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Abstract. We propose a nonparametric Bayesian mixture model that
simultaneously optimizes the topic extraction and group clustering while
allowing all topics to be shared by all clusters for grouped data. In addi-
tion, in order to enhance the computational efficiency on par with today’s
large-scale data, we formulate our model so that it can use a closed-form
variational Bayesian method to approximately calculate the posterior dis-
tribution. Experimental results with corpus data show that our model
has a better performance than existing models, achieving a 22% im-
provement against state-of-the-art model. Moreover, an experiment with
location data from mobile phones shows that our model performs well in
the field of big data analysis.

Keywords: Non-parametric Bayes ·Clustering ·Hierarchical model ·Topic
modeling

1 Introduction

In this paper, we focus on a nonparametric Bayesian model in which the complex-
ity of data can be controlled by using a stochastic process such as the Dirichlet
process (DP) [9] as a prior distribution. Because of its flexibility against large-
scale, complex data, this framework is useful for cluster analysis and has been
applied to a wide range of research fields such as natural language processing,
image processing, and bioinformatics. As well as cluster analysis, topic analysis
on grouped data, e.g., topic modeling with corpus data, has long been studied.
The hierarchical Dirichlet process (HDP) [22] is an example of successful non-
parametric Bayesian model for topic analysis. Used as a prior distribution of a
mixture model, HDP extracts the mixture components (= topics) across groups
and allows all topics to be shared by all groups, with mixture weights of topics
inferred independently for each group. The following model discussion is based
on document analysis. As such, words, documents, and topic, which are the ex-
pressions in document analysis, correspond to observations, groups, and mixture
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components, which are generic technical expressions, respectively. The following
model discussion can be applied to various fields (e.g., urban dynamics analysis
[17]) in addition to the research fields mentioned above.

These two fields of study have developed independently, but considering that
the cluster structure, or relationship among groups, enhances the performance
of topic modeling described in [20], it is useful to treat these two analyses at
the same time. The naive approach is to follow a sequential process. For ex-
ample, first we extract topics using HDP and then cluster the document, or we
cluster documents on the basis of tf-idf [12] and then extract topics for each doc-
ument cluster. However, as shown in [24], the sequential process possibly suffers
from inaccurate results because the optimization criteria of topic extraction and
group clustering are different. Therefore, a nonparametric Bayesian model that
simultaneously optimizes the topic extraction and group clustering as a unified
framework is required.

As an alternative to such naive approaches, the nested Dirichlet process
(nDP) [21] has been proposed. The nDP simultaneously extracts topics and
clusters groups as a unified framework. In this model, groups (documents) of
data are clustered into various clusters and topics are extracted for each cluster.
Since the topics are not shared with groups in different clusters, there is a risk of
over-fitting in the clusters to which few groups belong due to the lack of training
data for the mixture components of such a cluster.

In order to solve this problem in nDP, Ma et al. [15] proposed a hybrid
nested/hierarchical Dirichlet process (hNHDP). The hNHDP extracts global top-
ics, which are shared by all clusters, and local topics, which are shared only by
groups in the same cluster. Using the idea of [16], hNHDP clusters groups and
allows partial topics (global topics) to be shared by all clusters. However, as with
the nDP, this framework has the risk of over-fitting with regard to the cluster
specific local topics of a cluster to which few groups belong due to the lack of
training data for each topic. As mentioned in [15], enhancing the computational
efficiency is also important, since the sampling method is used to infer the model
parameters of hNHDP.

In light of this background, in this paper, we propose a coupled hierarchical
Dirichlet process (cHDP) that archives the desired framework mentioned above
in order to solve the problems that hNHDP is currently facing. The cHDP ex-
tracts topics and clusters groups as well as nDP and hNHDP and allows all
mixture components to be shared by all clusters, as with HDP. In addition, in
order to enhance the computational efficiency for handling large-scale data, we
formulate cHDP so that it can use a variational Bayesian method in which ana-
lytical approximation is provided and convergence speed is improved compared
to conventional sampling methods.

To evaluate our cHDP performance against the existing models, we conduct
experiments with corpus data on topic modeling and document clustering. In
addition, using large-scale mobility logs from smartphones, we apply the cHDP
to big data analysis – in this case, urban dynamics analysis – in order to show
that cHDP works well in the fields other than document modeling where the data
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take continuous values, in contrast to the corpus data represented by discrete
values. We perform experiments in which two simultaneous analyses are tackled:
the extraction of the pattern of a daily transition of population common in target
regions [17] and the clustering of these regions [25]. These analyses correspond to
topic analysis and group clustering, respectively. As well as document modeling,
since these two analyses have developed independently, and because even recent
research [25] has proposed a sequential approach to such analysis, it is assumed
that cHDP is useful in this urban dynamics analysis.

In order to clarify the position of our proposed cHDP, we introduce two
existing models, nested hierarchical Dirichlet process (nHDP) [18] and coupled
Dirichlet process (cDP) [13], whose names or motivation are similar to cHDP,
and describe the differences between them and cHDP. The nHDP was proposed
to extract tree structured, hierarchical topics, so unlike cHDP, it cannot real-
ize simultaneous topic extraction or group clustering. In the case of cDP, its
generic formulation is motivated by the same purpose as cHDP, but no concrete
inference process was proposed in [13]. In this paper, we formulate a specific
model equivalent to cDP and propose a closed-form variational inference that is
superior to one in [13].

Our contributions are as follows. We developed a new nonparametric Bayesian
method that simultaneously extracts topics and clusters groups in a unified
framework while allowing all topics to be shared by all clusters. This is achieved
by stochastic cluster assignment for both clustering processes. In order to en-
hance the computational efficiency, we formulate our model so that it can use
a closed-form variational Bayesian method to approximately calculate the pos-
terior distribution. We apply our proposed model to document analysis and big
data analysis, in this case, urban dynamics analysis. The results of experiments
with real data show that our model performs better in both research fields com-
pared with existing models.

2 Related Works

As discussed in Sec.1, for grouped data, we propose a new framework that si-
multaneously extracts topics and clusters groups, which allows all mixture com-
ponents (topics) to be shared by all clusters. In this section, we briefly describe
the existing nonparametric Bayesian models for grouped data. First, we describe
HDP as a basic model for grouped data that focuses on topic analysis and then
we introduce nDP and hNHDP, which simultaneously do two analyses, as a base-
line for comparison with our model. In the following explanation, we assume that
we have D groups of data, and the nth observation of group d is denoted as xd,n.

2.1 Model for Topic Analysis

HDP The hierarchical Dirichlet process (HDP) [22] is a nonparametric Bayesian
model for grouped data. The generative process for a mixture model for grouped
data is written as

G∗
0 ∼ DP(β,H), Gd ∼ DP(α,G∗

0), (1)
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where G∗
0 ∼ DP(β,H) denotes the Dirichlet process (DP) [8], which draws dis-

crete distribution G∗
0. β is a concentration parameter and H is a base measure

of DP. This process is described by stick-breaking representation as

G∗
0 =

∞∑
k=1

πkδϕk
, ϕk ∼ H, πk ∼ GEM(β), (2)

where δ· is the Dirac’s delta function. The expression GEM (named after Grif-
fiths, Engen, and McCloskey [19]) is used as {π}∞k=1 ∼ GEM(β) if we have

πk = π′
k

∏k−1
j=1 (1− π′

j), π
′
k ∼ Beta(1, β) for k = 1, · · · ,∞.

The group specific distribution Gd is drawn independently from DP(α,G∗
0)

andG∗
0 is shared by all groups, which is itself drawn from another DP. As a result,

mixture components (topics) are shared by all groups while the weights are
independent of each group. The HDP cannot consider the relationship between
groups, and since the mixture weights of each group are inferred independently,
there is a risk of over-fitting.

2.2 Models that Simultaneously Extract Topics and Cluster Groups

NDP The nested Dirichlet process (nDP) [21] clusters groups and extracts
topics in a unified framework. The nDP is written as the following process, in
which the DP itself is used as the base measure of different DP:

Q ∼ DP(α,DP(β,H)), Gd ∼ Q. (3)

This generative process induces the clustering of groups. The mixture com-
ponents and weights are shared only in the same cluster of groups. The stick-
breaking representation of the nDP is written as

Q =
∞∑
g=1

ηgδG∗
g
, Gd ∼ Q, ηg ∼ GEM(α), (4)

G∗
g =

∞∑
t

πg,tδg,t, ϕg,t ∼ H, πg,t ∼ GEM(β). (5)

Let G∗
g denote the cluster specific distribution and ϕg,t denote the tth parameter

of cluster g. In the mixture model with the nDP, as the mixture components in
a cluster are not shared by different clusters, the clusters to which few groups
belong suffer from over-fitting due to the lack of training data.

HNHDP Ma et al. [15] proposed the hNHDP model, in which the advantages of
the HDP and nDP are integrated. In the hNHDP, the cluster specific distribution
Fg is modeled as the combination of two components, G0 ∼ DP(α,H0) and
Gg ∼ DP(β,H1), and written as

Fg = ϵgG0 + (1− ϵg)Gg, ϵg ∼ Beta(α, β). (6)
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G0 is shared by all group clusters andGg is cluster-specific. α, β are concentration
parameters and H0,H1 are base measures. Therefore, we have global mixture
components shared by all clusters and cluster-specific local mixture components.
With this modeling, we can cluster the groups while some mixture components
are shared by all clusters, which enhances the modeling performance. However, as
well as the nDP, this framework still has the risk of over-fitting due to the cluster
specific mixture components. To tackle this problem, we need a framework in
which all mixture components are shared among all group clusters.

3 Coupled Hierarchical Dirichlet Process (cHDP)

As described in Sec.2, the existing nonparametric Bayesian models are facing
various issues. In this section, we propose a coupled hierarchical Dirichlet process
(cHDP) in which the advantages of HDP and nDP are integrated. The cHDP
simultaneously extracts topics and clusters groups while allowing all mixture
components to be shared by all group clusters, which solves the problem in
the hNHDP. In addition, in order to enhance the computational efficiency, we
modeled the cHDP so that it can use a variational Bayesian method in closed
form for inferring the model parameters.

In this paper, we assume that we have D groups of data and let xd =
{xd,1, . . . , xd,Nd

} be the observations of group d, where {xd,n} denotes the nth
observation and Nd is the total number of observations in group d. We assume
that each observation xd,n is drawn from the probabilistic distribution p(θd,n)
with parameter θd,n. The figure (D) in Fig.1 shows the generative process of
cHDP.

3.1 Definition and Formulation

We define the generative process of our proposed cHDP as follows

G∗
0 ∼ DP(γ,H), Q ∼ DP(α,DP(β,G∗

0)), Gd ∼ Q. (7)

The second equation of (7) indicates that the DP is used as the base measure
of another DP as with the nDP described in (3). The base measure of the nested
DP in (7) is drawn from another DP whose base measure G∗

0 is shared with all
groups as with HDP described in (1). Considering this description, we can say
cHDP is the generative process that holds the characteristics of HDP and nDP.

Several representations such as the Chinese restaurant franchise and the
stick-breaking process are candidates for implementing the cHDP. In this pa-
per, we adopt the stick-breaking representation, which enables us to use vari-
ational Bayesian inference, a computationally efficient approximation method,
because we consider using the cHDP to handle large-scale data. We formulate
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(B)	 (C)	 (D)	(A)	

Fig. 1. Graphical model of (A) HDP, (B) nDP, (C) hNHDP, and (D) cHDP (proposed).

the stick-breaking representation of the cHDP as　

G∗
0 =

∞∑
k=1

λkδϕ∗
k
, ϕ∗k ∼ H, λk ∼ GEM(γ), (8)

G∗
g =

∞∑
t

πg,tδψ∗
g,t
, ψ∗

g,t ∼ G∗
0, πg,t ∼ GEM(β), (9)

Q =
∞∑
g=1

ηgδG∗
g
, ηg ∼ GEM(α), Gd ∼ Q, (10)

where k is the index of mixture components shared by all groups and g is the
index of the clusters of groups. Each group belongs to one of the clusters and
cluster g = 1 · · ·∞ has a cluster specific distribution G∗

g drawn as (9). Regarding
the stick-breaking representation of the generative process of G∗

g, which is the
same as the model structure of HDP in (7), there are different representations
by Teh et al. [22] and Wang et al. [23]. The above representation is

G∗
g =

∞∑
k=1

πg,kδϕk
, πg,k = π′

g,k

k−1∏
j=1

(1−π′
g,j), π

′
g,k ∼ Beta

αλk, α
1−

k∑
j=1

λj

 .

(11)
With this representation, it is not possible to use a variational method in closed
form in the inference of posterior distribution, so we formulate as (9) using the
representation in the same way as [23], which enables us to use the variational
method. This is achieved by introducing cluster specific parameter {ψg,t}∞t=1

and a mapping variable that connects ψg,t and mixture component ϕk, which is
shared by all clusters.
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Next, we introduce additional variables and formulate the mixture model us-
ing the cHDP. Let Y = {yd,g|yd,g = {0, 1},

∑
gyd,g = 1} be a variable that repre-

sents the cluster to which a group d belongs. Then, we define Z = {zd,n,t|zd,n,t =
{0, 1},

∑
tzd,n,t = 1} as a variable that represents the cluster specific component

t to which xd,n belongs and C = {cg,t,k|cg,t,k = {0, 1},
∑
kcg,t,k = 1} as a

variable that represents the mixture component k to which the cluster specific
component t of a cluster g corresponds. As mentioned above, introducing the
cluster specific component t and mapping variable c enables us to use variational
inference. Let Θ denote the parameter set of distributions that the observations
X = {xd,n} follow. The mixture model using the cHDP is then formulated as

p(X|Y,Z,C,Θ) =
∏

d,g,n,t,k

p(xd,n|Θk)
yd,gzd,n,tcg,t,k , (12)

p(Y|η′) =
∏
d,g

η′g
g−1∏
f=1

(1− η′f )


yd,g

, (13)

p(Z|Y,π′) =
∏

d,g,n,t

{
π′
g,t

t−1∏
s=1

(1− π′
g,s)

}yd,gzd,n,t

, (14)

p(C|λ′) =
∏
g,t,k

λ′k
k−1∏
j=1

(1− λ′j)


cg,t,k

, (15)

p(η′g) = Beta(η′g|1, α), (16)

p(π′
g,t) = Beta(π′

g,t|1, β), (17)

p(λ′k) = Beta(λ′k|1, γ). (18)

3.2 Variational Bayesian Inference with Closed Form Update

As with the general nonparametric Bayesian models, the posterior distribution
of this cHDP mixture model cannot be calculated in closed form. We therefore
need to apply an approximation method such as Gibbs sampling or variational
Bayesian inference. In this paper, because we consider application to large-scale
data, we opt to use variational Bayesian inference, which is characterized by its
computational efficiency, to approximately calculate the posterior distribution
and infer the model parameters. We approximate the posterior distribution as

q(·) ≡ q(Y)q(Z)q(C)q(η′)q(π′)q(λ′)q(Θ). (19)

In variational inference, we update each parameter distribution qi by ln qi =
Eq−i[ln p(X, ·)] + const.
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Update q(Y) We introduce ξd,g that satisfies
∑
g ξd,g = 1 and

ln ξd,g =
∑
n,t

Eq[zd,n,t]
(∑

k

Eq[cg,t,k]Eq[ln p(xd,n|Θk)]

+Eq[lnπg,t]
)
+ Eq[ln ηg] + const, (20)

then we have q(yd) = M(yd|ξd) and Eq[yd,g] = ξd,g, where M(·|·) represents
the multinomial distribution.

Update q(Z), q(C) As well as the update of q(Y), both q(Z) and q(C) are
represented as multinomial distribution by introducing variables.

Update q(η′) We have q(η′g) = Beta(η′g|αg,1, αg,2), where

αg,1 = 1 +
∑
d

Eq[yd,g], (21)

αg,2 = α0 +
G∑

f=g+1

∑
d

Eq[yd,f ]. (22)

G is a large truncation number for group clusters. We also have

Eq[ln η′g] = ψ(αg,1)− ψ(αg,1 + αg,2), (23)

Eq[ln (1− η′g)] = ψ(αg,2)− ψ(αg,1 + αg,2), (24)

Eq[ln ηg] = Eq[ln η′g]
g−1∑
f=1

Eq[ln (1− η′f )], (25)

where ψ(·) represents the digamma function ψ(x) = d
dx lnΓ (x).

Update q(π′), q(λ′) As well as the update of q(η′), both q(π′) and q(λ′) are
represented as the beta distribution.

3.3 Predictive Distribution for New Observation

By using the approximation p(C,η,π,λ,Θ|X) ≃ q(C)q(η)q(π)q(λ)q(Θ) as
with [23], the likelihood of new observation x∗ of the cHDP model trained with
data X is written as

p∗(x∗|X) ≃
∑
g

Eq[ηg]
∏
n

∑
t

Eq[πg,t]
∑
k

ϕg,t,kEq[p(x∗
n|Θk)], (26)

where

Eq[ηg] = Eq[η′g]
g−1∏
f=1

(1− Eq[η′f ]), Eq[η′g] =

{
1 (g = G)

αg,1

αg,1+αg,2
(o.w.).

(27)

Eq[πg,t] is calculated in the same manner.
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4 Experimental Results

4.1 Document Analysis with Corpus Data

We present the experiments with corpus data to evaluate our framework. We
constructed a topic model, cHDP-LDA, in which our cHDP is applied to latent
Dirichlet allocation (LDA) [6] as a prior distribution. In the experiment with
corpus, the words, documents, and topic correspond to observations, groups,
and mixture components. The cHDP-LDA simultaneously optimizes both words
and document clustering, and topics are shared by all document clusters.

Suppose we have document d ∈ {1, · · · , D} whose number of words is Nd
and the total number of words found in these documents is W . Let xd,n =
{xd,n,w|xd,n,w = {0, 1},

∑
w xd,n,w = 1} be the nth words in document d. We

assume that the word xd,n is drawn from multinomial distribution M(xd,n|µk),
where k is the topic index and µ· ∈ RW is a parameter of the multinomial
distribution. The Dirichlet distribution D(µ|δ) ∝

∏
i µ

δi−1
i , which is conjugate

to multinomial distribution, is used as a prior distribution for µ, where δ ∈ RW
is the hyperparameter for the Dirichlet distribution. In this paper, we assume
that {δi}Wi=1=δ and D(µ|δ) is the symmetric Dirichlet distribution.

In the following experiments, we used three corpora: Reuters-21578 Corpus
(Reuters corpus) [10], Nist Topic Detection and Tracking Corpus (TDT2 corpus)
[2], and NIPS Conference Papers Vols. 012 Corpus (NIPS corpus) [4]. With these
datasets, preprocessing (removal of stop words, etc.) has already been done. For
the Reuters corpus, we chose the version used in [3] composed of uniquely labeled
documents with a total of 65 categories. The TDT2 corpus was collected from six
news services from January 4, 1998 to June 30, 1998, and we chose the version
used in [3] composed of uniquely labeled documents with a total of 96 categories.
The NIPS corpus [4] was made with the proceedings of the Neural Information
Processing Systems (Advances in NIPS) [1] from Vols. 0 (1978) to 12 (1999).

Perplexity Evaluation First, we evaluate the document modeling performance
of our cHDP model and compare it to other existing topic models. All three
corpora described above were used. As comparative models, we selected LDA
models, each of whose prior distribution is an existing nonparametric Bayesian
model, e.g., nested Chinese restaurant process (nCRP) [5], HDP [23], nDP [21],
and hNHDP [15]. We refer to these models as hLDA, HDP-LDA, nDP-LDA,
and hNHDP-LDA respectively. The hNHDP-LDA is a state-of-the-art frame-
work that clusters both words and documents simultaneously. We set the hyper-
parameters of cHDP-LDA as α=β=γ= δ=1, and those of nDP-LDA are also
1. As for hLDA, HDP-LDA and hNHDP-LDA, we followed the cited references.

We evaluate the models with the perplexity to test data. The perplexity
indicates how well a trained model predicts new documents. Suppose we have D
documents X∗ = {x∗

d}Dd=1 and the number of words in the dth document is Nd.
In this case, the perplexity P(X∗) is calculated as

P(X∗) = exp

(
−
∑
d ln p(x

∗
d)∑

dNd

)
. (28)
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The smaller the perplexity, the better the performance. In this experiment, we
randomly divided each corpus into two groups, set A and set B, and then trained
models with the one set and evaluated with the other.

For all corpora, the perplexities calculated with test sets A and B are shown
in Table.1. The proposed cHDP-LDA performed best. The difference in per-
formance between cHDP-LDA and HDP-LDA seems to be caused by the fact
that cHDP can consider the relationship among documents. While the nCRP,
which is the prior distribution of the hLDA, can indirectly consider the relation-
ship of documents by partially sharing nodes (topics) in learning process, the
hLDA performed worse than cHDP-LDA. We assume this is because the mix-
ture weight to topics is independent of each document, resulting in over-fitting.
HDP-LDA also suffers from this problem. Although the nDP-LDA can directly
consider the relationship among documents, it exhibited a much worse perfor-
mance than the others. This is because the topics in a document cluster to which
few documents belong are inaccurate due to lack of training data, since topics
in one document cluster are not shared by different clusters. The cHDP-LDA
also outperformed the hNHDP-LDA, the state-of-the-art co-clustering model, in
which partial topics are shared with different clusters. The same as the nDP-
LDP, the hNHDP-LDA may suffer from over-fitting since hNHDP holds cluster
specific topics (local topics). The above comparison clearly demonstrates that
our cHDP-LDA, which clusters both words and documents while allowing all
topics to be shared by all documents (or clusters), is suitable for topic modeling.

Table 1. Test data perplexity (best score in boldface).

Corpus Reuter TDT2 NIPS

Training → Test A → B B → A A → B B → A A → B B → A

cHDP-LDA 1591 1529 4157 4200 2543 2463

hLDA 1925 1864 6523 5600 2584 2560

HDP-LDA 2478 2390 6348 6406 3033 2998

nDP-LDA 4557 4460 10043 10189 3404 3374

hNHDP-LDA 2041 1939 5498 5350 2886 2817

Document Clustering We conducted an experiment to evaluate only the per-
formance of document clustering against the existing methods, some of which do
not extract topics. The datasets used here are the Reuters corpus and the TDT2
corpus, both of whose documents are categorically labeled. The evaluation cri-
terion is the adjusted Rand index (ARI) [11], which indicates the accuracy of
the clustering result against the true labeling. If the clustering result coincides
with the true labeling, ARI takes 1 and if the result is from random clustering,
ARI takes 0. The closer the ARI value to 1, the better the clustering accuracy.
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As comparative models, we used spherical k-means (SPK) [7] and spectral
clustering (SC) [14], which cluster documents without topic extraction. In ad-
dition, as nonparametric Bayesian models, we used nDP and hNHDP. For each
model, we conducted 100 clustering trials and evaluated the ARI values. Fig.2
indicates the means and standard deviation of ARI at each number of document
clusters and Table.2 shows the highest ARI value and the corresponding number
of clusters. In the case of cHDP-LDA, nDP-LDA, and hNHDP-LDA, since the
number of document clusters is not manually determined (inferred by model),
we plotted the same value for each number of document clusters.

We firstly compare the cHDP-LDA with SPK and SC, which do not extract
topics. For the Reuters corpus, the ARI value statistically exceeded that of SPK
and SC at the most appropriate number of document clusters. Although the
ARI of the cHDP-LDA was slightly lower than that of SPK with the TDT2
corpus, the difference was not statistically significant. Then, we argue the result
against the nDP-LDA and the hNHDP-LDA, nonparametric Bayesian models
that cluster documents with topic extraction. Against the nDP-LDA, the cHDP-
LDA statistically outperformed with both corpora. In contrast, although the
cHDP-LDA performed slightly worse than the hNHDP-LDA for the Reuters
corpus, without statistically significant difference, it statistically outperformed
for the TDT2 corpus. We found the cHDP is more robust against documents
than the HNHDP-LDA. These results indicate that the document clustering
performance of the cHDP-LDA is the same level or higher compared to the
existing methods.

We summarize the results of both experiments. As for the perplexity evalua-
tion for topic modeling, our cHDP-LDA outperformed all existing models with
all corpora. Regarding the ARI evaluation for document clustering, although
cHDP-LDA performed slightly worse than some combinations of model and cor-
pus, no statistically significant difference was observed by t-testing. In other
cases, cHDP-LDA performed best and the difference was statistically significant
for each case. Therefore, we conclude our cHDP-LDA performs better and more
stably than other models including the hNHDP-LDA, the state-of-the-art model.

Table 2. Results of document clustering.

Reuters
No. of
clusters ARI

cHDP-LDA — 0.419± 0.045

nDP-LDA — 0.195± 0.103

hNHDP-LDA — 0.424± 0.050

SPK 5 0.391± 0.109

SC 4 0.385± 0.019

TDT2
No. of
clusters ARI

cHDP-LDA — 0.640± 0.028

nDP-LDA — 0.083± 0.042

hNHDP-LDA — 0.520± 0.066

SPK 12 0.646± 0.065

SC 7 0.557± 0.008
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Fig. 2. Adjusted Rand indices with no. of clusters.

4.2 Big Data Analysis with Mobility Logs

In this section, using large-scale mobility logs from smartphones, we apply our
cHDP to big data analysis, in this case, urban dynamics analysis. In this analysis,
the following two analyses have been developed independently: extraction of
patterns of the daily transition of population common in target regions [17],
whose details are explained below, and clustering of regions [25]. Inspired by the
success of cHDP in simultaneous topic modeling and document clustering, we
apply cHDP to simultaneously tackle these analyses.

First, let us give an overview of this experiment. We set a square area (e.g.,
300×300 m) as the target region and define this region as a point of interest
(POI). In each POI, we divide a day into H time segments and describe the
daily transition of population as a histogram, as shown in Fig.3. Each bin in the
histogram is the number of logs observed in a time segment in the POI. We define
basic patterns in the transition of population as dynamics patterns and assume
that a daily transition of population is generated from the mixture of dynamics
patterns. Using an analogy from document modeling, POI, a daily transition,
and dynamics pattern correspond to document, word, and topic, respectively.
Fig.4 shows the framework of this big data analysis by cHDP. The left side of
the figure shows the collections of the daily transition of population in each POI
and the right side indicates the extracted dynamics pattern.

Let d, n, and h be the index of POI, day, and time segment, respectively.
The transition of population in the nth day in POI d is described as xd,n =
{xd,n,1, · · · , xd,n,H}∈RH . We assume xd,n,h is drawn from the mixture of Gaus-
sian distribution and the distribution of the kth dynamics pattern is written as
N (xd,n,h|µk,h, ρ−1

k,h). µ·,·, ρ·,· are the mean and precision. We use the Gaussian
distribution and gamma distribution as the prior distribution for µk,h and ρk,h.

The dataset and the problem settings in this experiment are as below. We
use the large-scale GPS logs collected from the disaster alert mobile applica-
tion released by Yahoo! JAPAN. The logs are anonymized and include no users’
information. Each record has three components: timestamp, latitude, and lon-
gitude. We use data collected for 365 days, from 1 July 2013 to 30 June 2014,
consisting of 15 million logs per day in the Kanto region in Japan. We focus on
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Fig. 4. Urban dynamics analysis by cHDP.

the square area (approximately 8000×8000 m) indicated by the thick blue line in
Fig.6. We divide this focus area into 26×26 square pixels (each pixel is 300×300m)
and regard each pixel as a POI. A daily transition of population in each POI is
characterized by its scale and shape (e.g., the population peak time). As in [17],
to make the patterns depend only on shape, we use the log counts divided by
the average number of logs per day for training and test data for each POI.

For quantitative evaluation of dynamics pattern modeling, we use mean log
likelihood (MLL) for test data. The models are trained with data of 30, 60, 90,
120, 150, and 180 days and tested by 180 days of data. From the 365 days of the
dataset, training data and test data are randomly selected without duplication.
Five tests are conducted with each number of days and the average values of
MLL are evaluated. As for the evaluation for POI clustering, we visualize the
clustering result and argue the validity on the basis of the real geographical
features. This is because numerical evaluation is difficult for POI clustering.

We use the HDP and nDP as comparative models. Parameters are inferred by
variational method. As for the POI clustering of HDP, we used a DP Gaussian
mixture model with the mixture weight to dynamics pattern for each POI. Due to
the computational performance for large-scale data, we do not use the hNHDP
model, which is trained by sampling. Note that neither SPK nor SC can be
directly used for region clustering without pattern extraction because feature
value must be ratio scale calculated from the set of discrete values such as words.

Results As shown in Fig.5, the cHDP model had the best performance for
all the training data condition. We can see a big performance gap between the
cHDP and the others in the test with a small amount of training data. This result
indicates that the cHDP’s framework, i.e., considering the POI’s relationship and
the sharing dynamics patterns among all POIs, enhances the modeling accuracy.
The reason nDP exhibited a worse performance is that the dynamics patterns in
a POI cluster where few POIs belong are inaccurate due to the lack of training
data, since patterns are not shared among different clusters.

Next, we evaluate the clustering performance. Since it is almost impossible
to attach category labels by hand to such a small area, numerical evaluation like
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ARI is difficult. Therefore, we visualize the clustering result and qualitatively
argue the validity. Fig.7 shows the POI clustering result by the cHDP model.
POIs that belong to the same cluster are drawn in the same color, while similar
colors do not indicate the similarity in dynamics pattern trends. As shown in
Fig.7, POIs distributed along railways are clustered into the same cluster (POIs
around the Yamanote and Chuo lines are clustered in red and POIs around
private railways are clustered in deep blue). In addition, yellow colored cluster
corresponds to residential regions. Thus, it is shown that the cHDP model could
cluster POIs corresponding to the actual geographical features.

The POI clustering by the HDP is shown in the left side of Fig.8. We first
extracted dynamics patterns by the HDP and then clustered POIs on the basis
of the mixture weights by DP. The correlation between the result and the actual
geographical feature such as railways is low compared to the cHDP. In addition,
neighboring POIs tended to belong to different clusters. Since we mesh the focus
area into small areas (300×300 m), we assumed that spatial continuity of POI
clusters among neighboring POIs can be seen. Therefore, the result is not valid
and we cannot say that this is a meaningful clustering result. The comparison
between cHDP and HDP indicates the advantage of simultaneous extraction of
patterns and POI clusters. In contrast, as shown in the right side of Fig.8, the
result of the nDP matches the geographical features to some extent. This is
probably because the nDP simultaneously extracts patterns and clusters POIs
as with cHDP. However, compared to the result of cHDP shown in Fig.7, POIs
along the Yamanote and Chuo liens are not clustered well. We assumed that
this difference stems from over-fitting of the cluster specific dynamics patterns.
Considering the above evaluation, we conclude that the cHDP is useful for big
data analysis, i.e., dynamics pattern extraction and region clustering.

5 Conclusion

In this paper, we proposed cHDP, a new nonparametric Bayesian mixture model
that simultaneously extracts topics and clusters groups while allowing all topics
to be shared by all clusters. In order to achieve better computational efficiency,
we formulated our model in order to take variational Bayesian inference in closed
form when inferring the model parameters.
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Fig. 8. Clustering by (left) HDP + DP clustering and (right) the nDP model.

We applied cHDP to document modeling and big data analysis, in this case,
urban dynamics analysis. For the document modeling, we used cHDP as a prior
distribution of LDA, which simultaneously conducts topic extraction and docu-
ment clustering in a unified framework. Experiments with corpus data show that
cHDP performs well in both tasks compared with existing models, achieving a
22% improvement against the state-of-the-art model. For big data analysis, we si-
multaneously tackled dynamics patterns extraction and region clustering. Using
the GPS logs from smartphones, we showed that the cHDP enhances perfor-
mance in pattern modeling and obtains valid clustering results. The comparison
with nDP indicates the superiority of cHDP’s topic sharing among all clusters.

For future work, we will introduce an online approach in the learning process.
This is necessary to handle the data that accumulate over time, such as GPS
logs from smartphones, let alone much more large-scale data. One option for this
is using the online variational Bayesian method proposed in [23].
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