. Song et al. [28] and Fang
et al. [12], analyzed people flow during the Great East Japan
earthquake by using mobility logs. The results of the anal-
ysis could be useful for reducing traffic congestion during a
disaster. In another study [32], a population model in spe-
cific areas was constructed from mobility logs for real-time
anomaly detection. The importance of monitoring dynamic
changes in people flow is also described in [25]. However,
it is more useful to predict people flow in advance for pre-
venting accidents. If we know in advance where and when
large groups of people will congregate, more police security
officials can be strategically placed.

As noted above, it is clear that analysis of urban dynamics is
essential in the design of infrastructure. It is noteworthy that
the urban dynamics is affected by urban demographics, i.e.,
land-use and users in the area of interest. Therefore, analyses
of urban dynamics would be helpful for economic applica-
tions. For example, if the urban dynamics in a commercial
area where people tend to concentrate, such as stations or de-
partment stores, can be predicted in advance.

There have been studies on analyzing the demographics of
urban areas from mobility logs [22, 21]. Reades et al. [22]
divided Rome into ’pixels’ and counted the number of ac-
cess logs in each pixel to analyze when that pixel is more
active. Subsequently, as urban demographics, business loca-
tion data are extracted from the Yellow Pages. By comparing
activity patterns and urban demographics, areas with insuffi-
cient public services or commercial premises were suggested.
Phithakkintnukoon et al. [21] analyzed not only areas, but
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also a person’s transition patterns from one area to another.
This paper indicates the fact that similar user categories and
movement patterns can be found in similar urban dynamics.
Predictably recovering such demographics specific to an area
in advance may be useful in designing urban infrastructures
or planning store role-outs.

From the mobility logs from taxicabs, Zhang et al. [33] con-
structed a model of refueling behavior and proposed a recom-
mendation system to reduce waiting times at gas stations. The
waiting times and the most crowded times of the day for each
gas station were analyzed. Considering the balance of sup-
ply and demand, the location where to build new gas station
became clearer. Analysis of data from IC train tickets [29]
resulted in the understanding of people flow and demand of
transportation in cities. These studies assume that human
transition is affected by day of the week or weather condi-
tions. However, the most important thing is to respond the
demand immediately and properly. This requires predictive
analysis of urban dynamics, not analysis of past data or on-
line monitoring, enabling the development of various appli-
cations to promote a more prosperous society. However, pre-
dictive analysis of urban dynamics has not been established.
To address the issues with predictive analytics in urban dy-
namics, the use of external factors, such as day of the week,
national holiday, weather condition, or urban demographics
of the area, plays an important role. In the following section,
we describe the importance of the external factors for urban
dynamics prediction, and that existing models cannot handle
the external factors properly.

Related works and their limitations
Urban dynamics have been studied for many years. Analysis
of a person’s daily activity pattern is closely related to the
field of mobile sensing or next place prediction [8, 2, 3, 7].
They both predict quantity or place based on a period of time.
Therefore, statistical models have been extensively studied.
However, they are inadequate for urban dynamics prediction.

One of the models leverages the periodicity of urban dynam-
ics [5, 24, 13, 32]. It relies on the assumption that activities of
people are repeated daily or weekly. Witayangkurn et al. [32],
constructed seven hidden Markov models (HMMs) for each
day of the week based on the idea that urban dynamics re-
peats, not only daily but also weekly. Though these mod-
els based on periodicity can predict daily or weekly activity,
they cannot predict non-periodic activity related to national
holidays and much longer periodic effects, i.e., seasonal ef-
fects. Indeed the irregularity-detection approach [32] shows
that national holidays can be detected successfully, but it is
not always suitable to regard national holiday as an irregu-
larity but as a regular holiday. To construct custom HMMs
specific to national holidays, the number of HMMs has to be
doubled corresponding whether it is a national holiday. In
other words, if other external factors are leveraged for richer
representation, the number of HMMs exponentially grows by
the combination of external factors. The increase in the num-
ber of models means a decrease in amount of data assigned to
each model, which results in worse prediction accuracy.

Matrix and tensor factorization are well known methods for
analyzing urban dynamics [10, 11, 12, 30, 33, 34, 30]. Fac-
torization methods extract typical latent activity patterns and
load factors of patterns at the same time, (see Fig. 2). These
methods help us understand urban dynamics by visualizing
latent patterns; however, these methods are not designed for
predictive analysis for future urban dynamics. Specifically,
these cannot predict urban dynamics in advance except when
some of observation data are given to determine the load fac-
tors. Fan et al. [12] applied non-negative tensor factorization
to mobility logs to extract basic activity components, such
as commuting patterns or working patterns. Because of the
sparseness of the target data, the feature matrix is also factor-
ized collaboratively to fill in the target data tensor and achieve
higher accuracy. A tensor factorization method with side
information, such as SNS data [30], refueling logs of taxi-
cabs [33], and noise complaint data [34], has been proposed.
In contrast with past studies, they discussed the direction of
future research project and how to take in account the factors
related to the urban dynamics. Unfortunately, feature matrix
or other factors are only used to help fill in the sparse data.
The main point is still to analyze the past, not to predict the
future.

Similar to the factorization method, some studies have fo-
cused on the fluctuation of human activity using mixture
models [14, 15, 1, 27, 31, 19, 18]. Mixture models have high
power of expression with non-linear distributions. Therefore,
the target data in previous research project are quite varied,
e.g., people-count data at a building entrance and traffic-count
data on a freeway [14, 15], professional basket ball players’
shot attempts [18], going-out behavior [27, 31] and number of
pedestrians in a specific area [19]. However, mixture models
are difficult to use for predictive analysis since the load factor
to switch the appropriate latent patterns are not determined in
priori. Similar to the factorization method, these models are
not suitable for urban dynamics prediction.

When the load factor of each basic activity component is
explicitly described by external factors, such as day of the
week and weather conditions, it enables us to realize predic-
tive analysis in urban dynamics. From this view-point, a dis-
criminative model is used to model and predict the number
of activities [6, 9, 17]. The crowd counting prediction [6],
hazard index for urban roads [17], and traffic flow [9] were
modeled using regression models in previous studies. The re-
gression models can predict the future from related external
factors. However, due to the non-linearity nature of urban dy-
namics, simple linear regression models are not suitable. The
effects of external factors are fundamentally not independent.
For example, an active population drastically increases dur-
ing commute time on weekday. Due to the fact that simple
linear regression models take into account each factor inde-
pendently, they fail in representing the shift in peak time be-
tween weekdays and weekends. Similarly, generalized linear
regression, e.g. Poisson regression, cannot handle the exter-
nal factors properly.

Proposed bilinear Poisson regression model for urban
dynamics prediction
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Figure 1. Urban dynamics prediction with proposed model

To address these non-linear effects from external factors, we
propose a low-rank bilinear Poisson regression model, for
flexible representation of urban dynamics for predictive anal-
ysis. The proposed model is not only useful for predicting
future urban dynamics, but also enables us to understand the
relationship between each external factors and urban dynam-
ics. If the external factors of the target day are acquired in ad-
vance, the model can predict the future urban dynamics pre-
cisely according to this relationship. The concept of the pro-
posed urban dynamics prediction with the proposed model is
shown in Fig. 1. First, the basic activity patterns are extracted
from a large amount of mobility logs. Subsequently, future
urban dynamics is shaped according to the effect of external
factors including demographics, such as land use and user in-
formation, in the corresponding area collected from market
survey via crowd-sourcing.

We summarize the contribution of our model from a technical
perspective. The current state of the art can be summarized as
follows. 1) Almost all the research projects in point process or
event process, the Poisson process or Poisson regression has
been explored in the literature where no mixture effects are
assumed. 2) In order to handle the changes in patterns due to
the external factor changes, the mixture model and factorizing
model have been focused in the field recently. However, these
models cannot handle the external factors directly. 3) Even
if we incorporate external factors into simple linear models,
the external factors only affect the scale of predictive urban
dynamics. Thus, simple linear models cannot be used in our
application scenario. To the best of our knowledge, our model
is the first that is able to consider not only the mixture effects
but also incorporate multiple external factors to represent the
changes in urban dynamics.

We also introduce the following prominent applications based
on the proposed prediction model: 1) regional event detec-
tion via irregularities in the ordinary urban dynamics. Being
based on passive and pervasive sensing on smart devices, our
regional event detection can find various type of events. The
event detection using SNS posting data [23] is suitable to de-
tect the newsworthy events, but cannot detect unremarkable
or nameless events, which can be detected by ours. 2) Vi-
sualization of urban dynamics corresponding to urban demo-
graphics. 3) Extraction of urban demographics of unknown
point of interests (POIs). The extraction of urban demograph-
ics from mobility logs is also really meaningful because they
suggest that we are released from conducting the market sur-
veys of anywhere.
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Figure 2. Analysis of urban dynamics with factorization
The contributions of this paper are as follows. For ex ante
(ex. for the week ahead) prediction of urban dynamics, we
propose a low-rank bilinear Poisson regression model. In
contrast to current models, the proposed model incorporates
external factors into urban dynamics. By evaluating the pro-
posed model with a large amount of mobility logs and open-
sourced data, we argue it achieves more precise prediction
than comparative models. We also introduce the following
applications based on the proposed prediction model: 1) re-
gional event detection, 2) visualization of urban dynamics
corresponding to each characteristic of an area, and 3) ex-
traction of urban demographics from any POI, and confirmed
the usefulness of the proposed model.

URBAN DYNAMICS PREDICTION BY LOW-RANK BILIN-
EAR POISSON REGRESSION

Problem Settings
We modeled the daily transition of an active population in
several areas of Tokyo as urban dynamics. We define the term
POI as a focus spot and the target area as a rectangular area
around the POI1. Let f(t) be the number of access logs per
unit time (e.g. per minute) t (0 ≤ t ≤ T ) in the target area,
where T denotes time of day. Fig. 3 shows the transition of
f(t) in a target area in a day. Let ∆ = T/S be the time inter-
val, where S denotes the number of time segments in a day,
then we define the total number of access logs observed in
each time segment as an active population2. We model this
transition of an active population as a histogram, as shown in
Fig. 4. Let h = {h1, h2, . . . , hS} be a histogram that rep-
resents a one-day activity pattern, in which the s-th bin size
y = hs is defined as y =

∫ s∆

(s−1)∆
f(t)dt. On the assump-

tion that population density follows Poisson distribution, the
likelihood of y is written as follows.

p(y) = Pois(y|λ) = λy exp(−λ)

y!
(1)

Therefore, to predict an active population in each area, we
estimate the mean parameter λ of the Poisson distribution.
As a richer representation than Poisson distribution over his-
tograms, Gaussian Cox processes or continuous Poisson pro-
cesses [1], namely, doubly stochastic processes, vary the vari-
ance of λ across time as well as the mean of the active pop-
ulation; however, we do not use these point processes due to
the high computational cost of inference.
1We used 300 POIs and 900 × 900m2 area; however, the scale of
the experiment is extensible.
2[20] reported that active population could be inferred using a rebate
method using access logs from smart devices.
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Figure 3. Number of mobility logs in POI throughout one day
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Figure 4. Active population histogram

Generalized linear model
We now argue that prediction using a naive generalized lin-
ear model can not work properly even if external factors are
incorporated into the model. In the generalized linear model,
we assume that the mean parameter λ is regressed by the time
factor with weight parameters. Specifically, λ can be regarded
as a function of a time feature vector t formulated as follows,
where β is a weight parameter vector.

λ(t) = exp(tTβ), (2)

where t is the S dimensional vector and its s-th element de-
notes the corresponding time segment. Inspired by the flexi-
ble representation of λ by mixture models, as in [14], we cast
the time factor vector t as an indicator function of normal
distribution with mean parameter τ , that is,

t = {ts|ts = N (s|τ, σ), s = 1, . . . , S}, (3)

where N (τ, σ) is the normal distribution with τ and variance
parameter σ. In this case, σ is the hyper parameter that ex-
hibits the effect of time and empirically determined by effec-
tive cross validations [26]. In addition to t, we introduce d,
which contains various external factors that affect the transi-
tion of an active population, such as day of week, weather and
urban demographics of the area. A naive approach by gener-
alized linear regression to model transition in urban dynamics
with these external factors may be thought of useful when ex-
ternal factor d is incorporated as a parameter into the model.
However, it is impossible to shift the peak of an active pop-
ulation because the correspondence between day of the week
and time factor cannot be considered at the same time. In
practice, λ in a generalized linear regression model should be
formulated as a dot product by the extended features [tTdT]

λ(t,d) = exp([tT,dT]β); (4)

however, it cannot work properly. For example, Fig. 5 illus-
trates the transition on weekdays and weekends in Shinjuku,
a downtown area of Tokyo, estimated by this representation.
In this figure, two peaks can be found as the commute time.
Fig. 5 also suggests that the weekday/weekend factor in af-
fect active population size. On the other hand, the estimated
transition on weekend also has peaks for commute time. This
stems from the fact that the linear model cannot combine both
factors, commute time and weekend, simultaneously.
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Figure 5. Linear Poisson regression
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Figure 6. Bilinear Poisson regression

Proposed bilinear Poisson regression model
To model urban dynamics with both time and external factors
in a flexible manner, we model λ, which denotes an active
population in a time segment as

λ(t,d) = exp(dTBt), (5)

where t and d denote the same feature, as in generalized lin-
ear regression, and B ∈ RM×S denotes the weight parameter
matrix. Fig. 6 illustrates the urban dynamics obtained using
our bilinear regression model on weekdays and weekends in
Shinjuku. On weekdays, there are two peaks in the morning
and evening, which can be interpreted as commute time. Fur-
thermore, the model took into account the fact that there is no
obvious peak in weekends. Our model incorporates the active
population increase on the condition that the day is a week-
day and the time is commute time. Therefore, it is suitable for
modeling urban dynamics compared to the naive linear model
mentioned above.

In addition to formulating the proposed model with bilinear
representation, we add the assumption that the rank of weight
matrix B prone to decrease, which makes both learning the
parameters stable, and the results interpretable. To achieve
rank reduction, the weight matrix B in (5) is assumed to be
a product with two low-rank matrices, U ∈ RM×K and V ∈
RS×K . Note that K and M satisfy K ≪ M .

λ(t,d) = exp(dTBt) = exp(dTUV Tt) (6)

The row vectors of the weight matrix B depict M types of
patterns, which correspond to M types of external factors. In
the low-ranked model, matrix V relates to time factor t and
the k-th (1 ≤ k ≤ K) column vector denotes the k-th dynam-
ics pattern. Matrix U relates to external factor d and its col-
umn vectors depict the relationship between K types of dy-
namics patterns and external factors, that is, several external
factors share K types of dynamics patterns. This shrinkage
helps us to understand the characteristics of urban dynam-
ics. We optimize the model by maximizing the log likelihood
against training data. Let us assume that we have N days
of training data D = (yn,s,dn,s, tn,s), n = 1, . . . , N, s =
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Table 1. Example of POIs
Sight-seeing spots Stations

1 Tokyo Disneyland Shinjuku
2 Tokyo Skytree Ikebukuro
3 Tokyo DisneySea Shibuya
4 Asakusa Yokohama
5 Tokyo Tower Kita-Senju
6 Narita Airport Takadanobaba
7 Nihon-odori Shinagawa
8 Kamakura Tokyo
9 Nikko Akihabara

10 Owakudani Shinbashi

1, . . . , S, then the log likelihood of the data is written as

lnL(U ,V ) =
∑
n

∑
s

ln Pois(yn,s|λ(t,d))

∝
∑
n

∑
s

{yn,sdT
n,sUV Ttn,s

− exp(dT
n,sUV Ttn,s)} (7)

Specifically, we plug in the log likelihood defined above with
a regularization term into the following objective function

Û , V̂ = argmin
U ,V

{− lnL(U ,V ) + Ω(U ,V )} (8)

where Ω(U ,V ) = γ||U ||22 + γ||V ||22 is an L2 regulariza-
tion term with a hyper parameter γ (> 0). Although the
problem in (8) is not bi-convex in U and V , optimizing one
parameter is convex once the other is fixed. Thanks to this
property, the model can be optimized in a similar way to the
alternating least square algorithm [4], which is often used in
non-negative matrix factorization (NMF). In each convex pro-
gramming, we use Newton’s method.

Design of features
In addition to vector t, which denotes the time factor, we
use vector d, which denotes external factors in the proposed
model. We describe the design of parameter d. The external
factors that seem to affect urban dynamics are as follows: day
of the week, weekday/weekend/national holiday, month, sea-
son, weather, weather warning, locality, and umber of stores,
events and train lines near the target area. A factor that takes
one state among M states, such as day of week and season,
is denoted by an M -dimensional vector in which the cor-
responding ν-th element is 1 and all other elements are 0.
Therefore, it is written as

d = {dm|dm = δm,ν ,m = 1, . . . ,M}, (9)

where δm,ν is the Kronecker delta. When regarding a numer-
ical value, such as the number of events and train lines, the
quantitative values can be incorporated as a feature value.

EXPERIMENT
To evaluate predictive performance of the proposed low-rank
bilinear Poisson regression model, we conducted an experi-
ment with a large amount of mobility data.

Mobility data
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Figure 7. Number of logs over 300 POIs per day
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Figure 8. Number of users per day
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Figure 9. Number of normalized logs per day

As mentioned in the section for model description, the tar-
get of modeling is the active population transition in a spe-
cific area. In this experiment, we used massive mobility log
records obtained from the disaster alert mobile application
released from Yahoo! JAPAN3, which scales to the popula-
tion size; therefore, the dataset could be used for predicting
the active population4. Anonymized data were collected for
one year (from July 1, 2013 to June 30, 2014), and consisted
of 40 million records per day. Each record include three ele-
ments, timestamp, latitude, and longitude. A mobility log was
recorded only when mobile devices were moving not stable.
That is the reason the number of logs represents an active
population. Three hundred specific city squares areas were
selected as POIs. Some examples of the POIs are listed in
Table. 1.

The size of the target areas was set to 900 × 900m2 (delta
longitude = ±0.004 degrees and delta latitude = ±0.005 de-
grees), as in [12]. The number of GPS logs in each target
area was counted and regarded as active populations of the
POIs. The transition of the total number of data over the 300
POIs per day and the number of the users per day are shown
in Fig. 7 and Fig. 8 respectively. Both numbers have weekly
patterns which represent a more active population on week-
days and less so on weekends. The reason the number of
total logs varied by period (Fig. 7) is not because of the vari-
ation in the active population but that in users (see Fig. 8).
This stems from the fact that the users of the mobile applica-
tion have been increasing gradually after the release in 2012.

3http://emg.yahoo.co.jp/
4[20] reported that active population an be inferred using a rebate
method using access logs from smart devices.
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To decrease this effect, we normalized the total number of
logs according to the number of users on the last day, June
30, 2014. The number of logs after normalization (shown in
Fig. 9) was used in the evaluation.

In this experiment, the fundamental period T was set to 24
hours. The start of a day was 3:00 AM, which had the least
active population, and the end was 3:00 AM the next day (i.e.
27:00 in 24-hour notation). From empirical evaluations, the
bin width of the histogram was set to 30 minutes; thus, the
number of bins was 48.

Performance measure
The following three criteria were used as performance mea-
sure for evaluating our model and several others for com-
parison: mean absolute error (MAE), mean negative log
likelihood (MNLL), and mean absolute peak error (MAPE).
When the test data and the prediction value are represented as
yn,s, λ̂n,s, n = 1 . . . Nt, s = 1 . . . S, the peak time is defined
as follows.

τn = argmax
s

yn,s for s ∈ {1 . . . S} (10)

τ̂n = argmax
s

λ̂n,s for s ∈ {1 . . . S} (11)

With this expression, the performance measures can be for-
mulated as

MAE = E(|yn,s − λ̂n,s|) (12)

MNLL = E(− ln(Pois(yn,s|λ̂n,s))) (13)
MAPE = E(|τn − τ̂n|∆), (14)

where E(x) is the expectation of x, and ∆ is the bin width
of the histogram. To assess the model in a fair manner, five-
fold cross validation was conducted. The model was trained
with data of 30, 90, 180 days at each POI, and the next 180
days of data were used as test data. We evaluated two types of
scenarios: 1) ex ante prediction: prediction only with exter-
nal factors, and 2) ex post prediction: prediction with external
factors and some data of the target day. The ex ante predic-
tion is used when one wants to know future urban dynamics,
for example to predict the urban dynamics for the week ahead
with the external factors of that day (Wednesday, sunny and
area is a business district). The urban dynamics under the se-
lected external factors will be simulated by ex ante prediction.
In contrast, ex post prediction is used when the urban dynam-
ics of morning has already been observed and one wants to
predict the afternoon with high accuracy.

External factor data
We leveraged day of the week, whether it is a national holi-
day, and the weather as the external factors. We experimen-
tally select these external factors because they are intuitively
assumed to affect dynamics patterns and can be accessible
from open APIs. Taking into account the comparison mod-
els perform best when they are optimized to each POI, we
evaluate predictive performance of each POI independently,
Therefore urban demographics was excluded from external
factors.

Weather data were collected from the Japan Meteorological
Agency’s website5. The weather of the nearest meteorologi-
cal station from the POI was used. The candidate meteorolog-
ical stations were Tokyo, Yokohama, Chichibu, Kumagaya,
Chiba, and Utsunomiya. The category of the weather was 1
to 4, {sunny(1), cloudy(2), rainy(3), or rough weather(4)}.

Comparative models
A baseline model, linear Poisson regression model, Dirichlet-
mixture Poisson model, and non-negative matrix factorization
model were used for comparison.

The baseline model returns the average number of past data
logs at each time segment, described as λ(t, d) = E(hs).
This model only takes into account the time factor, in other
words, just modeling the average pattern over all days. The
effect from external factors (ex. day of the week) could not
be taken into account.

We also compared the linear Poisson regression formulated in
(4). The parameters were optimized with Newton’s method
to maximize the log likelihood against the training data. As
mentioned in the section describing generalized linear re-
gression, this model reflects both time and external factors;
however, the effect may result in scale instead of peak time
shifts. In addition to time factor t ∈ RS , day of the week
(7 dim.), whether it is national holiday (2 dim.), weather (4
dim.), and the constant term (1 dim.) were used as external
factors d ∈ R14.

We also compared our proposed model with mixture models.
Specifically, we used the Dirichlet-Poisson mixture model
proposed by Shimosaka et al. [27]. Since it models the daily
activity as a histogram and predicts the future, it is related
to ours. With this model, it is assumed that the size of each
histogram bin is distributed under Dirichlet-Poisson mixture
distributions. The model is formulated as follows. Let zn
be the discrete random variable drawn from multinomial dis-
tribution represented by ω and express the n-th day belongs
to which of the K distributions. p(yn,s|zn = k) is the k-
th distribution of yn,s trained by data. GEM(·) denotes the
Griffiths-Engen-McCloskey distribution, and M(·) denotes
the multinomial distribution.

p(yn,s) =
K∑
k

p(zn = k)p(y|zn = k)

p(zn) = M(zn|ω), ω ∼ GEM(·) (15)

The Dirichlet-mixture enables the Dirichlet-Poisson mixture
model to estimate the proper K, i.e., the number of distribu-
tions to mix. It is true that this model has novel expressive-
ness with the framework of determining the proper number
of components; however, when it comes to prediction, some
of target day data must be observed. With no data, the model
cannot determine the posterior of latent factor z, which results
in low prediction accuracy. In the experiment, the prediction
with no data is represented as DP0, the prediction with data
of n hours is represented as DPn. DP0 corresponds to ex
ante prediction and DPn corresponds to ex post prediction.
5http://www.data.jma.go.jp/obd/stats/etrn
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In DPn, the probability that the target day belongs to the k-th
category ω∗

k and posterior distribution p(y)∗ is as follows.

ω∗
k = π

p(y1:n|z = k)∑
k p(y1:n|z = k)

(16)

p(y)∗ =
∑
k

ω∗
kp(y|zn = k) (17)

We used DP0 as a competitor in ex ante prediction and DP6
and DP12 in ex post prediction.

In addition to mixture modeling, we also compared our model
with the non-negative matrix factorization (NMF) model.
With the NMF model, the data matrix of each POI is fac-
torized using the method proposed by Fan et al. [12]. Though
the tensor factorization is originally used in [12], NMF model
for each POI is suitable for prediction. The mobility data is
represented as the matrix Y ∈ RS×N . S,N are the number
of time segments and the day respectively. The NMF method
approximates this matrix as the linear combination of coef-
ficient ωk and the basic matrix Yk, which is the Kronecker
product of unit time vector uk and unit day vector vk.

Y ≈
K∑
k

ωkuk ⊗ vk (18)

In contrast to a previous study using the factorization method
focused on extracting the latent pattern u, v and the load fac-
tor ω [12], we have to reuse this information for ex post pre-
diction. Similarly to the mixture models mentioned above,
this model also requires some of the target day data for high-
accuracy prediction. When the data before time τ , y1:τ is
already known, and the coefficient ωk is optimized to mini-
mize the square errors from the observed data. Then the rest
of the data are predicted by mixing up the uk,τ+1:S accord-
ing to ω̂k. Though the NMF model was not originally de-
signed to handle the distribution of data, we predicted ŷτ+1:S

on the assumption that it follows the Poisson distribution with
the mean parameter λ̂τ+1:S . The predicted parameter λ̂τ+1:S

and ω̂k are written as follows.

ω̂ = argmin
ω

||y1:τ −
K∑

πkuk,1:τ ||2 (19)

λ̂τ+1:S =
K∑
k

ω̂kuk,τ+1:S (20)

In NMF0, with no data, the load factor ω̂ is equal to ω.
Results
Fig. 10∼Fig. 12 show the ex ante performance among the pre-
diction models. We averaged the performance measure calcu-
lated in 300 POIs, and evaluated the performance by the av-
eraged value. The horizontal axis shows the number of days
of training data, and the vertical axis shows the mean and
variance of each evaluation from five-fold cross validation. A
smaller value denotes the better performance for each crite-
rion. With respect to MAE, please note that the average num-
ber of active population in each time unit is approximately
600.

According to Fig. 10 and Fig. 11, the proposed low-rank bi-
linear Poisson regression model exhibited the best estimation
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Figure 10. MAE of ex ante prediction
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2013−07−23 16:30

Detection  result� Weather  radar�
Figure 16. Unexpectedly heavy rain in Tokyo
2013−07−27 19:00 2013−07−27 19:00

Fireworks  venue�Detection  result�
Figure 17. Large fireworks event on Sumida river

accuracy compared with the conventional models. In partic-
ular, the variance of the proposed model was small compared
with that of the linear Poisson regression model, since the
proposed method can reflect peak time shift with the external
factors. Fig. 12 also shows that the proposed model drasti-
cally reduced peak time estimation errors.

Subsequently, we evaluated ex post prediction, i.e., predic-
tion accuracy after some of the target data was observed. The
data scale was normalized to decrease the effect of variation
in data size over a period. Fig. 13 and Fig. 14 show that the
proposed model performed well in urban dynamics estima-
tion. In particular, it is noteworthy that the proposed model
could estimate better than DP12 and NMF66. This means that
our proposed model can predict urban dynamics even better
than the models that can take into account the actual urban
dynamics of half or quarter of the target day. Though NMF12
exhibited good performance, the requirement of observation
over 12 hours is not feasible for some applications. Our pro-
posed model provides wide applicability, in that it can esti-
mate urban dynamics without long observation.

APPLICATIONS OF OUR PROPOSED MODEL
This section shows some of prominent applications of the
proposed model to detect regional event, visualize and extract
demographics of urban dynamics.

Event detection from irregularities in urban dynamics
The proposed model learned from data with the same fac-
tors (place, day of week, weather, and time) as mentioned
in the previous section. This means that the model can esti-
mate urban dynamics in an ordinary case. If a regional event
occurs, the active population drastically increases/decreases
compared to that of the prediction. We define the irregularity
index i as follows

i =
y − λ̂

λ̂
, (21)

6The variance of NMF6 is extraordinary large.We found a time vec-
tor uk whose elements are almost 0 in the particular POI. In NMF6,
the coefficient of this uk (i.e. ω̂k) becomes big following (19) be-
cause the activity population during 03:00∼09:00 (y1:6) tended to
be 0. As a result, NMF6 had a bad performance in the prediction of
the remaining time.

where λ̂ indicates the estimated population for each time
unit, defined in (6). A regional event can be detected using
this simple irregularity score. If i exceeds the predetermined
threshold (positive value), or the actual number is much larger
than the predictive one, we define the event as irregular and
describe it with red circle in the following figures. In con-
trast, if i falls below another predetermined threshold (nega-
tive value), or the actual number is much less than the pre-
dictive one, we also define the event irregular and describe it
with blue circle.

We believe such an automatic irregularity detection tool for
urban dynamics can be used in map services in next gener-
ation web services. As well as SNS data, photos with GPS
metadata, search queries, reservation data, route data in car
navigation systems, schedules, news, and detected events in
terms of irregularities, will be useful for next generation web
services.

Fig. 16 and Fig. 17 show the irregularity detection results
of two cases: unexpectedly heavy rain in Tokyo and large
fireworks event on the Sumida river. Each figure shows the
degree of irregularity at the POI. White circles denote little
difference between the actual and predicted urban dynamics.
Vivid red circles denote that the actual size of the population
was much greater than the predicted population, whereas the
blues circles denote the opposite situation. Fig. 16 shows that
we had sudden heavy rain in Tokyo on July 23rd, 2013, where
many blue circles show that the active population greatly de-
creased due to the rain. Moreover, the area of influence of the
rain is clearly shown in Fig. 16. There is no service that can
monitor the affected area of a disaster in real time. Such a
service will be really useful. In the right of Fig. 17 (Asakusa
area), a large fireworks event was held on that day. Our model
detected the venue regions since large crowd of spectators
gathered to watch the fireworks.

The time series visualization of irregularities can provide us
with interesting insights. Fig. 18 shows the urban dynam-
ics on February 23rd, 2014. The largest marathon in Tokyo
called the Tokyo Marathon was held on that day. About
10,000 runners started from Shinjuku (green point) at 9:00
and ran to finish line (orange point). In this event, many spec-
tators stood on the side of the road and cheered the runners.
The route could be reproduced from the detection results as
shown in Fig. 18. The same approach will be useful for the
detection of disaster areas, i.e., reproducing a typhoon route.

Visualization of demographics in urban dynamics
The proposed model is flexible in adding urban demographics
of each region as external factors that characterize urban dy-
namics. To construct a model shared among all POIs, we add
urban demographics to external factors. We considered two
types of urban demographics, land use of an area (residential,
downtown) and user information (students, families). For ex-
ample, Shinjuku is a downtown with business people. In this
section, we describe the method of adding these demograph-
ics into our model as external factor and aims to visualize
decographics in urban dynamics. First, urban demographic
information is added as a feature to the basic feature discussed
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Figure 18. Tokyo Marathon

in Design of feature. Then, the urban dynamics of each demo-
graphic is visualized by activating the part of d corresponding
to that demographic. In contrast to the conventional models
with mixture/factorization methods, our model automatically
visualizes the urban dynamics corresponding to specific or
mixed demographics, whereas the latent patterns should be
interpreted and manually labeled in the conventional models.
Our model also contribute to the simulation of urban dynam-
ics, which is essential to the urban planning.

Obtaining demographics by crowd sourcing
To obtain the demographics in each region, we used a ques-
tionnaire and a crowd sourcing service provided by Yahoo!
JAPAN. The questionnaire considered of two types of ques-
tions. Regarding land use type, users were asked Which land
use type is the most appropriate to the (target area name)?
Ten options were offered: traffic node, downtown, night spot,
amusement district, business district, tourist spot, sightsee-
ing spot, residential district, temple/shrine area, and N/A. Six
options were offered as a user information: students, busi-
ness people, elderly, tourists, families, and N/A. To make an-
swers more reliable, redundant questions were inserted into
the queues to verify the crowdworker.

123,753 valid answers were gathered from the crowd sourc-
ing in two weeks. Fig. 19 shows the questionnaire results in
terms of land use and user information of five POIs: Shin-
juku, Asakusa, Kichijoji, Tokyo Disney Land, Narita airport.
Note that the questionnaire was normalized as a multinomial
distribution. According to Fig. 19, the characteristics of land
use type and user information at each POI followed our in-
tuition (Shinjuku is well known to Japanese as a mixed area;
downtown, night spot, and business district, and Asakusa is
an area where there are many temples and shrines).

Visualization results
Fig. 20 shows the visualization results of demographics in
terms of urban dynamics from land use type and user infor-
mation viewpoints. The proposed model learned from 180
days of data and 100 POIs at the same time. The nine charts

on the left represent the urban dynamics from land use types,
and the five charts on the right side from user information.
Different colors show different days of the week.

The visualization results seem to reflect the characteristics of
each urban demographic well. For the urban dynamics of
each land use type, the following four results were evaluated
as qualitatively-correct. (1) Amusement district is the only
land use type where the population is larger on weekends than
weekdays. (2) Night spot had little difference in population
between weekends and weekdays. (3) Business district had a
large difference in population between weekdays and week-
ends, especially during commute time. (4) The population of
residential districts decreased during the day in weekdays.

If we obtain user demographics in addition to the location
data, the daily rhythm of each user category (e.g. male / fe-
male) could be visualized. Two characteristics were observed
from the results. (1) Though students and business people
had similar dynamics on weekdays, they had totally different
dynamics on weekends. Business people did not commute on
weekends. On the other hand, students were active even on
weekends. (2) In the urban dynamics of tourists, a moderate
peak in the morning was found compared to a narrow peak
found in the urban dynamics of business people.

These results imply that our model not only accurately pre-
dicts the active population but also analyzes the latent factors
of urban dynamics both quantitatively and qualitatively.

Extraction of demographics of any POIs
In addition to the application of visualizing demographics,
our model can automatically extract urban demographics
from mobility records even when no questionnaire records
are available. Urban dynamics data can be easily acquired
from smartphone GPS logs even if the number of target POIs
increases. However, it is not always easy to obtain crowd-
sourcing results of new POIs due to financial costs. This ap-
plication would drastically reduce such costs in investigating
the demographics of the interest area. In order to estimate
the demographics, we adopted a k-NN method on the basis of
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Figure 19. Questionnaire results for land use type and user segment from crowd sourcing. Every POI has different land use pattern and different user
information.
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Figure 20. Urban dynamics of each land use type and user information.
the similarity of the urban dynamics. The k-nearest urban de-
mographics are chosen from other POIs to retrieve the urban
demographics of the target POI.
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Figure 21. Extraction results of urban demographics in Tokyo Tower
area

Fig. 21 shows the actual and top 5 retrieved urban demo-
graphics of the Tokyo Tower area obtained. Red bins show
the actual urban demographics of the Tokyo Tower area from
the result of crowd sourcing. Estimated urban demographics
is close to the actual ones.

These extraction results are really meaningful because they
suggest that we are released from conducting the market sur-
veys of every POI. As discussed in this section, urban demo-
graphics can be reproduced from a massive amount of mobil-
ity logs.

CONCLUSION
We proposed a low-rank bilinear Poisson regression model
for accurate ex ante prediction (ex. predicting urban dynam-
ics for the week ahead). We discussed the usefulness of in-
corporating external factors, such as day of the week, national
holiday, weather condition, urban demographics of the area,
in urban dynamics prediction. The results obtained from our
experiment with one year’s worth of mobility records con-
firms the high prediction accuracy of the proposed model.
The estimation accuracy of the proposed model is as good
as that of conventional models using mixture/factorization
methods taking quarter/half of the target day in account. We
also confirm the feasibility of three applications including re-
gional event detection based on irregularity, visualization of
urban dynamics, and extracting demographics automatically
from unknown POIs.

For future work, issues remain on automatic selection or auto-
matic design of the external factors, which is now done by hu-
mans. Extensions of the model based on the applications will
also be considered. Expanding the weight parameter matrix
to a high-order tensor, in other words, extension to a multi-
linear model, will make the model more expressive. To sta-
bilize the learning phase, recent nuclear norm minimization
methods [16] are attractive as global optimization methods.
However, the interpretability of the model should be consid-
ered and compared to low-rank approximation. Discussions
with governments and industries on urban dynamics will also
further promote ubiquitous computing community.
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