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ABSTRACT
RSSI-based indoor localization is getting much attention.
Thanks to a number of researchers, the localization accuracy
has already reached a sufficient level. However, it is still not
easy-to-use technology because of its heavy installation cost.
When an indoor localization system is installed, it needs to
collect RSSI data for training classifiers. Existing techniques
need to collect enough data at each location. This is why the
installation cost is very heavy. We propose a technique to
gather data efficiently by using machine learning techniques.
Our proposed algorithm is based on multi-task learning and
Bayesian optimization. This algorithm can remove the need
to collect data of all location labels and select location la-
bels to acquire new data efficiently. We verify this algorithm
by using a Wi-Fi RSSI dataset collected in a building. The
empirical results suggest that the algorithm is superior to an
existing algorithm applying single-task learning and Active
Class Selection.

Author Keywords
indoor localization; RSSI; information gathering; multi-task
learning; Bayesian optimization

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

INTRODUCTION
Received signal strength indicator (RSSI)-based indoor local-
ization systems are getting a lot of attention thanks to the
development of wearable devices and IoT technology. It is
expected that they can be used for recognizingan elderly per-
son’s activities of daily living (ADLs) and quality of life
(QOLs) recognition or for predicting and analyzing super-
market traffic lines [15]. A number of researchers have al-
ready attempted to establish variable RSSI-based indoor lo-
calization techniques over the past 15 years. As a pioneer-
ing work in this field, in 2000, Bahl and Padmanabhan pro-
posed RADAR [2], which applies k-nearest neighbor method.
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Schwaighofer et al. [14] and Ferris et al. [5] leveraged Gaus-
sian process to model RSSI distribution from training data
collected beforehand. In 2014, Mcgibney et al. [1] developed
a Wi-Fi RSSI and particle-filter-based tracker that achieved
a 1.6-m accuracy as the second ranked performance among
the state of the art techniques in the Microsoft Indoor Local-
ization Competition 1. This means that localization systems
have already reached sufficient accuracy as a way to recog-
nize human indoor activities. However, the technologies they
feature are still not easy-to-use. One of the biggest factors is
the deployment cost needed for system installation.

In recent years, easy calibration methods for indoor local-
ization systems have also been studied actively. Kawajiri
et al. [8] proposed a semi-supervised approach and Rai et
al. [13] proposed automatic calibration approach utilizing
other sensors included in smartphones. These can reduce the
calibration cost thanks to machine learning technology, how-
ever, they remain a problem that they don’t consider which
point to gather training data at for higher efficiency.

Kawajiri et al. [9] proposed a technique combining a cal-
ibration efficiency method based on Active Class Selec-
tion(ACS) [10] and a technique controlling crowd incentives.
The main purpose of their research was to develop a novel
technique for steering crowds. However, applying ACS also
created critical issues in terms of information gathering. Al-
though information gathering is a research field aiming to col-
lect data efficiently, the techniqure proposed by Kawajiri et
al. [8] created two major problems due to the simplisity of
ACS. First, it needs data associated with all locations because
learning classifiers at each label is independent. Single-task
learning can’t share any data with the other tasks. Second,
it doesn’t consider the potential in system improvement be-
cause of the framework of ACS. ACS can consider only the
average of estimated location error distance.

Our research objective is to build an efficient calibration algo-
rithm for an RSSI-based indoor localization system. Specif-
ically, the main purpose is removing the need to collect data
corresponding to all labels and selecting location to acquire
data in turn for efficient calibration. We first enhance learning
efficiency by enabling all classifiers to learn simultaneously.
We also enhance the information gathering efficiency by con-
sidering the potential of each location in minimizing the total
loss of the indoor localization system.
1http://research.microsoft.com/en-us/events/
ipsn2014indoorlocalizatinocompetition/
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The two main contributions of this paper are as follows. First,
we eliminate the need for collecting data associated with all
location labels by applying of multi-task learning. Multi-task
learning is a machine learning method that learns problems si-
multaneously and efficiently considering the relationships to
other tasks [22]. Second, we construct an information gather-
ing technique that takes into account both of the expected loss
and its uncertainty at each location based on the framework of
Bayesian optimization. Bayesian optimization [11] is an ap-
proach to select an optimal location to maximize cumulative
rewards sequentially. The algorithm we propose will also be
helpful for other applications that require constructing spatio-
temporal models.

RELATED WORKS

Indoor Localization Calibration
Indoor localization systems require training data for machine
learning. Thanks to a number of researchers, the localization
accuracy has already reached a sufficient level. However, the
technologies the systems use are still not easy to use because
of their heavy installation cost. Thus, cost reduction tech-
niques have been studied actively in recent years.

Semi-supervised machine learning technologies have been
studied to reduce the annotation cost. The technique proposed
by Kashima et al. [7] applies a semi-supervised approach and
defines similarity measures between data. Thus it needs to
collect only a small amount of labeled data if it can collect a
large amount of unlabeled data. However, it can’t remove the
need to acquire one or more data elements for each location.

Transfer learning and domain adaptation have also been ap-
plied for reducing the cost of indoor localization calibra-
tion [12, 3]. These methods collect training data at a source
domain and test data at a target domain. However, they also
need to acquire at least one data element at each location.
Zheng et al. [21] solved the problem of indivisual differences
by utilizing robust feature representation. It doesn’t need any
target domain data for calibration. However, Zheng et al.
needs enough source domain data.

The method Kawajiri et al. [8] proposed saves the labor in-
volved in stopping and gathering data at each location by
semi-supervised learning. Rai et al. [13] proposed an au-
tomatic calibration method utilizing an acceleration sensor,
a compass sensor and a gyro sensor, which are installed in
smartphones and floor maps. In addition to Rai et al. [13],
not a few researchers such as Shin et al. [17] and Kawajiri et
al. [9] have developed methods that utilize crowds’ cooper-
ation. However, except for Kawajiri et al. [9] their methods
don’t consider which label to get new data and Kawajiri et al.
is not enough.

The method developed by Kawajiri et al. [9] applies an ACS
framework [10] for score calculation. This score indicates
the need for gathering information at each location and steers
crowds to acquire the data of high score locations. How-
ever, this indicator can’t express the improvement expecta-
tion value because ACS takes into account only the average
of estimated location error distance. Moreover, it can’t learn
classifiers efficiently because the learning method is based

on single-task learning for multi-class classifiers. Single-task
learning can’t share any data with the other tasks, so it needs
data corresponding to all location labels. Our approach ap-
plies multi-task learning and Bayesian optimization to solve
these problems.

Multi-task Learning
Multi-task learning is a learning method that learns some
problems simultaneously and efficiently considering the re-
lationships to other tasks [22]. An indoor localization system
needs to construct classifiers at each location in the scope.
The classifiers at two locations close to each other should be
learned simultaneouly because they will be similar and the
relationships between them will be clear. Multi-task learn-
ing can express the relationships between tasks by learning
the parameters of classifiers while taking spatial relationships
and the characteristics into account. Moreover, learning infi-
nite or continuous tasks with high accuracy is possible thanks
to Takeuchi et al. [20]. They developed a method to mixture
learning models of discrete and finite tasks.

Bayesian Optimization
Bayesian optimization [11] is an approach to select an op-
timal location to maximize cumulative rewards sequentially.
Specifically, this approach repeats the following information
gathering process. First, the expected value and the standard
deviation of rewards at each location in the scope are obtained
by using Gaussian process that is trained by a reward map
based on already obtained data. The need to gather infor-
mation at each location is indicated by acquisition function
A based on the expected value and the standard deviation.
Gaussian Process Upper Confidence Bound (GP-UCB) [18],
an indicator of common acquisition function, is defined as

A(x) = µ(x) + Cσ(x) (1)
where µ(x)，and σ(x) respectively denote the expected value
and the standard deviation at x and C is a positive constant
for adjusting the balance between µ(x) and σ(x). Then, a
new data element is acquired at the location whose acqui-
sition function is the maximum in the scope, and Gaussian
process is renewed.

ACS is another approach equivalent to (1) when C = 0. Thus
Bayesian optimization based on GP-UCB is different from
ACS; it can express not only the expected value but also its
uncertainty of loss.

RSSI-BASED INDOOR LOCALIZATION AS MULTI-CLASS
CLASSIFICATION
In wave propagation theory, received signal strength is in in-
verse proportion to the propagation distance. An RSSI based
indoor localization system applies this property. It measures
RSSI from access points and localizes on the basis of the data
obtained in a way such as triangulation (Figure 1). However,
the effects of reflection and absorption from indoor structures
and people make the measurement unstable, and it is hard to
predict them without real data. Instead, using machine learn-
ing technology is a popular way to estimate locations stochas-
tically. In previous methods, enough training data was col-
lected at each location and indoor localization problems were
formulated as multi-class classification problems.
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Figure 1: how to localize by using RSSI

The number of Wi-Fi access points is S, and x ∈ RS is the
vector of RSSI obtained from the access points. The output
of trained classification model y is the likelihood vector of
locations. Namely, at each location r, the likelihood of r is
yr, the classification model can be represented as (2), and the
localization result can be represented as (3):

yr = f(x|θr) (2)
r̂ = argmax

r∈R
yr (3)

where θr is a parameter vector. In this research, we formu-
late an indoor localization problem as a multi-class classifi-
cation problem, and this problem can be represented as

f(x|θr) = θT
rϕ(x) (4)

where ϕ(x) is a feature vector of RSSI. The feature design
of ϕ(x) follows Shimosaka et al. [16]. The m-th element
(m ∈ {1, . . .,M}) of a feature vector ρ(xs) ∈ RM (s ∈
{1, . . ., S}) coming from the s-th sensor can be represented
as ρ(xs)m = exp(−(xs − µm)2/σ2) where the all µm are
in arithmetic progression in the range of the measured RSSI.
The ϕ(x) ∈ RMS is a feature vector independent of location
labels, where ϕ(x) = (ρ(x1)

T, . . . ,ρ(xS)
T)T.

PROPOSED ALGORITHM
In this research, we construct a novel efficient information
gathering method for calibrating of indoor localization sys-
tems. The proposed algorithm enables function f whose aug-
ment is RSSI (not place) to learn considering the proximity
of the place. It is based on multi-task learning and Bayesian
optimization.

Multi-task Training Setting
Even though classifiers constructed at different locations
are different from each other, classifiers constructed at two
closely located locations should be similar if there is no bar-
rier and environmental change between them. Thus we intro-
duce multi-task learning into an RSSI-based indoor localiza-
tion system. Thanks to multi-task learning, the system can
learn classifiers at all locations in the scope simultaneously.

In this research, we assume that the scope can be represented
as a graph structure for which each node is a location label.
For multi-task learning with a graph structure, we apply regu-
larization learning. Regularization is a machine learning tech-
nique to introduce additional information for improving the
generalization of models. The regularization learning can be
represented as

Θ̂ = argmin
Θ

∑
(x(r),y(r))∈D

l(x(r), y(r),θr) +R(Θ) (5)

where Θ denotes concatenation of all θr and r(y) denotes r
corresponding to the location of answer location label y. The
localization result is defined as r̂. Loss term l(x(r), y(r),θr)
and regularization term R(Θ) can be respectively represented
as (6) and (7).

l(x(r), y(r),θr) = d(r̂, r(y))
[
1− θT

r(y)ϕ(x) + θT
r̂ϕ(x)

]
+

(6)

R(Θ) = λ1

∑
r∈R

||θr||22 + λ2

∑
(ri,rj)∈E

||θri − θrj ||22 (7)

where d(·, ·) denotes the distance between two locations de-
fined as

d(ri, rj) = ||ri − rj ||2 (8)
and [z]+ = max(0, z), E denotes the set of edges in the graph
structure and λ1 and λ2 are positive constants related to the
strength of regularization. The loss term definition follows
Shimosaka et al. [16], i.e., hinge loss taking the estimation
error distance into account.

It is usually difficult to optimize loss terms and regulariza-
tion terms simultaneously. Moreover, parameters are related
to each other because of the structure regularization term in
(5). Therefore, we repeat their updates alternately by using
online proximal gradient descent type of alternating direction
multiplier method (OPG-ADMM) [19], which is one type
of stochastic ADMM approach to calculate them effectively.
OPG-ADMM is an approach combining forward backward
splitting (FOBOS) [4], which is often used for achieving cal-
culation efficiency in online learning while taking regulariza-
tion terms into account, and alternating direction multiplier
method (ADMM) [6], which is often used in batch learning.

Information Gathering by Bayesian Experimental Design
The ACS-based method proposed by Kawajiri et al. [9] takes
into account only the expected loss at each location when it
determines the next location to acquire new data. Practically,
lr is an expected loss value based on D and includes uncer-
tainty that expresses the potential for improvement of the loss
function. Efficient information gathering method should not
be determined by the expected loss function values (as the
method proposed by Kawajiri et al. does), but should also
take uncertainty into account. Thus we introduce the frame-
works of mixturing Bayesian optimization and experimental
design.

In this research, we define lr(D,Θ, l) as the loss function of
each task r and express lr as N (µr, σ

2
r) by using Gaussian

process for taking the uncertainty into account. The expected
value of the decrease in the loss function thanks to the new
data acquired at r is represented by acquisition function AQ

defined as GP-UCB (9).

AQ(Θ
(n),D(n), r) = µr + Cσr (9)

Here, Θ(n) and D(n) are the values for the n-th information
gathering and C denotes a positive constant for adjusting the
balance between µr and σr. AQ takes both of the expected
value and the uncertainty of the loss function into account
thanks to the definition of GP-UCB. Thus we introduce (10)



as a determining formula instead of ACS.

r(n+1) = argmax
r∈R

AQ(Θ
(n),D(n), r) (10)

In order to calculate lr, we utilize the distance of the ideal
output and the output from the current optimized prediction
model. The ideal output can be calculated from y for each
instance in D and measurement error. l′(x(r),y(r),θ

(n)
r ) de-

notes the loss for each instance belonging to D calculated
from the two outputs. For example, Kullback-Leibler diver-
gence can be applied to l′ if the output is probability distribu-
tion, and mean square error can be applied to l′ if the output
is a real number. If information gathering is conducted at all
r belonging to R, the problem can be solved by calculating
the average of empirical error at each r. In this case, we can
replace lr with l̃r defined as (11).

l̃r =
1

M
(n)
r

∑
(x(r),y(r))∈D

l′(x(r),y(r),θ(n)
r ) (11)

where M
(n)
r denotes the count of data acquisition at r at n-

th information gathering. However, the definition by (11)
can’t calculate the loss function at r with no data. In order
to solve the problem, we apply the data similarlity of two
locations close to each other. At such locations, not only
the parameters but also the error function should be simi-
lar. In order to take this similarlity into account, we ap-
ply Gaussian process to the error function and complement
missing data. Gaussian process is a method often utilized
for spatio-temporal data analysis. Specifically, we create a
dataset {(r, l′(x(r),y(r),θ

(n)
r )} whose size is equal to that

of D(n) and optimize Gaussian process GP(r|D(n)). Thanks
to Gaussian process, lr(D(n),Θ(n)) at each r belonging to R
can be expressed as Gaussian distribution N (µr

(n), σr
(n)2)

by the equation lr(D(n),Θ(n)) = GP(r|D(n)). Thus, we
can calculate AQ without the necessity of acquiring data at all
r belonging to R. The algorithm for calculating acquisition
function is summarized in Algorithm 1. In this research, D is
constructed by experimental design with acquisition function.
The framework of the proposed algorithm is summarized in
Algorithm 2.

Algorithm 1 update acquisition functions by GP

given:
D(n) = {(x(r),y(r))}

for r in R do
for m = 1 to M

(n)
r do

calculating error function l′(x(r),y(r),θ
(n)
r )

end for
end for
learning Gaussian process GP(r|D(n)) by

{(r, l′(x(r),y(r),θ
(n)

r )}
calculating (µr, σr)(

∀r ∈ R) by GP(r|D(n))
for r in R do
AQ(Θ

(n),D(n), r) = µr + Cσr (∀r ∈ R) (9)
end for

Table 1: dataset information

space size about 65 meters × 70 meters
# of location labels 47

# of scans 1862
# of found access point 1478

# of participants 18
the experimental period 5 weeks

EXPERIMENT
This section describes an empirical method and evaluation to
verify the effectiveness of the proposed algorithm.

Experimental Environment and Comparative Method
For evaluation, we utilized a part of the Wi-Fi RSSI dataset
made available on the Internet by Kawajiri et al. [9]. We
utilize data acquired at the second floor of a building, even
though this dataset includes data acquired at multiple floors.
Since the second floor is connected to a facade, almost all
users use it when they walk into and out of the building. The
information for the dataset we used is showed in Table 1. Re-
garding RSSI-based indoor localization systems, differences
in the devices used can produce gaps in the output that can-
not be ignored. Thus, taking the devices used into account,
we devide data uniformly into a training dataset and a test
dataset considering used devices. We do not, however, use all
data in the training dataset because our research objective is
to construct an efficient information gathering algorithm for
indoor localization systems. That is to say, what we want to
do is to select a location that will enable the proposed algo-
rithm to acquire new data, extracting labeled RSSI data from
the training dataset, and training classifiers with only the ex-
tracted data.

In this experiment, we introduce multi-task learning by using
the way the map expressed the second floor as a graph struc-
ture. The map and the graph structure are shown in Figure 2.
This graph structure consists of four undirected graphs com-
prising 47 nodes and 48 edges in total. All nodes correspond
to location labels for acquiring data. The blue area is semi-
external space deviding the yellow, purple, and red areas.

Algorithm 2 multi-task experimental design

given:
R = {r}
D(0) = ∅
n = 0

while do
n = n+ 1
if n = 1 then

select r(1) randomly
else
r(n) = argmax

r∈R
AQ(Θ

(n−1),D(n−1), r)

end if
sampling: D(n) = D(n−1) ∪ {(x(r)

n , y
(r)
n )}

optimizing Θ by multitask learning using D(n)

calculating AQ(Θ
(n),D(n), r) (∀r ∈ R) by Gaussian

process (Algorithm 1)
end while
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Figure 2: experiment details. left:map, right:graph structure

This is why the graph in Figure 2 is devided into four con-
nected graphs. RSSI and classifiers of edge nodes of different
areas may not be similar because of the difference of envi-
ronment even though they are located closely. Moreover, if
there are barriers such as walls and pillars between two close
nodes, we didn’t connect them. All RSSI data elements be-
longing to the dataset consisting of acquired data are labeled;
we call them the “acquired dataset”. When information gath-
ering is conducted, labeled data elements are extracted from
the training dataset and added to the acquired dataset. To ac-
celerate the experiment, we fix the first location for acquiring
data and acquire two labeled data elements when gathering
information. The first location is the upper right hand corner
(colored in purple) of Figure 2.

In order to verify the proposed algorithm’s effectiveness, we
conduct an experiment that compare the localization accuracy
to the accuracy of a conventional algorithm combining single-
task classifier learning and ACS-based information gathering.
The performance criteria we assumed are the average, me-
dian, and 95-percentile value of the localization error distance
for each number of acquired data elements. All of these cri-
teria indicate that smaller values mean better accuracy.

Experimental Results
Figure 3 shows the three graphs of the average, median and
95-percentile value of the error distance, respectively for our
proposed algorithm (proposed) and the conventional algo-
rithm (Kawajiri+) proposed by Kawajiri et al. When there are
four or less data elements, there is little difference between
the results these algorithms produce. However, when there
are six or more data elements, in all three graphs the blue
line (proposed) is almost always under the yellow line (Kawa-
jiri+). This means that our proposed algorithm is better than
the conventional algorithm. Moreover, for the average and
median graphs, the convergence speeds are very high and the
results are stable when there are 6 to 20 data elements. This is
a further indication of our proposed algorithm’s superiority.
Namely, the proposed algorithm enables indoor localization
system to calibrate with only a few training data.

Figure 4 shows the changes in acquisition function. the loca-
tion of red circle is the location where the acquisition func-
tion is maximal. The size of the other blue circles expresses
the relative size of acquisition function at the location. When
we apply the conventional algorithm, the corner with no data
tends to be selected, but when we apply our proposed algo-
rithm, the location slightly to the center from the corner with
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Figure 3: experimental results

Figure 4: change of acquisition function

no data tends to be selected. Data acquired at these loca-
tions is more useful for multi-task learning because its com-
plementary range is wider. This also indicates our proposed
algorithm’s effectiveness.

CONCLUSION
In our research, we constructed an effective information gath-
ering method combining multi-task learning and Bayesian
optimization for efficiently calibrating RSSI-based indoor lo-
calization systems. Obtained experiment results verified our
proposed algorithm’s efficary and showed it is more efficient
than conventional algorithm. Our proposed algorithm re-
moves the need to acquire data for all locations, thus reduced
calibration cost. For future work, we will generalize the al-
gorithm for variable types of information gathering and to it
add a mathematical guarantee.
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