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ABSTRACT
Predicting behaviors of a population from location-oriented log
data from smartphones, i.e., urban population dynamics, has be-
come more common in mobile and pervasive computing. A bilinear
representation approach has been proposed to improve the predic-
tion accuracy of urban population dynamics by adding contexts
such as geographical information and day of the week. However,
this approach has a strong limitation in that additional contexts
can not be directly utilized in this representation with a unified
manner. To resolve this issue, we propose a new predictive model
for urban population dynamics based on multilinear Poisson re-
gression so as to handle multiple contexts in a systematic manner.
The model is parameterized using a tensor and can be optimized by
using an efficient convex optimization with a sequence of matrix
parameter optimizations. An empirical evaluation with large-scale
smartphone location data showed that our model outperforms con-
ventional approaches.
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1 INTRODUCTION
The spread of mobile phones and the accumulation of massive logs
of location data have motivated the research of urban computing
for analyzing crowd behavior. For example, urban analyses such
as of population density [3], population dynamics patterns [1]
and population predictions [7] have been conducted. Fan et al. [1]
showed that time series behaviors of an active population, which we
call the dynamics patterns, are closely related to demographics (on,
e.g., residential areas, sightseeing spots, and traffic nodes). Analyses
of the dynamics patterns could, for instance, be used to recommend
a suitable location for opening a new shop.

Thanks to the properties of location data for long-term crowd
data spanning a range of days, times of the day, and locations,
researchers often use tensor or matrix factorization to identify dy-
namics patterns in the dataset [1]; most of these studies are inspired
by the success of recommendation systems that use factorization
approaches [5]. Although factorization approaches have gained
attention in the community, they still face a problem called as the
cold start issue [2] when rating new items for new users. In terms
of population dynamics prediction, new users correspond to a new
region, while new items correspond to a day in the near future.

In contrast to those trends using factorization techniques, Shi-
mosaka et al. [7] proposed a predictive approach to avoid the cold
start issue. In their approach, the issue of predicting population
dynamics in the near future can be resolved by parametrizing the
context affecting the population dynamics. In terms of parametriz-
ing contexts affecting population dynamics, a matrix is used instead
of a vector as a parameter of a predictive model, and a representa-
tion differentiating the peak variances is enriched with respect to
multiple factors, e.g., weather conditions and the day of the week.

However, the parameterization issue has not been resolved in
a systematic manner for use to be able to consider other external
factors in addition to weather conditions or day of the week. To
the best of our knowledge, there is no systematic feature design
for urban dynamics prediction when multiple contexts are used
for richer representation. This means the main challenge with pre-
dictive models is how to utilize additional external factors such as
city attributes and etc., that have been used in other research. In
addition, we have to consider how to resolve the overfitting issue
that arises as the number of parameters increases.
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The goal of our research is to construct a new predictive model
based on a tensor parameter, which is a multilinear prediction, and
to verify the superiority of our proposed model over conventional
approaches.

Our contributions of this paper can be summarized as follows: 1)
we propose a novel predictive model for urban population dynamics
based on multilinear Poisson regression for exploiting multiple
contexts such as the weather, day of the week, holidays, and land
attributes by leveraging tensor parameterization; 2) we provide
an efficient convex optimization scheme for inducing a low-rank
parameter tensor and reducing the risk of overfitting that arises
from the increase in the number of parameters; 3) we conducted
experiments using both long-term and short-term population scale
smartphone location datasets and showed the superiority of our
model against previous and state-of-the-art models.

2 POPULATION PREDICTIONWITH
MULTILINEAR POISSON REGRESSION

2.1 Problem Setting
Here, we present the model of the time series of a population per
day in each target region. One day is divided into a number of
time segments, and we define the total number of smartphone
location data in a certain time segment as the active population in
the target area of the time segment. We model urban dynamics on
the assumption that the active population, which is a non-negative
integer, of each time segment follows a Poisson distribution.

Let S be the number of time segments in a day and
h = [h1,h2, · · · ,hS ] ∈ RS be a one day active population transition,
where hs indicates the active population of the s-th time segment.
Following the previous research [7], we assume that eachhs follows
a Poisson distribution, and write the likelihood of hs as p(hs ) =
Pois(hs |λs ) = λhss exp(−λs )/Γ(hs + 1), where λs is the parameter
of the Poisson distribution. In this setting, our task is to determine
λs as an estimate of the true active population hs by using many
factors such as time, day, and weather.

2.2 Definition of Variables
Since our work is inspired by the success of the predictive model
with bilinear regression [7], we will borrow the basic variable defi-
nition from [7]. We use the time factor and external factors other
than time factor affecting urban dynamics. The time factor t ∈ RS
is a feature value with the spread of the Gaussian distribution,
the mean of which is the corresponding time segment s . Let tk
be the k (k = 1, 2, · · · , S)th element of the time factor t of the
time segment s , and following [7], we express t as a Gaussian
distribution with mean parameter s and variance parameter σ :
t = {tk |tk = N(k |s,σ ),k = 1, · · · S}. When t is a feature in the
time segment s , λ(t) is the predicted active population, and hs is
the actual active population. The external factors d include ones
such as the weather, day of the week, and land attributes.

With the bilinear representation, when the weight parameter ma-
trix is set toW ∈ RD×S , where D = dim(d), λ(t ,d) = exp(d⊤Wt).
In the state-of-the-art bilinear model [7],W is calculated as the
product of U ∈ RD×K and V ∈ RK×S , where K is an arbitrary
value that satisfies DS >> (D + S)K , and trained by the alternating

least squares method. Let me note that their bilinear model falls
into local optima due to its non-convex optimization scheme, and
cannot provide systematic means of describing the feature when
multiple contexts are plugged into featured , which is the limitation
of bilinear representation.

2.3 Formulating the proposed model
For the sake of simplicity, we describe a case where the weight
parameter is an N th-order tensor. The multilinear Poisson regres-
sion model uses the time factor t ∈ Rr1 and the external fac-
tors dn ∈ Rrn (n = 2, 3, · · · ,N ). This notation in which n starts
from 2 enables us to regard t as d1, one of the factors of the
multilinear model, and makes the following explanation easier.
Here, r1 denotes the dimension of the time factor t (note that
r1 = S), and rn indicates the dimension of the n-th external fac-
tor dn . When external factors are divided into d2,d3, · · · ,dN and
when the weight parameter tensor is set toW ∈ Rr1×r2 · · ·×rN , the
Poisson distribution parameter λ is given by the following equation:
λ(t ,d2,d3, · · · ,dN ) = exp(W ×1 t ×2 d2 ×3 d3 · · · ×N dN ).

Note thatW×ndn is the mode-nmultiplication of a tensorW ∈
Rr1×r2 · · ·×rN by a vector dn ∈ Rrn and its product has dimension
r1 × · · · rn−1 × rn+1 × · · · × rN . Using element-wise format we have

{W ×n dn }i1, · · · ,in−1,in+1, · · · ,iN =
rn∑
in=1

{W}i1, · · · ,in, · · · ,iN {dn }in

(1)
where curly braces with subscripts denote the element of a tensor /
vector enclosed by the braces, and i · denotes the index of a tensor.

In the multilinear Poisson regression model, the logarithm of
the likelihood L(W) is written as

lnL(W) =
∑
s

∑
m

ln Pois(ym,s |λm,s )

=
∑
s

∑
m

{ym,s (W ×1 tm,s ×2 d2m,s · · · ×N dNm,s )

− exp(W ×1 tm,s ×2 d2m,s · · · ×N dNm,s )
− ln(Γ(ym,s + 1))},

wherem is the index of days of the dataset and s is the index of the
time segment in a day.When tensor parametersW ∈ Rr1×r2×···×rN
are of the N th-order (ri is the dimension of di ), the matrixW(n) ∈

Rrn×
∏N
i=1 ri
rn is an expansion of W in the form of a matrix for each

dimension and is treated as a matrix expanded in mode n. We
consider the expanded matrix in a plurality of modes because the
tensors are different from the matrices.

2.4 Parameter optimization
Because of the increase in the number of the parameters in our
model, the overfitting issue must be dealt with in the optimization
process. Although an explicit reduction in the number of parameters
via Tucker decomposition or CP decomposition can resolve this
issue [9], explicit rank reduction has the disadvantage of making
it easy for the optimization to fall into a local minimum. Instead,
convex relaxation is more useful for making the tensor parameters
low-rank because it guarantees convergence to a global solution.
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Inspired by the success of [6], we use trace norm regularization
as a convex relaxation for regularizing tensor parameters instead of
using explicit rank reduction. Note that the trace norm of a matrix
is a sum of the singular values of the matrix [4]. Analogous to the
case of matrices, the trace norm in tensors is a sum of the trace
norms of fibermatrices. The properties of the trace norm ofmatrices
promote sparsity in terms of singular values and lead to low-rank
matrices. Thus, it helps to reduce the number of parameters. Using
trace norm regularization enables the global optima to be reached
and provides stable results in terms of prediction accuracy.

When it comes to the trace norm regularization term, we should
selectively avoid making the time direction (order) low-rank be-
cause time-specific information such as the peak time is important
in urban dynamics. In our model, we employ a modified version
of the trace norm regularization term Ω(W), defined as Ω(W) =
∥W∥tr =

∑N
n=2 | |W(n)∥tr. Finally, we consider the following opti-

mization problem: Ŵ = argminW{−γ lnL(W) + Ω(W)}, where
γ is the coefficient determined through empirical evaluation. To pro-
mote sparsity in terms of singular values and get a low-rank matrix,
the objective function should be optimized at each of the modes
of W. Therefore, we employ the alternating direction multiplier
method (ADMM) [8], in which each sub-problem (i.e. optimization
in each mode) is treated as a matrix trace norm minimization.

3 EXPERIMENTAL RESULTS
To evaluate the performance of our method with active population
data from inside cities, we conducted two experiments on urban
dynamics prediction with large-scale smartphone location data.
In the first experiment, we created a single multilinear Poisson
regressor with land attribution data for several cities to show that
interaction across the factors must be considered in order to predict
urban dynamics precisely. In the second experiment, we created
multiple multilinear models where a single model corresponded
to a region of interest, to show that our method is better when we
consider multiple contexts. The results are discussed in Section 4.

3.1 Dataset
We used location information obtained from a disaster prevention
application provided by Yahoo! JAPAN1 as input data. The applica-
tion records the GPS data of individuals who have agreed to provide
their location data. The original dataset can be described by a set
of 4-tuples: anonymized user ID, timestamp, longitude, and lati-
tude. Essentially, GPS logs are generated when the smartphone user
starts to move. The application has more than 1 million registered
users (sample rate approximately 1% throughout Japan) from GPS
logs that are continuously collected every day. Information about
the user was not included in any of the experimental data.

We used location data that had been acquired during one year,
from July 1, 2013 to June 30, 2014, from users in the Kanto area of
Japan, and the number amounted to about 15 million per day. We
selected 300 points in the Kanto region as points of interest (POI).
Each POI corresponded to a 900-meter square area. We utilized the
same scheme for the data collection for a fair comparison with past
research [7]. The location data for each day was divided into 48
time segments, i.e., S = 48; each time segment was 30 minutes long.
1https://emg.yahoo.co.jp/

3.2 Creating one predictor in several cities
including land attributes

In this experiment, we used land attributes, weather, and holiday or
weekday as the external factors. We used the same data obtained by
the crowd sourcing used in [7] as the features of the land attributes.
We obtained 120,000 valid answers from 1500 crowd workers. The
land attributes were composed of ten items and the number of
dimensions of this factor was 10. The value of each item was set to
the ratio of answers obtained from crowd sourcing. The weather
features were created from information obtained from the Japan
Meteorological Agency’s website2. The Meteorological Agency’s
home page provides 13 weather categories and we converted them
into 4 weather dimensions: sunny, cloudy, rainy, and bad conditions.
The feature of holidays or weekdays, regarding public holidays and
weekends as "holidays", was used as a two-dimensional indication.

Here we explain how to create external feature vector. For the
bilinear model, we created a time feature vector t ∈ R48 and an
external feature vectors d ∈ R16 simply by concatenating three
external factors. This feature design does not consider the interac-
tion across the external factors. As for the multilinear model, we
created a time feature vector t , land attributes feature d2 ∈ R10,
and d3 ∈ R8, which is the Kronecker product of the weather factor
and holiday or weekday factor. Note that the dimensions of d3 are
the product of the dimensions of two factors (2 × 4).

In this experiment, we used only 14 days worth of data, from July
1, 2013 to July 14, 2013, to keep down memory usage. We used two
data patterns; 10 or 20 POIs selected from the 300 POIs as training
data and POIs not used in the training data were used as test data.

We used the same three evaluation indices that were used in [7]:
mean absolute error (MAE), mean negative log-likelihood (MNLL),
and mean absolute peak error (MAPE). When the test data were set
toy and when the predictive value was set to λ,MAE =

∑M
m=1

∑S
s=1

(|ym,s − λm,s |)/MS,MNLL =
∑M
m=1

∑S
s=1(− ln Pois(ym,s |λm,s ))/

MS,MAPE =
∑M
m=1 |Peak(ym,s ) − Peak(λm,s )|/M , wherem is the

index of days and s is the index of the time segment in a day. The
Peak(y) function calculates the time segment at which y reaches a
peak during the day and is defined as Peak(ym,s ) = argmaxs (ym,s ).
The average mean and standard deviation from the five-fold cross-
validation for all POIs were used as the criterion.

Table 1 lists the results for the two models that take into account
the difference in external factors. Compared with the existing model
with a small sample, the proposed model improved MAE, MNLL,
and MAPE by 24.2%, 39.1%, and 40.7%.

Table 1: Comparison of models with land attributes.
train POIs 10 POIs 20 POIs
model index mean stdev mean stdev
bilinear MAE 216.5 49.1 183.5 5.5
multilinear MAE 164.2 37.6 128.2 9.5
bilinear MNLL 76.6 29.4 58.8 4.0
multilinear MNLL 46.7 18.8 31.8 4.7
bilinear MAPE 216.7 21.9 208.4 5.6
multilinear MAPE 128.6 8.3 115.8 2.3

3.3 Evaluation on multilinear vs bilinear
In this experiment, we utilized three external factors: days of the
week, holidays or weekdays, and weather. We build these feature
2http://www.jma.go.jp/jma/index.html



SIGSPATIAL ’18, November 6–9, 2018, Seattle, WA, USA Masamichi Shimosaka, Takeshi Tsukiji, Hideyuki Wada, and Kota Tsubouchi

vectors for the multilinear model: a time feature t ∈ R48, weather
feature d2 ∈ R4, and d3 ∈ R14, which is the Kronecker product of
the factors on day of the week, and the holiday or weekday.

The following two models were tested for comparison: a low-
rank bilinear model (bilinearLR) and bilinear model optimized by
nuclear norm minimization using the Frank-Wolf algorithm (bilin-
earFW). With regards to the feature vector for these models, we
created a time feature vector t ∈ R48 and external feature vector
d ∈ R56, which was the Kronecker product of all external factors.
This feature design enabled us to verify whether our multilinear
model, whose optimization promotes low-rank for each mode (fac-
tor) of a parameter, is useful or not.

We used three patterns of days of training data, i.e., 30, 90, and 180
days, and tested with 180 days for each of the days of the training
pattern. We used three indicators: MAE, MNLL, and MAPE. We
conducted five-fold cross-validation on each POI for three patterns
of training data and compared the average values on all 300 POIs.

Table 2 lists the results for the models considering the product
of external factors. Our multilinear model improved MAE, MNLL,
and MAPE by 16.7%, 15.6%, and 23.2% against the existing model.

Table 2: Comparison of bilinear and multilinear models.
train data 30 days 90 days 180 days
model index mean stdev mean stdev mean stdev
bilinearLR MAE 78.0 8.6 66.8 11.5 59.8 8.6
bilinearFW MAE 80.6 7.9 62.9 8.5 55.3 6.0
multilinear MAE 64.9 6.5 57.5 6.4 53.0 3.8
bilinearLR MNLL 17.2 4.7 13.9 3.9 12.3 3.6
bilinearFW MNLL 36.5 12.3 22.4 7.7 17.1 6.8
multilinear MNLL 14.5 2.1 12.3 2.3 10.9 1.5
bilinearLR MAPE 109.4 22.9 86.9 20.4 84.1 24.8
bilinearFW MAPE 101.3 23.3 78.4 15.8 71.9 12.4
multilinear MAPE 84.0 24.4 66.0 13.4 63.0 11.4

4 DISCUSSION
Creating one predictor in several cities including land attributes.

In the first experiment, the multilinear model performed better
than the bilinear model in all evaluation indicators. This probably
resulted from the fact that external factors were not multiplied
together in the bilinear model but were multiplied together in
the multilinear model. These results show that by multiplying the
factors, we can predict urban dynamics precisely. Multiplication of
factors enables the urban dynamics to be expressed in a form that
fits each situation rather their than being represented by a linear
sum of factors; which is a quite natural result.

Evaluating multilinear model against bilinear models. In the sec-
ond experiment, the mean of the evaluation value of the multilinear
model was the highest among all evaluation indicators and the
bilnearFW showed the second performance. When we focus on
the results of the bilinearFW and bilinearLR, we can see that the
bilnearFW, which employs a convex optimization, showed more
stable and better performance than bilinearLR, which employs a
non-convex optimization. This result implicitly indicates that our
multilinear model with convex optimization is a valid approach
compared to that with non-convex one.

Then we compare our multilinear model with bilinear models. As
explained in the experimental section, the external feature vector
for bilinear models was the Kronecker product of all external fac-
tors. This means even the bilinear model in this experiment could

account for interactions of external factors; the difference between
our multilinear model and the bilinear models was that the multi-
linear model imposed low-rank constraints on each feature mode.
Therefore, that our multilinear model performed the best indicates
that promoting low-rank for each mode of the parameter tensor
can resolve the overfitting issue. Note that among the predictive
models, ours is the only one to which this approach can be applied.

5 CONCLUSION
In this paper, to enhance the power of the predictive approach to
population dynamics with multiple contexts, we devised a novel
predictive model with multilinear Poisson regression parameterized
by a tensor. Compared with the recent advances in the predictive
approach that use bilinear models, ours provides a more systematic
way to design features even when multiple contexts are exploited.
To tackle the overfitting issues raised by a tensor with large num-
ber of parameters, the tensor parameter is regularized with trace
norms and optimized via convex matrix optimization, so our model
captures multiple contexts and at the same time avoids local optima.

Experimental results using long-term and short-term population
scale smartphone location datasets showed that our model outper-
forms other state-of-the-art models. In contrast to the conventional
models of the predictive approach, our model is able to optimize the
single multilinear Poisson regression for multiple areas efficiently
and it is statistically strong even on short-term datasets. These
features allow it to detect sudden changes due to events that occur
in cities (e.g. opening of train lines). In order to consider much
more contexts, how to improve the high memory cost resulted from
introducing a tensor parameter is a topic for our future work.
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