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Abstract—Wi-Fi fingerprint-based localization is known to be
prominent for indoor positioning technology; however, it is still
challenging on sustainability of its performance for long-term use
due to distribution drifts of the signal strength across time. There-
fore, the laborious continual surveys on fingerprint are inevitable.
In this paper, we propose a new scheme for solving the large cost
of maintaining common Wi-Fi fingerprint-based localization with
machine-learning-based way by efficient incremental learning
(retraining). Specifically, we propose a brand new retraining
method, called GroupWi-Lo, that focuses on minimization of
parameter variation with respect to the incremental surveys
on fingerprint (i.e., calibration). Our method tries to keep the
parameters of the previously trained model unchanged while
minimizing the error on the dataset obtained in the last surveys.
This formulation is helpful to keep robustness against overfitting
from the limited size of the dataset per survey. The experimental
results both in the lab and the uncontrolled environment show
that GroupWi-Lo achieves competitive performance among the
state-of-the-art methods, while its computational cost retains
independent of the number of surveys compared with existing
the semi-supervised approach and standard incremental training
approach.

Index Terms—Wi-Fi fingerprinting, machine-learning-based
indoor localization, total variation, model maintaining

I. INTRODUCTION

The widespread use of smart devices has prompted the de-
mand for accurate indoor localization [1]. Indoor localization
has been researched in several ways [2]-[4] due to these
demands. Among the various localization methods, Wi-Fi-
based indoor localization is one of the most attractive solutions
owing to the availability of Wi-Fi signals [5], [6].

Typically, Wi-Fi-based localization methods can be cate-
gorized as access point (AP)-based localization [7], [8] and
fingerprint-based localization [9], [10]. AP-based localization
assumes that the precise location of the APs has been an-
nounced in advance. Although AP-based localization is useful
when the locations of the APs are known and controllable, this
assumption itself is unrealistic in uncontrolled environments
(such as shopping malls and subway stations) where the APs
cannot be controlled. On the other hand, fingerprint-based
localization is based on the RSSI information with unknown
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AP locations. This approach only requires “fingerprints with
location” to obtain the RSSI distribution map to train a
localization model. In this research, we focus on fingerprint-
based localization because of its practicality.
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Fig. 1: The accuracy deterioration of the indoor localization due to
RSSI change according to the environmental change (We employ the
multi-class classifier-based fingerprinting)
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However, fingerprint-based localization has a problem that
accuracy deterioration is inevitable in ever-changing environ-
ments in actual errors as shown in Fig.1 (The drastically
change in this figure means the RSSI change over 50 dBm
between previous term and next term). This accuracy de-
terioration is caused by the changing the condition around
AP, new AP installation, and removal of AP [11]. That
is, the RSSI distribution at a specific location varies over
time, making it uncertain and therefore unable to be used to
determine the user’s location. To overcome the deterioration
problem, fingerprint-based localization needs continual finger-
print surveys to reconstruct the model with additional dataset.
However, obtaining a completely new dataset in the whole
environment is a labor-intensive and time-consuming task. To
avoid this, some researchers have devised transfer learning
frameworks to adapt the localization model to the current
environment with few data from current environment [12].
These transfer learning frameworks enable construction of a
new model using two types of datasets: a source domain data
and a target domain data. The source domain data are gathered
before the service is deployed and gathered after it has been
deployed until the current time, and the target domain data are
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gathered in its current environment for calibration. Although
the transfer learning approaches resolve the deterioration issue,
they are regarded unsuitable for localization because their
computational costs increase with time due to the increase
in the amount of data in every calibration.

In this paper, we propose Group Regularized Onsite Update
of Parameters for Wi-Fi Localization (GroupWi-Lo), a new
incremental learning method for fingerprint-based localization.
The model can be thought of as a variant of online learn-
ing [13], that is, the model does not require the memory
storage of fingerprints obtained by the previous calibration.
This setting makes the model available for an unlimited
number of calibrations. In each training, GroupWi-Lo only
uses the small sized dataset obtained at the current calibration;
thus, the computational cost can be reduced to reduce the
computational cost to a constant level, and it is thus reasonable
to run it for long-term deployment.

Similar to our model, the standard online training methods,
such as [13], also offer reduction in memory consumption in
large-scale learning; however, the incremental training with the
limited number of calibration data is not so stable even though
the parameters are considered to be kept across the training as
a result of regularized learning.

Our model focuses on minimizing the total variation of the
parameters as the standard online training methods while it
also considers the structural property of features used in the
localization model. To solve this issue in a systematic manner,
we employ the idea of the total variation techniques explored
in the computer vision community [14] and segmentation of
time series analysis [15]. To the best of our knowledge, our
work is the first attempt to install the idea of total variation
for the training for Wi-Fi localization. Furthermore, we employ
group lasso regularization term as a part of the regularization
for total variation that aims to treat parameters of each AP
as a group. We call this regularization as total variation
regularization. With this formulation, our model updates the
parameters corresponding to the APs with distribution changes
that occurred after the previous training phase.

In summary, the main contributions of our proposed
GroupWi-Lo are as follows.

o« We propose a low-cost sustainable retraining method,
GroupWi-Lo, for fingerprint-based localization using a
new idea resembled from total variation minimization
with sparsity inducing regularization.

« We conducted extensive experiments in a uncontrolled en-
vironment in a shopping mall and confirm that GroupWi-
Lo can maintain the accuracy of Wi-Fi-based localization
better than state-of-the-art methods with a practical com-
putational cost.

o We confirmed that GroupWi-Lo can keep the parameters
of non-deteriorated APs fixed while minimizing the local-
ization error as we intended via AP movement detection
application.

The rest of this paper is organized as follows. Section II

formalizes indoor localization using a multi class classifier.
We formulate the GroupWi-Lo and describe the order of

calculation of our model in Section III. Section IV provides
us with the contents of describing the experiment for all
evaluation, and we discuss the results of the evaluation and the
practicability of our model. In section V, we verify the ability
of the GroupWi-Lo that can detect the AP movement with a
controlled dataset. We review the related work in Section VI.
Finally, section VII concludes this study.

II. PROBLEM SETTING

The fingerprint received from a device can be written as
x = (r1,...,7)s)), where S is the set of APs. If the device
cannot obtain the RSSI from an AP, we substitute z; = V
with the constant value V € R. We use a function that maps
the fingerprint x to the location y € ) C R? that represents
the location with 2D coordinates.

The fingerprint-based localization model can be divided
into two approaches: a generative model and a discriminative
model. In this paper, we formalize the indoor localization
problem as discriminative model since Gaussian processes
(GP) model has drawback in online model online phase.
We compared with GP method as a generative method in
experiment.

The discriminative localization model can be divided as
two frameworks: regression and multi-class classifier. The
regression framework infers the 2D coordinates of the position
from the feature vector generated by the RSSI directly [16].
Multi-class classifier framework estimates the posterior of all
labels that set in whole position in the environment. Since our
approach can be applied in both setting, we formulate as a
multi-class classifier method because accuracy of regression
considers as low; actually, we compare the performance of
both model in experiment (see section IV-D4). It should be
noted that our proposed model can apply to the every machine
learning-based localization method such as contains recent
advanced localization method that handle other problems in
indoor localization; however, to focused on the recover the
accuracy deterioration in environmental changes, we employ
the simple multi-class classifier-based localization method.

a) Formalization as multi-class classification: Following
from [17], the discriminative function f can be formulated
as the classifier f(x) — L, where £ depicts the labels of
position, [ € L is the label that each label represent the 2D
coordinate y. We assume that this quantization is given in
advance for each target environment.

We build the classifier, f(x) = argmax; fi(x), fi =
BquS(:c), where ¢ is the basis function for creating a feature, 6,
denotes a parameter vector for each location. As for the feature
representation ¢, we use the response of a Gaussian filter as
the feature [17]. The number of features derived from a single
RSSI value z, from the s-th AP is equal to the number of
Gaussian filters. With this featurization, the parameter could be
represented as a structured collection as © = {61,...,60 |},

and 0 = (6],,....6]\5)-
To optimize the classifier from the training dataset D =
{x;,1;}:, we use a cost-sensitive hinge loss function [17] as
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Fp(©®) = %I > i Fla.,1,)(©). The loss function per point can
be depicted as

F10(©) = |max A1 - (61, - 6)T ()|

I#1; n
where A is a cost function defined as a distance function,
[ is the estimated position, [u] 4+ = max(0,u) for u € R and
constant 1 is the margin for the hinge loss function. We employ
the Euclidean distance function as a distance A. With this cost
sensitive loss, a regularized framework could be applied to the
training of the model as @ = argming Fp(©) + AR(O),
where R(®) is a regularized term for training and A is
the hyper parameter for the regularization. The parameter
could be optimized by employing (stochastic) gradient based
techniques such as Forward Backward Splitting (FOBOS) [18]
and variants of the training methods.

III. GROUP-LEVEL TOTAL VARIATION REGULARIZATION

To recover the accuracy of localization, we need to recon-
struct the new localization model. To achieve a constant low
computation cost, we need a framework that can reduce the
size of the dataset for learning the localization model.

We assume that we gather a dataset D(*) = {:cz(.k), lgk)}?ﬁl
in term k for model maintenance, where n; is the amount
of data in term k, and also have the previously learned
model f*~1)(.) i.e., the corresponding parameter ®*~1 is
preserved. The dataset D(*) in term k € {1,2,...} contains a
few data acquired from the part of the target environment due
to avoid the time consuming data acquisition process. At 0-th
term before launching the localization deployment, we assume
that ng is much larger than n at k£ > 0 that is the amount of
data for retraining.

A. Model maintenance by retraining

When we construct a newer localization model for term
k, we need to avoid using all data in term k considering the
high computational cost. Instead, we construct the localization
model for term k by using the current model constructed for
k — 1 and a small amount of new data in term k. To do this,
we consider the following optimization problem:

O®) = argmin Fpm (©) + AR(©,0FD). (1)
(C]

In contrast to the regularization frequently employed in the
batch training methods, the regularization contains ©@*~1).
In other words, we construct a retraining method using the
parameters of the existing localization model and only new
data D). Target domain data is much smaller than the entire
dataset that was previously acquired; thus, this framework
should reconstruct a new model with much smaller data.
Our approach is in the different class of online learning from
the standard online learning. The important difference from
the standard online learning such as AROW algorithm [13] is
that they do not explicitly use the structure of the parameter
©* =1 in the regularization. That is, they do not use the
structural property that causes performance deterioration in
indoor localization. In contrast to the standard online learning

Term k Term k+1 rearrangedlayout
AP2 AP2
AP5
AP3
d(ivu:e AP4 H

RSSI
at A

AP1 AP2 AP3'AP4 AP5’

GroupWilLo framework updates localization models
of concerning with these APs.

Fig. 2: The RSSI change due to the environmental change

methods, we use the structured property of the features in the
regularization, especially on the AP information. We specify
the regularization term R in our proposed method in the next
section.

B. Designing regularization term

Overfitting issues stemming from the effect of noise and
biases are inevitable due to the small sized data (i.e., it only
contains the data from a part of the environment) in recalibra-
tion phases if we employ the standard L1 or L2 regularization,
ie. R(©,00-D) =, [6/]1. R(©,0+1) =3 (6,3
in (1). To avoid this problem, we consider the model that
restricts the updated parameters to parameters that need to be
updated and other parameters should be fixed.

To limit the parameters change, we install the idea of the
total variation regularization. By this technique, we can recon-
struct the new localization model with keeping the knowledge
of the previous model.

Moreover, in Wi-Fi-based indoor localization, environment
change occurs with each AP individually. As an example
with trivial visualization (see Fig. 2), as to the effect of
the environmental change, the features of the 4-th and 5-th
APs change, whereas those of the others remain the same.
In real environments, the distributions of only the RSSIs
from some APs change; hence, we will assume that this is
the case. From this assumption, localization accuracy can be
recovered by updating only the parameters relating to the APs
that the distribution changed. Thus, by minimizing the total
variation of the parameters of each AP, we can construct a
new localization model with a small amount of new data and
the current localization model.

To achieve the above requirement, we focus on the group
norm of the parameter changes. Vert et al. [19] proposed the
anomaly detection method that focused on regularization that
considers parameter changes rather than parameter shrinkage.
We extend the idea of that work to updating the parameter
with minimizing total variation of the parameters. The norm
of the parameters for s-th AP at location [ between terms k— 1
and k is ||01(f:1) —OI(Z) ||2. This norm calculates the amount of
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Fig. 3: The example of parameter updating of the proposed method
and other regularization-based method

change in parameters with regard to s-th AP. We apply group
sparsity regularization with these norms as follows:

R©,0%70) =36, — 0" V|.. )
s,l

It should be noted that this group sparsity regularization makes
parameter changes zero when the norm of parameters change
in the same group is small.

It might be also natural to think that for L1 regularization,
or L2 regularization for the regularization term within the total
variation regularization framework, the effectiveness thanks
to the group structure is more vivid than the others in the
setting of indoor localization. Fig. 3 shows an overview
of the parameter changes for each regularization term. L2
regularization updates all parameters because this technique
does not have the effect that leads the sparsity. L1 regular-
ization, i.e., R(®,0%~1) = 3" |6, — 0l(k71)||1, can make
parameters sparse independent of AP and location; however,
this technique treats the parameters equally. As a result, it has
to update many parameters and requires a lot of data to avoid
overfitting. Thus, L1 regularization cannot recover localization
accuracy effectively. Compared with L1 norm regularization,
our model can induce parameters sparse with each group.
Therefore, we can update only those parameters related to
the APs whose distributions change. In other words, using
group regularization for the parameters change, the model can
minimize the total variation of the parameter groups while
minimizing the error for the target dataset. This leads to
the number of updated parameters being small. Therefore,
Our method can recover accuracy without worrying about
overfitting due to group constraints with this small updating.

C. Cost of Learning

The order of computation of the methods that use all
term data related to the data size is O(Z?Zl nj + ng).
The computational cost of the training with all data is
O((Z;?:1 nj 4+ no)im) where the data size is Zle n; + no,
ny, 1s the number of data in term k, 7 is the number of iterations

for optimization, and m is the dimension of the feature vector.
On the other hands, the computational cost of our approach is
O(ngim) because our approach uses the only term k’s data
for retraining. The size of the dataset in the n-th term is much
smaller than in the first term. Therefore, we can retrain the
localization model constantly in terms of computational and
labor cost no matter how many terms have passed.

IV. EXPERIMENTS

We evaluate the performance of GroupWi-Lo from the
viewpoints of performance and practicability with uncontrolled
dataset.

A. Comparison methods

We compare our work with five state-of-the-art and base-
line methods as follows. We implemented a localization
model trained with only the first term’s data as the base-
line (NotRetrain). It shows whether accuracy deterioration
occurs [17]. The two types of conventional methods are Lasso
for all data (Lasso-AD) and Lasso for parameter changes
(Lasso-PC). Lasso-AD updates the localization model using
source domain data and a small target domain data [20],
that is, the full dataset. The objective function of Lasso-
AD is Fpoyup@y...upt (©) +A Y7, [16:]]1. Although Lasso-
AD will certainly resolve the deterioration issue and avoid
the overfitting issue because of using the all target position
dataset, it will also incur a large computational cost as we
repeat the calibrations. To confirm the effect of group reg-
ularization, we used lasso regularization for the parameter
changes (Lasso-PC). The objective function of Lasso-PC is
Fpw(©) + A3, 1160 — 0§k_1)||1. Lasso-PC is similar to
GroupWi-Lo, as both algorithms penalize parameter changes;
however, Lasso-PC minimizes the total variation of the param-
eters independently. In addition to the comparison methods
focusing on the design of the regularization term, we also
employ a recent work [21] that called fingerprint spatial
gradient (FSG) method that is reported to be robust against
environmental changes. Moreover, to compare the generative
method based indoor localization method, we employ the GP-
based indoor localization [22] as comparison method.

1) Parameter settings: Gaussian filters are used in
GroupWi-Lo, NotRetrain, Lasso-AD, and Lasso-PC. We de-
termined the parameters of the Gaussian filters for the fea-
tures as all pairs of u € {—35,—45,—-60,—80} and o €
{0.2,1.0,5.0}. Regarding the parameters of FSG, we use the
Euclidean distance as the fingerprint distance and the cosine
similarity as the FSG similarity metric. We use the same two
parameters from the paper [21], that is, » = 4 for deciding the
neighbor position number and k& = 3 for the kNN algorithm.

B. Evaluation metric

We prepare 2 evaluation metric: p-value between first-term
to target-term and Calculation time. We evaluate the p-value
of the localization error defined as Euclidean distance between
the true position [ and the estimated position [ as e(l,l) =
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Fig. 4: Map and reference points of shopping mall dataset

|1 — I]|2. The accuracy deterioration turn to be occurred if
p-value has a significant difference.

We use calculation time as a metric to verify the practica-
bility on an Intel Core 17-3770 CPU with 32GB of memory.

C. Shopping mall dataset (Uncontrolled-Data)

The dataset was collected in a shopping mall constructed
from reinforced concrete. Fig. 4 shows the reference points
and scenery in collecting points. As shown in the figure, we set
up the experiment in a wide corridor on the ground floor; the
experimental area is 4 mx 24 m. A some people are exist in the
target floor in every data acquisition timing, and sometimes the
upper floor is crowded. We set up 90 reference points in total
that are set on every 1 m? grid. We used a Nexus5 to gather
data from each point six times a day (each acquisition heads
different direction) and gathered data once every two weeks
for nine months. We select 20 reference points from 90 points
in the training dataset randomly in each period respectively,
and use the data from these reference points as training data.

D. Evaluation results with Uncontrolled-Data

In this experiment, we confirm the performance for recov-
ering the accuracy and practicability with Uncontrolled-Data.

1) Robustness against accuracy deterioration: Fig. 5 de-
picts the localization performance of each method when we
calibrate the model every two weeks. From this figure, it
is clear from the results of NotRetrain that the accuracy
deterioration issue actually does occur. The p-value of the dif-
ference between the O-th term and the 18-th term is p = 0.12
(GroupWi-Lo), p = 0.36 (Lasso-AD), p = 0.013 (Lasso-PC),
p=2.0x 10715 (FSG), and p = 6.4 x 10~2! (GP). It should
be noted that p = 7.2 x 10~® (NotRetrain), and this persuades
the need of additive data collection and retraining. In con-
trast, GroupWi-Lo achieves retaining localization performance
against environmental changes compared with other methods.
We also compared the performance of our approach with
others at the 18-th term. We could not obtain a small p-value
on the performance of GroupWi-Lo vs Lasso-AD (p = 0.19).

Lasso-AD has high resilience because it uses all the data.
GroupWi-Lo has the same level of resilience with Lasso-AD
but uses only the new target dataset and the parameters of the
previous retrained model.

—— GroupWi-Lo
11 Lasso-AD

—+—Lasso-PC
10 —— NotRetrain
FSG
——GP
€9 p=6.4E-21
= p=2.0E-15
o
% 8
o p=7.2E-08
© 7
]
>
< 6 p=0.01
p=0.11
5 p=0.36
4 . . . .
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Lasso-AD
Lasso-Pc - [l Have statistical
NotRetrain significance
FsG Does not have
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Fig. 5: Average change at error and p-value in the Uncontrolled-Data
during 18 terms (1 term = 2 weeks): The upper figure shows the
average error in each term. The p-values in the upper figure depict
the difference between the 0O-th term and the 18-th term. The lower
figure depicts the statistical significance from O-term in each term
(The white cell represents it does not have statistical significance,
i.e., accuracy is not deteriorated).

The results of Lasso-PC method show that lasso regulariza-
tion is effective but not efficient. This result indicate that the
retraining causes overfitting or bias in the new model because
the k-th term dataset only contains the data from a part of
target positions. Thus, the results of Lasso-PC have a large
variance. This comparison shows that the group regularization
is key to the deterioration recovery capability of GroupWi-Lo.

FSG has the worst accuracy among the methods tested.
FSG uses a fingerprint database and the AKNN algorithm;
however, the quality of the database deteriorated during the
experiment. Moreover, the database could not be updated
for the current environment because it does not support the
recalibration process. Even though FSG is powerful to deal
with temporal deterioration such as shadowing and crowded
space (we confirm that FSG can localize precisely in Lab. data
sets used in application part), FSG cannot be used to recover
from a permanent deterioration.

The accuracy of GP is drastically deteriorated in 13-term. In
13-term, many AP are changed, and GP can not deal with this
changing. This result shows that GroupWi-Lo is more robust
than the generative based indoor localization method.

We also conducts the experiment with sparse target point
setting that select 24 reference points from Uncontrolled-data
that are set on every 2 m? grid. The error at first term is
4.93 m. The error of 18-th term with GroupWi-Lo is 4.76 m,
while the Lasso-AD is 4.26 m, the Lasso-PC is 5.62 m, FSG
is 6.39 m, and GP is 8.35 m. It should be noted that the error
without retraining (NotRetrain) is 6.67 m. From this result, our
proposed method achieves accurate localization result with the
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Fig. 6: Average change at error in the Uncontrolled-Data with long
time duration (1 term = 8 weeks): Upper figure shows the average
error in each method and lower figure depicts the p-value from O-th
term result of NotRetrain.
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Fig. 7: CDF of the error distance of each method in the 18-th term
calibration.

sparse target settings.

For long time period evaluation, we adopt 8§ weeks span as
1 term. Fig. 6 which depicts the result show that our model
can recover the accuracy with the long-term period compared
with NotRetrain; however, it is better to employ our model per
2 weeks to ensure the effect of the recovery.

Fig. 7 shows the cumulative distribution function (CDF) of
the error distance of each method. It shows that GroupWi-Lo
and Lasso-AD have almost the same accuracy as in Fig. 5.
The results demonstrate that the resilience of GroupWi-Lo
is similar to the resilience of Lasso-AD. To conclude, the
experiments show that GroupWi-Lo is a practical method from
the viewpoint of resilience.

2) Computational cost: Fig. 8 depicts the relation between
the computation time for retraining and the number of re-
training on the Uncontrolled-Data. It should be noted that
the calculation time of the GP and FSG is the not time for
training but time for matching to the database time because
these methods cannot retraining. Lasso-AD approach takes a
long calculation time because it uses a large dataset (i.e., the
all terms data sets).

GroupWi-Lo, FSG, GP, and Lasso-PC have constant calcu-
lation times independent of the number of retraining, whereas
Lasso-AD becomes more costly as the number of retraining
periods grow. Methods that require larger computational costs
are impractical.

3) Discussion: GroupWi-Lo is a practical and efficient
method for resolving accuracy deterioration. The resilience of
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Fig. 8: Relation between computation time for retraining and the
number of the retraining.

TABLE I: Average error and calculation time with 20 reference points
in Uncontrolled-Data

\ average error [m]  recover the accuracy?  constant calc time?

GroupWi-Lo 5.23 O O
Lasso-AD 4.97 O X
Lasso-PC 5.66 X O
NotRetrain 7.41 X O

FSG 879 < @)

GroupWi-Lo is equal to that of Lasso-AD, but its computa-
tional cost is at a constant and same low level as that of Lasso-
PC. Lasso-AD and GroupWi-Lo have the lowest average
errors. Compared with the NotRetrain approach, GroupWi-
Lo recovers 2 m more accuracy (from 7.41 m to 5.23 m).
The calculation time of Lasso-AD increases as the calibration
process is repeated (over 8 h). Lasso-AD approach is thus not
practical in terms of the calculation time.

Although FSG is a state-of-the-art approach for robust
temporary disturbances, it cannot resolve the accuracy deteri-
oration issue. FSG is based on the kNN approach and cannot
deal with new or untrustworthy APs, although it works in an
ideal situation like a laboratory environment or situation which
a white-list of APs is available for making an estimation.

4) Multi-class classifier vs regression: We show the com-
parison results between multi-class classifier and regres-
sion [16] with 6-fold cross validation.

As for the result, the mean of average error in each cross
validation with the multi-class classifier is 4.65 £ 0.02 m,
whereas that with the regression is 5.83 & 0.80 m. Thus
the regression methods have less performance than multi-class
classifier. Regression method is told to be sensitive to data
acquisition process.

V. APPLICATION: AP MOVEMENT DETECTION

GroupWi-Lo can detect the AP movement from the group
norm of parameters change about each AP. We can check
the changes of the AP by observing the result of parameter
updating. This is, because our proposed method update only
the parameters that related to deteriorated APs. We set the
threshold value as 9 for the norm value defined at (2) to detect
the AP changes.

We obtained the RSSI dataset in a 17 m x 47 m area on
a certain floor of a certain building in a university. We took
the fingerprint data from the meeting room and corridor. We



2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 30 Sept. - 3 Oct. 2019, Pisa, Italy

L2Norm of parameter changes when a AP moves 20m

‘ AP1 AP2 AP3 AP4 AP5 AP6  AP7
GroupWiLo ‘ 10.84 1.51 11.35 2.63 3.28 6.65 3.07
Lasso-PC ‘ 11.12 10.26 11.84 11.24 12.75 11.42 9.85

AP movement
©® AP with few parameter change

AP parameter change drastically
o Reference Point

Fig. 9: Overview of single AP long distance movement and L2
Norm of parameter changes of GroupWi-Lo and Lasso-PC due to
the distribution drift.

initially set seven APs in the corridor, as shown in Fig. 9; we
then moved some APs in the experiment. We put a reference
point every 1 m?, 105 reference points in total. We used a
Nexus5 to gather data at each point ten times per day. We
thus collected 5,250 fingerprints over the course of five days.
Fig. 9 shows intentional deterioration, and accompanying
table shows the Frobenius norms of the parameter changes
after updating the parameters. One long distance (20 m)
movement in AP3 is simulated (Fig. 9). The large red circle
indicates that the norm of the parameters change is signif-
icantly larger than others. In the case of using GroupWi-
Lo, the changes to the parameters of AP3 and APl became
large. This result shows that GroupWi-Lo can detect the AP
movement about AP3. AP1 is also detected by GroupWi-Lo;
this is because AP1 was located near AP3 before it was moved.
On the other hand, Lasso-PC also minimizes the total variation
of parameters; however, Lasso-PC updates every parameter
regardless of whether the APs are affected by deterioration.
Therefore, group constraints have the benefit of not only
avoiding overfitting but also detecting the AP movement.

VI. RELATED WORK

The RSSI-based indoor localization methods can be cate-
gorized into two types, that use the AP position, and that do
not use the AP’s position information.

Elbakly and Youssef [7] used Voronoi regions around the
APs for localization and Liu et al. [23] used the AP’s in-
formation to select the location. Most AP-based localization
methods use the relation between the APs’ position and the
RSSI, so that supervised data is not required. Thus, even if
the localization accuracy deteriorates because of changes in
the environment, the AP’s position only has to be updated for
performance recovery.

Although AP-based localization is feasible in controlled
environments such as office spaces where the location of the
APs is known, it is hard to adapt it to a general uncontrolled
environment which is not controlled (e.g., shopping malls and
train stations).

Over the last few decades, many researchers have tried to
construct localization methods from RSSI obtained from APs

with unknown positions, that is, fingerprint-based localiza-
tion [9], [24]. The fingerprint-based localization framework
constructs a localization model from a supervised dataset. The
supervised dataset consists of RSSI fingerprint vectors and pre-
cise location information in the target area. Thanks to using the
relation between RSSI fingerprints and location information,
the localization model is able to infer the device’s position.
However, the trained model deteriorates as time passes and
environmental changes accumulate due to the environmental
changing [25], [26]. Accuracy degradation is the central issue
of fingerprint-based indoor localization. To overcome the
accuracy deterioration problem, some researchers have tried
to simplify the calibration process and transfer learning.

Some previous studies have attempted to reduce the calibra-
tion cost itself. Wu et al. [21] tried a new feature representation
to reduce the effect of distribution changes. Wu’s method [21]
is a state-of-the-art of resolving temporal distribution changes
such as shadowing and crowded space and is based on the
kNN algorithm. Although these attempts are robust against
temporal disturbances of the RSSI distribution that are caused
by differences in device signal sensitivity, device direction and
so on, among others, they do not deal with environmental
changes. Montoliu et al. [27] tried to fill the empty RSSI with
not constant value but regression techniques. This is also state-
of-the-art of resolving empty RSSI due to the environmental
changes; however, this method cannot handle the RSSI distri-
bution changes because this method only focused on the empty
RSSIs.

Other approaches to simplify the calibration process use
supervision (i.e., location information as well as RSSI finger-
prints) from additional sensors such as cameras as proposed
by Chen et al. [28], image and RSSI by Xu et al. [29].
While these approaches improve accuracy, they make the RSSI
fingerprint systems more expensive. To improve practicality, it
is necessary to avoid installation for the environment and use
only a smartphone sensor.

Recently CSI-based indoor localization is also explored
as high accurate localization techniques [30], [31]. These
techniques use the channel state information such as angle
of arrival and time of arrival, and achieve decimeter level
accuracy in indoor localization. However, these technique
needs specific hardware such as multi-antenna Wi-Fi receiver
and specific software setting in operating system (i.e., iOS,
Android). That is, that technology cannot apply to the common
mobile device on the market now. Thus, it can be say that the
CSlI-based indoor localization is not practical.

Although crowd sensing-based approaches [32], [33] reduce
the effort of fingerprint distribution construction, the costs
of adaptation are still non-negligible. Moreover, Yu et al.
combined the crowd-sensing and the pedestrian dead reckon-
ing (PDR) [34]; however, battery consumption issue on users
prevent the practicability.

In the last decade, transfer learning and domain adaptation
have been explored as ways of dealing with the environmental
changes. In transfer learning of indoor localization, the source
domain data is acquired before the service is deployed and
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acquired until the current term, and the target domain data
is gathered in current environment for recalibration. Yin et
al. [35] predicted RSSI distribution using regression analysis.
Wang et al. [36] and Le et al. [37] used unlabeled data and
acceleration data, while Ferris et al. [38], and Luo et al. [39]
created temporary labeled data from unlabeled data using the
characteristics of fingerprints predicted from a map or user
trajectories, as the biggest issue of transfer learning methods,
large computational cost in long term operation is reported.

VII. CONCLUSION

We proposed a brand new retraining method, called
GroupWi-Lo, that has high resilience and low computational
cost for tackling accuracy deterioration of fingerprint-based
localization. We focused on the total variation of the param-
eters between the current and new model. We formalize this
with the total variation of parameters with group structure per
AP; thus, GroupWi-Lo only needs to use the parameters of the
localization model and the new calibration dataset. The results
show that our proposed method can recover accuracy to the
same level as that of the existing methods while our model
is more sustainable than existing methods because of a low
and constant level computational cost. Moreover, we confirm
that GroupWi-Lo can detect the AP movement thanks to the
property of our algorithm. In future work, we enhance our
work to unsupervised scenario that use the data that uploaded
by users. This enhancement makes indoor localization more
practical.
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