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Abstract—People often turn off location logging when the
batteries of their smartphones get low, to reduce the phone’s
power consumption and prolong its operation. Here, we propose
an innovative data sharing scheme called as the Parasitic Loca-
tion Logging (PLL). PLL can acquire location of such users,
what we call parasitic users, without invoking any location
functionalities by the GPS and Bluetooth low energy (BLE)
sensors of their smartphones. PLL estimates parasitic users’
location and trajectory by relying on other users who pass by
the parasitic user, what we call host users, as evidence that they
are located in close proximity. The results of field experiments
showed that PLL dramatically decreases battery consumption
of parasitic users’ smartphones and that the position of para-
sitic users can be identified accurately. Moreover, the battery
consumption of PLL was rigorously evaluated in a laboratory
setting to demonstrate its benefit. An agent simulation evaluating
the proposed calculation algorithm under various conditions in
realistic environments validated the robustness of PLL.

Index Terms—Parasitic Location Logging, location data com-
pletion, heuristic search

I. INTRODUCTION

With the widespread use of smartphones, continuously
acquired location information can provide users with benefits
in various applications in ubiquitous computing applications.
For instance, government organizations, urban designers, and
area marketers can statistically analyze location information
collected from many users to estimate the number of people
staying or moving in a certain area (i.e., urban dynamics) [1],
or model user movement data to identify their preferences or
patterns in their daily activities [2]. Such analyses can then be
used for city planning, marketing, etc. [3].

Moreover, users can post their location histories on their
blogs and social media sites to maintain their life logs as
alternatives to their diaries. Users can browse their location
information that has been uploaded to a server and review
the history of their activities, such as where they visited on
a specific day (e.g., Google Maps TimeLine Service1). The
collected location information can also be used for security
and safety purposes, e.g., to recommend evacuation routes for
people in a natural disaster or to discover a child or old person
who has wandered away from home.

However, when the battery of the smartphone is low, some
operating systems and applications automatically reduce the
frequency of location logging, and consequently, some users

1https://www.google.com/maps/timeline?pb

may choose to turn off the location logging itself in order
to save battery energy. This causes their location dataset to
have many missing locations. The missing data from such an
incomplete dataset are hard to recover, and this leads to serious
problems for certain applications.

This paper proposes Parasitic Location Logging (PLL),
which is an innovative approach that continually collects
users’ location data with little battery consumption even after
their location acquisition function has stopped. Despite its
preliminary nature, we believe that it will lead to a future
standard for efficiently constructing user location datasets in
a large-scale in a distributed manner.

PLL estimates the locations of target users (we call them
parasitic users) from location information generated by dif-
ferent users who pass by them (we call the passersby host
users) as evidence that they are located in close proximity.
The parasitic users are those whose smartphones have little
remaining battery power, while the host users are those whose
phones have enough battery power. The information on the
locations at which they pass by is estimated from the host
users’ location information, in particular, the time at which
they pass by each other. The advantage of PLL is that the
parasitic user’s location can be recovered without using any
of the GPS or WiFi sensing capabilities of their phone even
if the host users did not sense their location information just
when they passed by parasitic users.

Opportunistic data sharing [4]–[6] is related to PLL. In
ordinal opportunistic data sharing framework, a user acquires
and shares location information acquired by the GPS sensor
on the spot with other users. Each ‘host’ user acquires position
information every time he or she passes by another user, and as
the number of people passing each other increases, the number
of times of their own position information is acquired also
increases. The ordinary opportunistic location sharing method;
however, drastically increases the battery consumption of the
host users; thus, it is likely that even users with enough
battery power would tend to avoid the host role. Moreover,
both parasitic and host users have to turn on Bluetooth low
energy (BLE) scanning in order to join opportunistic location
data sharing, and the system detects users passing by from the
BLE signal. Here, even BLE scanning poses a critical problem
because the parasitic users would have little battery remaining.

Bluewave [6] is another opportunistic data sharing technique
that allows devices to opportunistically share contexts when



they are nearby. In Bluewave’s scheme, a user can obtain
his/her approximate location by scanning for and detecting
a BLE signal from a neighbor user who uploads their updated
location as a context broker. However, users of Bluewave
face difficulty in estimating their location accurately, because
Bluewave is a framework for sharing general contextual in-
formation, not specifically locations. It imposes a contextual
restriction in which the context broker acquires and delivers
the location information to users in close proximity and within
a short time. That is, differences between the time of updating
the location of a context broker and the time of passing by
cause the location estimates to be inaccurate. PLL can provide
accurate pass locations to parasitic users.

The contributions of this paper are as follows: 1) Parasitic
Location Logging (PLL), which is able to acquire user location
information while restricting the user’s battery consumption,
is proposed. 2) Demonstration experiments implementing the
PLL scheme prove the feasibility of the location logging
method. Moreover, the battery consumption of PLL is eval-
uated rigorously in laboratory free of ambient noise. 3) The
calculation algorithm is evaluated under various conditions
in an agent simulator. The evaluation indicates that the PLL
calculation algorithm is robust to various environmental con-
ditions and that the PLL calculation method is much more
accurate than existing methods.

The rest of this paper is as follows. Section 2 summarizes
the idea and implementation of PLL. Section 3 describes
three experiments for demonstrating the feasibility of PLL and
discusses their results in Section 4. Section 5 reviews related
work. We conclude this paper in Section 6.

II. PARASITIC LOCATION LOGGING

A. Basic idea of Parasitic Location Logging

In PLL-based systems, users can play two roles: parasitic
and host users who are respectively takers and givers of
location information. A parasitic user is one whose smartphone
has little battery power remaining and who obtains location
information from the location logs of host users who pass
by, instead of sensing any GPS, WiFi or Bluetooth signals
with their own device. The users’ roles are assumed to be
set automatically and change dynamically depending on the
amount of battery power remaining of their smartphones.
Parasitic users can acquire their location without consuming
much battery power.

B. Requirements of Parasitic Location Logging

The requirements for PLL system are considered from
the viewpoints of the parasitic role and host role. From
the viewpoint of the parasitic role, the PLL scheme has
to greatly reduce the battery consumption of the parasitic
user, even though locations should be continuously acquired.
In an ordinary opportunistic data sharing scheme, although
parasitic users do not have to acquire their location from GPS
by themselves, they must scan the host users’ smartphone
and exchange data. Thus, the ordinary scheme still requires

Fig. 1: Overview of Parasitic Location Logging

parasitic users to use their phones’ battery to scan the host
users’ smartphone. The accuracy of the acquired location is
also important: the more accurate the location acquisition is,
the more benefit there is for the parasitic users. The locations
acquired from Bluewave scheme are expected to have low
accuracy, since the parasitic users acquire recently updated
location of host users (not the location that they passed by
one another).

The requirements imposed on the host users are that the
battery consumption of their smartphones should not increase
too much in playing the host role. In ordinary opportunistic
data sharing scheme, host users collect their locations when
passing by parasitic users and send the data to parasitic users.
This taxes the battery of the host’s smartphones and makes it
unlikely that someone would want to play that role. On the
other hand, in the Bluewave scheme, host users just scan for
the BLE of the parasitic users’ smartphone and send them their
recently updated location later. The Bluewave scheme does not
drastically increase the battery consumption of the host users,
and thus, people would be more inclined to become host users
in that scheme. The requirements stated above are challenging
but can be met by the PLL scheme described here.

C. Data Processing of Parasitic Location Logging

As shown in Figure 1, PLL consists of two phases: data
collection and data completion. When a parasitic user’s smart-
phone has little battery power left (for example, less than
30%), the location logging application sends a signal to the
server, which flips the “parasite flag” of the parasitic user in
the database. GPS and BLE active-scanning functions of the
parasitic user’s smartphone are assumed to be turned off. After
that, the parasitic user relies on information gathered by host
users who pass by to complement his or her missing location
data at the server. The parasitic user’s application receives
the complemented location data when he/she wants to receive
them, such as when the smartphone is charged.

In the data collection phase, the location information of
the host user as well as the passing time are gathered at a
defined frequency. Then, the data accumulated by the host
users are transmitted over the Internet to the server, where
they are stored, at a low frequency, e.g., twice a day.



In the data completion phase, PLL estimates where users
pass each other from information on who the host user and
parasitic user are and when they passed each other. Note that
only the host users scan the BLE signals of the parasitic users
and share their GPS information, the parasitic user keeps their
GPS and BLE active-scanning functions turned off.

PLL does not complement the parasitic user’s location in-
formation with data from only one passerby. It finds a number
of passing candidates from one user’s passing information and
narrows down the candidate points by using several different
pieces of information collected when the user passed by. The
candidate passing locations are determined from the difference
between the most recent time that position information was
acquired by the host user and time of the passing. Multiple
candidate passing points are calculated from one piece of
passing information, and realistic candidate passing points
are selected using several pieces of passing information. The
selected point is one that is reasonable in consideration of
the above time difference. Repeating this process creates the
position information of many users. Choosing one candidate
is a challenging task. The parasitic user’s origin, destination
and even part ground-truth data are unknown, so we have little
information for narrowing down the candidate points.

The position information of the parasitic users calculated
by PLL is stored in the server and analyzed in the same
way as ordinary position information. The parasitic users can
download their missing location and confirm them in a location
logging application, for instance.

D. Parasitic Location Logging Algorithm

In this section, our parasitic location logging algorithm
is presented from the definition of variables used in the
algorithm. Then we formulate how to infer parasitic location.

1) Problem setting: Prior to the formulation how to infer
parasitic location from the location traces from the host users,
the variables used in the algorithm are defined so as to clarify
the problem setting of parasitic location logging. Let G(i) =

{r(i)j , t
(i)
j }

ni
j=1 denote a location trace of i-th host user, where

r
(i)
j ∈ R2 depicts j-th location, i.e. longitude and latitude,

in the trace, and t(i)j represents its corresponding time stamp,
respectively. In the system, we assume that whole collection
of host user traces over u users are aggregated i.e. {G(i)}ui=1.
Assuming that we could also obtain the parasitic logs without
location information as P (k) = {h(k)l , τ

(k)
l }

mk

l=1, where h(k)l ,
and τ (k)l represent ID of the host user at l-th passing of the k-
th parasitic user, and its time stamp, respectively. It should be
noted that location information itself is not aggregated from
the parasitic user smartphones, neither from the host user’s
smartphones. That implies that the system does not invoke
functionality of GPS sensing i.e. the power consumption is
not increased from the usual location logging.

2) Parasitic location logging as range based optimization:
From the dataset of host users {G(i)}ui , and of parasitic
users {P (k)}u′

k=1, the system recovers the location information
of k-th parasitic user q̂

(k)
l , then stores them into P̃ (k) =

Fig. 2: Situation of Parasitic Location Logging Calculation

{q̂(k)
l , h

(k)
l , τ

(k)
l }

mk

l=1. In other words, the location of parasitic
users could be inferred per the passing-by usual users.

For simplicity, we employ range based algorithm where
distance between two types of anchor information are used,
and assume that walking velocity of whole users including
host and parasitic users is constant as v. From (2) with
constant velocity information while walking, the following two
equations related to distance could be derived as follows:

‖q(k)
l − q

(k)
l−1‖2 ≈ v(τ

(k)
l − τ (k)l−1) (1)

‖q(k)
l − r

(h
(k)
l )

γl,k ‖2 ≈ v(τ
(k)
l − t(h

(k)
l )

γl,k ), (2)

where γl,k depicts the latest time stamp ID of h(k)l -th host
user at l-th passing of k-th parasitic user. In other words, γl,k
is defined as

γl,k = max
j
{j|t(h

(k)
l )

j ≤ τ (k)l }. (3)

From these range information, we employ the following
constraint least square optimization in the system:

min
q
(k)
1:mk

1

2

mk∑
l=2

(
‖q(k)
l − q

(k)
l−1‖2 − v(τ

(k)
l − τ (k)l−1)

)2
,

s.t. ‖q(k)
l − r

(h
(k)
l )

γl,k ‖2 = v(τ
(k)
l − t(h

(k)
l )

γl,k ), l = 1, . . . ,mk

(4)

It should be noted that the range information of host users
at l-th passing by k-th parasitic user is employed as constraint
in the optimization while the range of parasitic user between
l-th and l − 1-th passing information is used as objective.

Due to the nature of the range constraint, the above op-
timization problem could be much simplified. Specifically,
we also employ alternative representation towards bound con-
straint minimization as follows. From the geometric constraint,
we could represent the location of parasitic user q(k)

l as

q
(k)
l = r(h

(k)
l ) + v(τ

(k)
l − t(h

(k)
l )

γl,k )

(
cos θ

(k)
l

sin θ
(k)
l

)
. (5)



With this representation, the above constraint linear least
square problem could be projected into a bound constraint
nonlinear least square problem θ

(l)
1:mk

, where each angle θ(k)l

ranges from 0 to 2π.
For further improvement of location accuracy, we employ a

heuristic approach to randomly choose the passing by informa-
tion of k-th parasitic user instead of using all the passes of this
user from our experience. Specifically, the system repeatedly
executes the optimization process through random sampling
and accumulates each result to the priority queues, which is
akin to beam search method. Finally, the system picks up the
best from the candidates.

E. Parasitic Location Logging System

Figure 1 illustrates PLL implemented as a system or an ap-
plication in which passes are detected using Bluetooth (BLE).
Note that there is no restriction on the means of detection,
and Bluetooth is only an example. Also, although the position
information is updated at a timing decided by the scheduler, it
is possible for PLL to operate in real time by performing the
calculation as soon as the position information is collected;
however, the parasitic user will not be able to download the
complemented location data in real time since the battery
of his or her smartphone is assumed to be low. Parasitic
users are assumed to download their complemented location
as they want, such as when they charge their smartphone.
Establishing an Internet connection consumes a lot of battery
power. For this reason, the position information of each host
user is acquired at a low frequency, for example, once every
30 minutes or longer.

The host user’s Bluetooth information is collected as a list.
In particular, we assume that the list of service set identifiers
(SSID) is sent to the server at certain intervals from the host
users’ smartphones. It is possible to send the information to
the server every time the user passes by someone, but this
would consume a large amount of battery energy. Instead, the
SSID of each passerby is temporarily stored in the smartphone
and sent to the server together with the location information
acquired at a low frequency. In the server, the SSID and the
ID of the position information are linked, so that it is possible
to know what the persons passed by and the latest position
information of the passersby.

The scheduler on the server runs the PLL calculation at
regular intervals on the collected location information of host
users and passing information between host users and parasitic
users.

In the PLL system, a host device uploads sensed data and a
parasitic device downloads the estimated location information
when it has enough battery power.

III. EXPERIMENTS ON PARASITIC LOCATION LOGGING

We evaluated PLL in three experiments. The first was a field
experiment aimed at determining whether the overall system
works well in a realistic situation (See Section III-A). The sec-
ond experiment was an evaluation in a laboratory environment
(See Section III-B). We measured the battery consumption

Fig. 3: Two routes of the experiment

accurately in a laboratory setting. The results helped us to
understand the benefits of PLL. The third experiment was
a simulation (See Section III-C). We implemented an agent
simulator to validate PLL in various situations.

A. Experiment 1: Total Performance in Field Experiment

1) Experimental Overview: To demonstrate the feasibility
of PLL, experiments were conducted at a university campus.
Eleven participants, including four parasitic users and seven
host users, walked around carrying smartphones of the same
type (Google Nexus 5X) and GPS loggers. A PLL app
was installed on the smartphone of each host participant to
periodically sense nearby Bluetooth devices. The GPS logger
recorded GPS coordinates and timestamps every 5 seconds in
order to collect the ground-truth location information about
the participants.

Each participant followed one of a given set of routes
starting from different positions and directions on the campus.
The lengths of the routes were about 800 m and 1100 m (see
Figure 3). Two parasitic participants (user A and D) walked
a simple route around buildings, as shown on the left side of
Figure 3. The others (user B and C) walked a route that in-
cluded a pathway between two buildings, as shown on the right
side of the figure. Five twenty-minute trials of walking a given
route were conducted. Each parasitic participant encountered
the other participants several times on the route in each trial.
In order to compare battery consumptions, three users had one
more smartphone which did not use PLL (ordinary users).

2) Parameter Settings of Application in Field Experiment:
Table I lists the parameters for the smartphones of each type
of user in the field experiment. Parasitic users turned on only
BLE sensors and turned off BLE active-scanning. They were
discoverable by host users’ BLE active-scanning. Host users
and ordinary users turned on their all sensors (BLE, GPS,
and WiFi). The smartphones of the host users scanned for
GPS signals about every 300 seconds and BLE signals about
every 60 seconds. The ordinary users only scanned for GPS
signals at the same frequency as that of the host users. Baseline
statuses were prepared for the comparison, and all sensors
were turned off in the baseline setting.

Nearby users were able to be identified from the sensed
Bluetooth device information, and the time of each encounter
with a passerby was determined from the timestamp when



TABLE I: Definition of smartphone setting

BLE GPS WiFi LTE
baseline Off Off Off On
parasitic users discoverable only Off Off On
host users scan (60 sec.) scan (300 sec.) On On
ordinary users discoverable only scan (300 sec.) On On

(a) User A: AE = 13.8 (m) (b) User B: AE = 16.6 (m)

(c) User C: AE = 18.3 (m) (d) User D: AE = 28.1 (m)

Fig. 4: Result of estimation of four parasitic users’ location
from seven host users. Average error(AE) is shown in each
caption. The path of user A and D are in the left, that of user
B and C are in the right in Figure 3).

the strongest received signal strength indication (RSSI) of
the user’s BLE was detected. The RSSI threshold to detect
a passerby was set at -90 dBm or greater.

In the PLL calculation for estimating the parasitic users’
locations, we conducted 5 million heuristic searches in the
PLL calculation for this experiment. Repeated calculations
lead to a more accurate route estimation, but it also increases
the calculation time.

3) Ground Truth Data Collection: In addition to the above
sensor data, ground truth data were recorded for the perfor-
mance evaluation. When a subject passed any of the other
subjects, he or she recorded the latitude and longitude of
passing point and the passing time in seconds of the passing
point manually. The recorded passing position was taken to be
the correct position (i.e. ground truth data).

4) Experimental Results: Figures 4a, 4b, 4c, and 4d show
the results of PLL for four of the parasitic participants. In each
case, the position information was completed using PLL, i.e.,
without using any the position information that the parasitic
users acquired from their GPS sensors. The black points
(marked as plus) indicate the ground-truth passing positions,
and the red points (marked as circle) indicate the passing
points estimated by PLL. The results show that almost all of
the users’ movements were accurately reproduced.

The average difference (error) between the estimated pass-

ing position (red) and the actual ground truth (black) are
shown in the captions of each figure. Although the error varies
somewhat among users, the average value is about 20 meters.
Assuming that the user walks at 1.3 m/s and that the GPS
data are collected at 5-minute intervals, one point of position
information was acquired approximately every 400 m. The
average error of 20m yields an estimation error (error between
the estimated passing point and the correct passing point in the
ground truth data) of about 5.0%, meaning that PLL accurately
completed the user’s position information. Note that PLL could
complete these passing locations accurately without using any
of the parasitic user’s location information at all.

5) Battery Consumption in the Field Experiment: We
checked the battery consumption of PLL users with those of
ordinary users, who were not PLL users and who scanned their
locations by themselves.

The battery consumption of the parasitic users’ smartphones
was 0.67 times that of the ordinary users on average, while
the battery consumption of the host users was 1.03 times
that of the ordinary users. Compared with the ordinary users,
the increase in the battery consumption of the host users was
very small (about +3%), whereas the decrease in the battery
consumption of the parasitic users was rather large (about -
33%). In terms of the whole system, when the number of host
users per parasitic user was less than 11, their total battery
consumption was reduced.

B. Experiment 2: Battery Consumption Test in Laboratory
Free of Ambient Noise

1) Experiment Overview: The battery consumption is af-
fected by noise due to congestion situation and by setting the
scanning sensors frequency. To get an accurate estimate of the
battery power consumed, we conducted a rigorous experiment
in an ambient-noise-free laboratory environment.

2) Experimental Conditions: Uncontrolled environments
(like the university campus) are often filled with noise from the
BLE and Wifi signals of numerous other smartphones. Such
signals should be reduced if the battery power consumption
is to be accurately evaluated. Hence, we performed an exper-
iment in a laboratory free from such ambient noise.

Figure 5 shows a photo of the laboratory environment. The
laboratory environment could receive LTE radio waves and
GPS signals and had no devices other than the tested ones
that could send BLE and Wifi signals. Previous research has
indicated typical living and working situations have 5 BLE
signals on average in (20 BLE signals in crowded situations).
We installed beacons (EddyStone 2) that represented a crowd
of people carrying smartphones.

We installed only the test application on new Android smart-
phones (Pixel 3). We used developer mode to turn off the smart
battery-saving modules, which automatically controls the data
acquisition frequency and reduced battery consumption. The
test application changed the acquisition frequency of the BLE
scan and GPS signal reception and recorded the battery level
every 60 seconds.

2https://github.com/google/eddystone



Fig. 5: Laboratory environment: (a) scenery of the experi-
ment’s location; (b) beacons representing a crowd carrying
smartphones; (c) there were no BLE devices other than the
tested ones.

The test application could change the parameter settings
of the smartphones to simulate four roles: parasitic, host,
ordinary, and baseline. The parameter settings of the parasitic,
host, and ordinary roles are listed in Table I: baseline means
all sensors were turned off. The parasitic role represented the
parasitic user; in this case, BLE and LTE were turned on and
GPS and Wifi were turned off. The host role simulated the
host user; all of the sensors were turned on. The ordinary role
simulated users who do not play a PLL role; GPS scan was
turned on for acquiring their own positions, while BLE scan
was turned off (in discoverable mode). The baseline role only
recorded battery consumption every 60 seconds; all sensors
were turned off. We do not consider the battery consumption
for recording the status, so we compared all of the other roles
with the baseline.

We put the smartphones on a desk in the laboratory and
measured their batteries over the course of 10 hours.

3) Battery Consumption Measurement: We used the battery
discharge ratio, which is the decrease in battery voltage per
unit time, as a metric of battery consumption. Figure 6 shows
an example of the data. The x-axis shows the time passed,
and the y-axis shows the voltage. We calculated a regression
function of the data and took the angle of the regression line
with the x-axis as the metric of the battery function. The
Random Sample Consensus (RANSAC) algorithm was used
to calculate the regression function. We chose ten points from
the data at random and drew the line with the method of least
squares. We repeated the RANSAC method 10000 times to get
the angle of the regression function. Thus, the acquired battery
discharge ratio means how much voltage decreased during a
unit time.

4) Experimental Results: Table II shows the battery con-
sumption for the same parameter settings as in the field
experiment. The figure Table II denotes the discharge amount
per 60 seconds. The smartphones of the host users in the field
experiment scanned for the GPS signal every 300 seconds and
scanned for BLE signals every 60 seconds. The ordinary users
acquired their locations by GPS every 300 seconds.

The results did not show any statistically significant differ-
ence between the battery consumptions of the host role and
ordinary role. On the other hand, the battery consumption of
the parasitic role was about 1.6 times higher than that of the

Fig. 6: Sample of battery discharge data

TABLE II: Battery discharge rate for each role in field
experiment (ratio shows that the ratio against baseline)

mean std. error ratio
baseline 0.0648 0.0175 1.0
ordinary (GPS:300 sec.) 0.164 0.0295 2.53
host (BLE: 60sec., GPS: 300sec.) 0.156 0.0286 2.407
parasitic 0.106 0.0159 1.63

baseline, while that of the host role was about 2.4 times higher,
and that of the ordinary role was 2.5 times higher. These results
match those of the field experiment.

Additionally, Figure 7 shows results for when the host users
changed their data acquisition frequencies. The x-axis shows
the BLE sensing frequency, and the y-axis shows the battery
discharge ratio. The different colors denote the results from
GPS scans at different frequencies. As for ordinary users, the
battery discharge ratio was 0.19 in acquiring of GPS every 60
seconds, and it reduce by 0.10 in every 600 second acquisition.
From these investigation, the battery consumption was affected
mainly by the GPS scanning frequency; the BLE scanning
frequency had little impact on battery consumption when it
was longer than 60 seconds.

PLL assumes that host users scan for BLE signals about
every 60 seconds. This assumption proved to have little impact
on the total battery consumption. The battery consumption of
the host role was almost equal to that of the ordinary role.

C. Experiment 3: Agent Simulation in a Realistic Setting

1) Overview of Agent Simulation: PLL should be evaluated
under various conditions, but this would entail much labor
if we did so manually. Here, we built an agent simulator
and examined different situations with it by changing the
simulation conditions. We also used the simulator to evaluate
the performance of the PLL calculation methodology.

2) PLL Agent Simulator: In the PLL agent simulator,
agents independently move around in virtual cities and their
movement histories are recorded every unit time. Each city
consists a grid of roads (50 * 50 grids). To simplify the
evaluation, we made the grid of each city square.

Initially, a number of agents were distributed in the city,
and their initial locations were decided at random. The initial



Fig. 7: Battery discharge ratio of host users

number of host users (p1) and parasitic users (p2) are defined
in the simulator parameter, where p1 and p2 denotes ID of
parameter in Table III. The agents move in the same way
regardless of their role, and we check whether the location
information of the parasitic users can be restored with the
information of the host users. Each agent had goal directions
(decided randomly), and travelled along the road grid. Each
one made turns in accordance with a parameter called the
“straight ratio (p3)”. For example, an agent with a straight
ratio of 1.0 moved only in its goal direction, whereas an agent
with a straight ratio of 0.5 had a 50% chance of changing its
direction after each time unit. The agents who arrived at their
goal point disappeared from the simulator. New agents were
created every unit time. The number of new agents per unit
time was defined as a simulation parameter. The status of each
agent was recorded during each unit time, and it was used to
evaluate the performance of PLL.

The locations of the parasitic agents were estimated from
the passing times of the host users and the locations of the
host users acquired every 5 unit times by default. Location
acquisition frequency (p4) is one of parameter in the simula-
tion. Note that the locations of the host agents were recorded
every 5 unit times in the field experiment described above,
then one unit time was 60 seconds in the field experiment.

3) Experimental Conditions: Table III shows the parame-
ters of the simulation. We evaluated the PLL performance by
changing four parameters: number of host users (p1), number
of parasitic users (p2), straight ratio of each agent (p3), and
location acquisition frequency (p4). In each simulation, one
parameter was changed and the other parameters were kept
at their default values. In all tests, the velocity of each user
was 1 grid per unit time. In order to reduce the effect of
random decisions, we repeated the simulation 100 times under
the same conditions.

4) Simulation Results: First, we evaluated the number of
passes in the simulation for each combination of parameters.
The orange line in Figure 8 indicates the total number of
passes in each simulation. If there were few passes, we cannot
estimate the locations of parasitic users completely. Thus, the

TABLE III: Selected parameter set in simulation

ID parameter changing value
(bold : default)

p1 number of host users [10, 50, 100, 200, 400]
p2 number of parasitic users [5, 10, 15, 20, 30]
p3 straight ratio of each user (%) [80, 85, 90, 95, 100]

p4 location acquisition interval
(every n unit times) [1, 3, 5, 7, 9]

frequency of passes is useful for determining the total benefit
of PLL. Figure 8 specifies a natural but essential result that
the number of passes is almost in proportion to the population
density of the area adopted in simulation. As more parasitic
and more host users are simulated with a lower straight ratio,
the number of passes increases.

The green line in Figure 8 indicates the detected number
of passes. The PLL calculation method cannot estimate all
passes. For instance, discovering a candidate user for a passing
point in PLL becomes difficult if the interval between two
passings is long or the user moves in a complicated manner.
The difference between the orange and green lines denotes
the number of failed estimations. From this simulation result,
estimations often failed when the agents’ straight ratio was
small. The results also revealed that the proposed calculation
method is sensitive to the agents’ straight ratio, but robust to
other conditions. The result that the estimation is more difficult
when users frequently turn around their route is intuitive.

We examined the distance error between the estimated
passing location and the ground truth. The average error
in each figure (the red bold line in Figure 8) depicts the
total distance error divided by the total number of estimated
passings in the simulation. From this simulation, the most
important finding is that the error average is constant, and the
average value itself is at most 3.0, which means that the error
has little effect, regardless of the conditions in the simulation.
Moreover, the average error decrease when the number of host
users increases. This result shows that the more number of host
users can improve PLL system efficiency.

Next, we evaluated the advantage of PLL compared to
Bluewave (i.e., opportunistic data sharing which host users
give their recent updated location to parasitic users without
PLL calculation). In Figure 8, the dotted red line is the average
error when users share locations by using the Bluewave
methodology. It clearly indicates that the average error of PLL
is less than that of Bluewave (about 30% of average error in
default value conditions). Interestingly, as the number of host
users and the GPS acquisition interval of host users increase,
the difference between the PLL error and the Bluewave error
becomes larger. PLL can be a more effective solution when
the number of host users and the GPS acquisition interval
large. For instance, PLL reduces the average error by about
half when the host user acquires their location at 10 unit times
interval. As described in the Introduction and Table IV, PLL
shares location data whereas Bluewave shares various user
contexts. The proposed algorithm for complementing missing
locations can be built on top of the Bluewave framework for
collecting location data.
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Fig. 8: Number of detected passes and average error. The left y-axis is the number of passes, and the right y-axis is the
average error. OS denotes Opportunistic Sharing and “ave error (OS)” shows the average error when host users give their
recent updated location to parasitic users without PLL calculation.

IV. DISCUSSION

A. Comparison with Existing Opportunistic Sharing methods

The biggest advantage of PLL compared with existing
opportunistic sensed data sharing methods such as CoMon is
that it does not use much battery power of the host users.
In the laboratory experiments, the battery consumption of the
host users is strongly affected by the GPS sensing frequency,
and the existing methods increase the number of GPS scans as
the number of passes increases. On the other hand, the battery
consumption of the host users is almost unaffected by the PLL
scheme because the number of GPS scans made by them does
not increase even when the number of passes increases.

B. Service Design for Keeping PLL Fair

By using PLL, users can store their location histories
without worrying about their battery consumption. This means
that everyone would want to be a parasitic user. However, were
all users to become parasitic, no data would be accumulated
for the data completion process. In order to control the number
of such ”free riders”, we need to design the PLL service
carefully. PLL should work only when the battery of a parasitic
user is low, whereas users with charged batteries should be
encouraged to act as host users who contribute their location
data in a collaborative manner.

The authors suppose that the following constraints will work
for fair PLL service: 1) Users can be parasitic only when their
remaining battery energy is less than a threshold. 2) Users
have to act as host users in order to get the privilege to be a
parasitic user. In this case, the parasitic role can be incentive
for playing the host role.

Additionally, PLL is also valid in situations where the user
cannot receive GPS signals. Users cannot receive GPS signal
when the GPS signal receiver is out of order or when the GPS
signal or Internet connection is bad.

C. Other limitations

Issues remain to be overcome before PLL can be considered
practical. We should solve estimation inaccuracy arising from
actual environment like different walking speeds of users, error
of GPS sensor, and so on. Moreover, little number of host users
cases can be also issue.

V. RELATED WORK

A. Motivation for Continuously Location Logging

Many researchers have studied how location information can
be utilized. For instance, it can be used for making location-
information histories in a life-logging service [7], [8], for
modeling the behavior of individual users and for analyzing
urban dynamics [9]–[16]. Though the frequency of collecting
information also varies with the purpose as does the motivation



for acquiring it in the first place, be it individual, corporate, or
governmental, continuous logging (with no missed locations)
is important for improving the performance in each case.

In particular, position information collected by smartphones
has been used to analyze check-in histories in Foursquare [14],
and position information such as geo tags attached to tweets
has been used to analyze the behaviors of Twitter users [17].
However, in these cases, location information is not collected
unless the user is checking in or posting a tweet. Such data
are too sparse to use for keeping track of a user’s lifestyle.

As far as the authors know, there is no research on using
position information acquired from user smartphones continu-
ously without any sensor data such as GPS or BLE. In contrast,
PLL collects location information even for users with low
batteries; it can acquire location information continuously and
universally without consuming much power (GPS and BLE
active scanning can be completely turned off).

B. Constructing Dense Datasets by Collaborating with Others

Sharing data with other users enables dense datasets to be
obtained. In particular, there has been a lot of research on data
sharing including crowd sensing and peer-to-peer data sharing.

In crowd sensing systems, many unspecified users upload
sparse sensor data. As a result, large-scale dense datasets
can be collected on, for example, traffic conditions, ambient
noise, pollution, and local contexts [18]–[20]. Techu [21]
and SecureFind [22] are crowdsourcing systems for finding
lost objects. These systems are not intended for logging the
locations of objects.

Sensor data collected via crowd sensing are often affected
by sparse or missing values [23], [24]. Kurasawa et al. [23]
proposed to estimate a missing value in sensed data of crowd
sensing by using correlations among multiple types of sensor
data. This idea forces the user to always carry multiple sensors.

There have been many studies on peer-to-peer data shar-
ing by nearby users through opportunistic communication
networks [4], [5], [25]–[28]. CoMon [25] is a platform to
cooperatively monitor ambient data by sharing it with nearby
users. CoMon limits sharing to devices that are within direct
communication range of each other and targets cooperation
with long stayers only. CHICHAT [4] was proposed to reduce
the size of context representations designed to exchange data
via device-to-device direct communication. Encore [27] is
a context-based private communication platform. It detects
nearby users within Bluetooth radio range and enables par-
ticipants at events to communicate and share information.

The methods used in the above studies depend on direct data
exchange with nearby users via an opportunistic communica-
tion network. They are not suited to keeping track of daily
activities, because they require time and effort to establish
communication networks and exchange data on-the-fly.

Bluewave [6] is a Bluetooth-based technique that allows
devices to opportunistically share contexts when they are
nearby. Users can share context information including loca-
tion information without directly communicating with nearby
devices as in PLL. However, Bluewave lacks a mechanism for

TABLE IV: Comparison of PLL and other techniques

Direct? Scope Shared data
Ordinary ODS(†) YES Contexts data Raw

Bluewave [6] NO Contexts data Raw
PLL NO location only Estimated

†Opportunistic sharing (e.g., CHICHAT [4], CoMon [25], Encore [27])

estimating or complementing context information and instead
simply shares the raw information from the sensors. Thus,
unless a host user who happens to be nearby has sensed
and advertised the location information of the current place,
parasitic users cannot obtain accurate location information
especially while both users are walking.

Teraoka et al. [29] proposed symbiosis location logging
(SLL), a method that is close in concept to PLL. SLL aims to
enrich the location logs of users, by their sharing location data
with each other. Different from opportunistic sensing methods,
SLL does not exchange data, but rather estimates locations
with location history data acquired at the usual frequency and
with information from passersby. However, SLL requires the
parasitic user’s location, as well as the host users’ location and
host users’ direction.

Table IV compares the various opportunistic data sharing
techniques with the PLL technique. In PLL, the user devices
do not have to be directly connected in order to share location
data. The host user provides raw sensed location data to
the server, but the parasitic user can get estimated accurate
location data even if the host user did not sense the location
data just when they passed by each other.

VI. CONCLUSION

Parasitic Location Logging (PLL), which is an innovative
approach that continually collects users’ location data with
little battery consumption even after their location acquisition
function has stopped, is proposed. With PLL, a parasitic user
can acquire their position information by analyzing only the
locations of host users who pass by the parasitic user; thus, the
parasitic user does not have to turn on their GPS, WiFi, or BLE
active scanning. To realize this functionality, we formulate
a simple recovering method of parasitic user locations as
range based quadratic optimization using passing information
of parasitic and host users.

Our experiments showed that PLL dramatically decreased
the battery consumption (by about 40%) of parasitic users.
Moreover, we found that the battery consumption of a host
user was almost equal to that of an ordinary user in our
PLL experiments. Our agent simulation revealed that the
proposed algorithm can estimate the passing location accu-
rately, especially when large number of host users with less
frequent of GPS acquisition are employed, a realistic scenario
of widespread IT services. Thus, PLL is introduced as a
complementary methodology to existing opportunistic location
data sharing scheme. Some issues and limitations that impact
practical applications of PLL were discussed for future work.
We believe that PLL will become a prominent method for
complementing the location logs of smartphones when they
run low on battery power.
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