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Abstract—The analysis of crowd flow in urban regions (urban
dynamics) from GPS traces has been actively explored over the
last decade. However, the existing prediction models assume that
the population density in the analysis area is almost uniform,
making it difficult to analyze fine-grained urban dynamics on a
nationwide scale, where urban and rural areas coexist. In this
paper, we propose a predictive model, called mixed-order Poisson

regression (MOIRE), to capture changes in active populations
nationwide by combining lower-order patterns and higher-order
interaction effects. The proposed method utilizes multiple pieces
of contextual information that greatly affect crowd flows (e.g.,
time-of-day, day-of-the-week, weather situation, holiday calendar
information). We evaluated MOIRE on two massive GPS datasets
gathered in urban regions at different scales. The results show
that it has better predictive performance than the state-of-the-
art method. Moreover, we implemented an anomaly detection
system in urban dynamics for the whole nation of Japan in
accordance with MOIRE specifications. This application enabled
us to confirm MOIRE’s performance intuitively.

Index Terms—Spatio-temporal prediction; Urban computing;
Anomaly detection; Application and systems;

I. INTRODUCTION

1 Forecasting population density changes in urban regions,
that is, urban dynamics, is playing an increasingly important
role in urban planning [1], emergency management [2], public
services [3], and commercial activities. In the past, urban
dynamics studies relied on collecting data from questionnaire-
based surveys [4]. However, such surveys usually require
laborious efforts. At the same time, the rapid popularization
of smart devices has led to the accumulation of a large
amount of GPS data, and many recent studies on urban
dynamics analysis have utilized mobility logs containing GPS
information, instead of conducting expensive surveys.

1K. Tsubouchi equally contributed as M. Shimosaka.

Data obtained from GPS logs have unique spatio-temporal
properties [5], and approaches based on tensor factorization
have been used in many studies to extract urban dynamics
patterns from them [6] [7] [8]. Moreover, another promi-
nent means of analyzing human activity patterns is mixture
modeling, which has high explanatory power with non-linear
distributions [9] [10] [11]. However, approaches based on mix-
ture modeling and factorization are not capable of providing
accurate urban dynamics predictions; this problem is similar
to the well-known cold-start problem in recommendation
systems [10]. In contrast to previous work based on pattern
extraction, the great majority of studies on urban dynamics
have integrated contextual information into regression models
and reported accurate prediction results [12] [13] [14].

However, as yet, there are no urban dynamics pattern
prediction systems that use regression models at a nationwide
level, because the existing methods cannot deal with large
differences in population between grid cells. For instance, the
population in a 1-km-square grid cell in New York City is
rather different from the population in a 1-km-square grid cell
in San Diego. In fact, there is always a trade-off between
simple and complex model representations; that is, while a
simple model representation might perform stably in both
urban and rural areas, it is usually not capable of represent-
ing complicated patterns in metropolitan areas; and while a
complex model might have higher explanatory power with a
large population, it might become unstable in low-population
areas. Similar trade-offs can be found in various fields of
machine learning [15] [16], and no single method has enough
flexibility and stability at the same time in urban dynamics.
This trade-off issue has hitherto prevented us from developing
urban dynamics prediction systems that can function at the
nationwide level.



This trade-off issue is also critical when we consider the
construction of event or anomaly detection systems using the
predictions of urban dynamics, for example where crowd-level
congestion or disaster is to be detected. Richer representation
of explanatory variables tends to be suitable for providing
precise predictions of everyday situations in areas with large
populations; however, it also risks leading to overreaction to
anomaly in some special situations, due to the zero-frequency
problem. For example, we may consider whether both condi-
tion and day-of-the-week information together would improve
prediction performance for regular situations, such as sunny
weather conditions for holidays in amusement areas, while the
combination of snowy and day-of-the-week information may
lead to over-fitting in regions where it does not snow and that
information is not applicable.

To address this issue, this paper proposes Mixed-Order
Poisson Regression (MOIRE) aiming for flexibility and sta-
bility over a wider range of regions. Basically, simple models
with lower-order terms (e.g., linear Poisson regression) are
unable to capture higher-order coupling effects, and although
models with complex higher-order terms (e.g., multilinear
Poisson regression) have greater flexibility, they may severely
worsen the zero-frequency problem and not obtain stable
results. The basic idea of MOIRE is to combine lower-order
patterns and higher-order interaction effects simultaneously.
We rigorously evaluated the performance of MOIRE on large
grid cells with high populations and on finer-grained grid cells
with fewer people in them. Finally, we implemented MOIRE in
a country-wide anomaly detection system that yielded intuitive
predictions across the nation of Japan.

Our contributions can be summarized as follows:

• Mixed-Order Poisson Regression Model. We propose
the mixed-order Poisson regression (MOIRE) model for
urban dynamics prediction. Moreover, we design a practi-
cal feature encoding approach to produce MOIRE models
with high predictive power for urban dynamics.

• Comprehensive experiments to validate the effective-
ness of the proposed method. We conducted experi-
ments on two massive datasets compiled from smartphone
mobility logs with GPS information, including crowd
flow data in large urban regions and in finer-grained grid
cells. The results showed that our method is capable
of providing better predictions than the state-of-the-art
method on both scales of urban region.

• Implementation of MOIRE in a national-scale ur-
ban anomaly detection system. We implemented an
anomaly detection system for Japan in accordance with
the MOIRE methodology, and found that the system can
extract accurate patterns regardless of the size of the
population in each grid cell. We conducted two case
studies and found that the system provided intuitive
anomaly detection when MOIRE was used to extract
urban dynamics patterns.

II. RELATED WORK

This section highlights the relevant work for our project in
terms of accurate modeling of urban dynamics and large-scale
event detection using GPS traces.

Accurate Urban Dynamics Prediction: Due to the prop-
erties of the spatio-temporal data, methods based on tensor
factorization have gained remarkable attentions recently. Fan
et al. modeled people flow with a three-dimensional tensor
and decomposed it into basic life-pattern tensors by non-
negative tensor factorization [7]. Zheng et al. modeled the
noisy situation of NYC with a three-dimensional tensor and
recovered the noisy situation through a context-aware tensor-
decomposition approach [17]. However, it is not trivial to
apply this model for event detection. Mixture modeling is also
employed to capture basic spatio-temporal population patterns
[11] [18]; however, these methods have a well-known cold-
start problem [10] in the recommendation system, and the
estimation may be unstable depending on the combination of
included features . In contrast to the generative modeling of
urban dynamics, recent advances in urban dynamics prediction
that include convolutional neural networks [19] provide highly
accurate prediction results. This approach is inspired by the
success of neural-based computer vision, and assumes that the
layout of the target grid cells is like an image. However, this is
not always true when we consider urban dynamics prediction
at the nationwide level, because the population density per
cell is highly diverse at that level. Though some work based
on generalized regression discusses the importance of higher-
order interaction among the explanatory variables [14], no
work discusses the importance of mixed order of interaction
to achieve both stability and flexibility.

Large-Scale Anomaly Detection System: Anomaly detection
/ event detection is expected to be one prominent application of
large-scale GPS traces. Typical social events to be detected in-
clude damaged/congested areas due to disasters, and congested
areas thanks to festivals or similar events. Recent advances in
the literature shows that the system is able to detect congested
railway stations [20]; however, it is not feasible to apply this
technique to find events other than railway events at a national
scale. Zhang et al. [19] showed accurate crowd flow prediction
and event detection results; however, it is not trivial to apply
this technique across any or all regions (as the target area is
not always laid out in a rectangle). Jing et al. also focused
on event detection [21]; however, their model is also inspired
by the convolution operation like images, and therefore is
not applicable to nationwide event detection. In contrast to
these models, our model is individually optimized by the
data obtained in the corresponding cell, and therefore, we
could ensure the scalability of the model towards nationwide
anomaly detection. The generalized regression approach [14]
could be scalable since their parameters in each cell are
optimized individually across cells. However, the performance
and stability of their model are not so good as those of our
model (see experimental results below).



III. PROBLEM-SETTING AND BASELINES

A. Problem-Setting as Poisson Regression

In this paper, daily changes in the active population within
a target urban region are modeled as urban dynamics. We
divide one day into several time segments and define the active
population in the target area of a certain time segment based
on the total number of access logs in that segment. It can
be assumed that the active population of each time segment
follows a Poisson distribution.

We denote the number of time segments in one day as S.
In the target urban region, hs represents the active population
of the s-th time segment, which is a non-negative integer.
Therefore, H = [h1, h2, . . . , hS ] can represent a one-day
active population transition. Following a prior study [14],
we assume that each hs follows a Poisson distribution, and
thus that the likelihood of hs can be written as p(hs) =

Pois(hs|�s) =
�hs
s e��s

hs!
, where �s is the mean parameter of the

Poisson distribution. Here, to predict the true active population hs,
our task turns into one of estimating the mean parameter �s.

B. SOIRE: Single-Order Poisson Regression Models (Base-

line)

As shown in Section II, many Poisson regression models have
been researched in attempts to capture urban dynamics patterns.
Unlike MOIRE, all of the previous methods calculate only single-
order models; that is, there are many varieties of single-order Poisson
regression models (SOIRE). Here, we treat them individually as
baselines.

1) Time-Only Poisson Regression Model:

We have observed that the active population is greatly affected by the
time-of-day, so we can assume the mean parameter � is regressed by
a time factor with weight parameters as follows:

�(t) = exp(tTW ) (1)

where W is a weight-parameter vector and t is an S-dimensional
vector of which the s-th component corresponds to the s-th time
segment.

This time feature vector t can be formulated as an indicator
function of a normal distribution:

t = {ts|ts = N (s|⌧,�), s = 1, . . . , S}, (2)

where N (⌧,�) is a normal distribution with mean parameter ⌧ ,
corresponding to the target time segment.

However, this time-only Poisson regression model does not utilize
external information such as weather situation or calendar informa-
tion, and thus it cannot capture the effect of external factors on the
active population. Figure 1(a) illustrates the prediction of a time-only
Poisson regression model compared with the ground truth during a
weekday and a weekend in Shinjuku, Tokyo. It shows that time-only
Poisson regression provides the same prediction regardless of the
significant differences in population dynamics between the weekday
and weekend.

2) Linear Poisson Regression Model:

Prior studies show that active population transition is closely related
to many external factors, such as day-of-the-week, weather situation,
and calendar [14] [22]. To model urban dynamics in a way that
incorporates these external factors, a naive approach is to simply
concatenate all the factors into features of the model:

�(t,d) = exp([tT,dT
1 ,d

T
2 , . . . ,d

T
N ]W ) (3)

where d = {d1,d2, . . . ,dN} are external factor vectors with one-hot
encoding.

However, such a model does not work properly, because it is
not capable of handling the interaction effect between factors. For
example, Figure 1(b) shows the predictions made by a linear Poisson
regression model of population changes during a weekday and during
a weekend in Shinjuku. We can see that although this prediction
model captures the decrease in the active population on the weekend,
it does not combine the effects of the time and day-of-the-week
factors: the predicted crowd flow also has two commute peaks for
the weekend.

3) Bilinear Poisson Regression Model:

In order to handle the coupling effect between the time factor and
external factors on active population, a bilinear Poisson regression
model is proposed [14]:

�(t,d) = exp([dT
1 ,d

T
2 , . . . ,d

T
N ]Wt). (4)

Here, the weight parameter W is in the matrix representation. This
model has already shown advantages for handling the interaction
effect between the time factor and external factors.

However, since all the external factors are simply concatenated in
this model, it cannot capture coupling effects among external factors
{d1,d2, . . . ,dN}.

4) Multilinear Poisson Regression Model:

The coupling effect among all crowd flow factors can be handled by
the following multilinear Poisson regression model:

�(t,d) = exp(Vec(t⌦ d1 ⌦ d2 ⌦ · · ·⌦ dN )TW ) (5)

where ⌦ is the Kronecker product operator, Vec(·) denotes a vector-
ization operation to expand the tensor-form feature into a vector, and
W is a weight-parameter vector. The idea of this model was proposed
in [22], which adopted a tensor form for the weight parameter.

On the one hand, the multilinear Poisson regression model hope-
fully captures the coupling effects between all factors, but on the
other hand, combining all the factors by the Kronecker product would
increase the feature dimension and greatly worsen the zero-frequency
problem. Figure 1(c) illustrates the prediction result for a rainy day
and a sunny day in Shinjuku. The performance of this model exhibits
a dramatic decline during the period from 10:00 to 21:00 on the
rainy day, which results from the worsened zero-frequency problem.
When we try to calculate the ratio between current observed crowd
flow and predicted crowd flow and then employ it as an anomaly
score for event detection, the precision of event detection tends to be
deteriorate due to this improper prediction.

IV. MOIRE: MIXED-ORDER POISSON REGRESSION
MODEL

A. Basic Idea of MOIRE

The discussion of single-order Poisson regression models in the
previous section has indicated that a trade-off exists between simple
and complex feature representations: simple models with lower-order
terms are unable to capture higher-order coupling effects; while
models with complex higher-order terms have greater flexibility, but
may significantly worsen the zero-frequency problem and not obtain
stable results.

The basic idea of the mixed-order Poisson regression (MOIRE) is
to represent the urban dynamics parameter using lower-order patterns
and higher-order coupling patterns simultaneously. MOIRE represents
the urban dynamics of grid cells with a fluent population by using
higher-order coupling terms so that it can represent the complicated
urban dynamics of metropolitan areas. At the same time, MOIRE
can represent grid cells with a small population by using only the
lower-order patterns, thereby avoiding the zero-frequency (or low-
frequency) problem.
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(a) Time-only Poisson regression model
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(b) Linear Poisson regression model
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(c) Multilinear Poisson regression model
Fig. 1. Prediction results of three single-order Poisson regression models

B. Generalized Representation of MOIRE

Analogous to multiple linear regression, all of the single-order
Poisson regression models discussed previously that have independent
variables {d0,d1,d2, . . . ,dN} that can be extended into an enriched
and generalized representation:

ln�(t,d) = W0 +
NX

i=0

dT
i W

(i)
1 +

NX

i=0

NX

j=i

Vec(di ⌦ dj)
TW (i,j)

2

+
NX

i=0

NX

j=i

NX

k=j

Vec(di ⌦ dj ⌦ dk)
TW (i,j,k)

3 + . . .

(6)

where W0 is a constant and W (i)
1 ,W (i,j)

2 ,W (i,j,k)
3 are weight-

parameter vectors. Specifically, W1 is composed of weight-parameter
vectors corresponding to the first-order terms, while the components
of W2 are weight-parameter vectors of the second-order terms, and
so forth.

Therefore, this generalized model can include an infinite number of
terms consisting of independent variables with different orders. Ac-
tually, each of the single-order Poisson regression models discussed
above can be regarded as a special case of this generalized model
with a certain combination of terms having the same order.

In practice, we do not use all the terms in the generalized model
due to concern over computational cost. We explore a great variety
of combinations of different-order terms for feature encoding, from
which new predictive models are obtained, here called mixed-order
Poisson regression (MOIRE) models.

Theoretically, the advantage of our model is that it captures
the higher-order coupling effect for higher explanatory power and
compensates for zero-frequency situations by utilizing lower-order
patterns, thereby achieving flexibility and stability at the same time.

C. Mixing Up Multiple Orders for MOIRE

As mentioned above, the features for MOIRE can be produced
using various polynomial combinations of factors (including the time
factor and external factors). In practice, we first determine several
fundamental models and then create combinations and derivatives
based on them.

The fundamental models used in the experiments included the
four single-order Poisson regression models mentioned above and
one external-only Poisson regression model:

1) Time-only: Time-only Poisson regression model, defined by
Eq. (1)

2) Linear: Linear Poisson regression model, defined by Eq. (3)
3) Bilinear: Bilinear Poisson regression model, defined by Eq.

(4)
4) Multilinear: Multilinear Poisson regression model, defined by

Eq. (5)
5) External-only: The external-only Poisson regression model

includes only external factors simply concatenated into a
feature, which implies that it does not consider a time factor.

Although this model alone may not make satisfactory pre-
dictions, it can be used as a benchmark for comparison as
well as a fundamental model for combination. It is defined as
�(d) = exp([d1,d2, . . . ,dN ]TW ).

A variety of new MOIRE models can be obtained as derivatives
based on the fundamental models above by employing some of the
following operations:

• Simple Combination: Simply combine features from some of
the fundamental models to make a feature of the new predictive
model. For example, a Linear and Bilinear model combination,
denoted as Linear+Bilinear, can be written as ln�(t,d) =
[tT,dT

1 , . . . ,d
T
N ,VecT([dT

1 , . . . ,d
T
N ]⌦ t)]W .

• Adding a Constant Feature: Add a constant feature to the
model. For example, a Linear+Bilinear model with a constant
feature, denoted as Linear+Bilinear+C, can be written as
ln�(t,d) = [1, tT,dT

1 , . . . ,d
T
N ,VecT([dT

1 , . . . ,d
T
N ] ⌦ t)]W .

In fact, a model with only one constant feature degenerates to
the simple Poisson regression model. Therefore, we expect that
a constant feature will be helpful to capture the basic rate of
population change.

• Low-Rank Decomposition: The weight-parameter vectors of
all five fundamental models can be rewritten in matrix form.
Assuming that the rank of the weight-parameter matrix is prone
to decrease, we adopt a low-rank decomposition to achieve a
rank reduction. (Note that since the intention of this operation
is to reduce the rank and make parameter learning more stable,
we did not conduct this decomposition on models with a quasi-
diagonal weight matrix.)
For example, a Linear+Bilinear+C model with a low-rank
decomposition can be written as follows:

ln�(t,d) = [1, tT,dT
1 , . . . ,d

T
N ,VecT([dT

1 , . . . ,d
T
N ]⌦ t)]W

= [1,dT
1 , . . . ,d

T
N ]W [1, tT]T.

(7)

For the low-rank decomposition, the weight matrix W 2
R(M+1)⇥(S+1) shown above can be assumed to be a product of
two low-rank matrices, U 2 R(M+1)⇥K and V 2 R(S+1)⇥K .
Note that K, M and S satisfy K ⌧ M and K ⌧ S. The
above equation becomes

ln�(t,d) = [1,dT
1 , . . . ,d

T
N ]W [1, tT]T

= [1,dT
1 , . . . ,d

T
N ]UV T[1, tT]T.

(8)

This shrinkage does not only makes the model more stable in
learning the parameters; it also makes the result more inter-
pretable, which is helpful for understanding the characteristics
of urban dynamics.
The model is optimized by maximizing the log likelihood
against training data. Given L days of training data over L cells



for S time segments, the log likelihood of the data is written as

lnL(U ,V ) =
X

l

X

s

ln Pois(h(l,s)|�(t,d))

/
X

l

X

s

{h(l,s)d(l,s)UV T[1, t(l,s)T]T

� exp(d(l,s)UV T[1, t(l,s)T]T)}.

(9)

V. EXPERIMENTS
We conducted experiments on two massive datasets to demonstrate

that the proposed method achieves both stability in coarse-grained
grid cells and expressiveness in finer-grained ones. The datasets were
collected from smartphone mobility logs containing GPS information;
one dataset contains crowd flow data in 300 large urban areas (square
regions 900 m in length), while the other contains data in finer-
grained mesh regions 200 m in length.

A. Experiment on Large Urban Areas

1) Dataset: The dataset for this experiment was gathered from
the mobility logs provided by a disaster alert mobile application 2.
A mobility log was used to record data only when the mobile device
was moving, to make it suitable for analysis of the active population.

Three-hundred urban areas were selected as target regions. The size
of each target area was 900 m ⇥ 900 m, and as the active population,
the number of access logs was counted within each target region and
each time segment of 365 days (from July 1, 2013 to June 30, 2014).
The time interval was set to 30 minutes.

2) Evaluated Models: We evaluated 28 predictive models,
including the single-order Poisson regression models and MOIRE
models produced by our method. The models are listed in Table I.

TABLE I
EVALUATED MODELS

Models Formulation of �
Time-only: ln�1(t) = tTW1

Linear: ln�2(d, t) = [dT
1 ,d

T
2 ,d

T
3 , t

T]W2

Bilinear: ln�3(d, t) = V ecT([dT
1 ,d

T
2 ,d

T
3 ]⌦ t)W3

Multilinear: ln�4(d, t) = V ecT(d1 ⌦ d2 ⌦ d3 ⌦ t)W4

External-only: ln�5(d) = [dT
1 ,d

T
2 ,d

T
3 ]W5

Linear+Bilinear: ln�6(d, t) = ln�2(d, t) + ln�3(d, t)
Linear+Multilinear: ln�7(d, t) = ln�2(d, t) + ln�4(d, t)
Bilinear+Multilinear: ln�8(d, t) = ln�3(d, t) + ln�4(d, t)
Linear+Bilinear+Multilinear: ln�9(d, t) = ln�2(d, t) + ln�3(d, t) + ln�4(d, t)
Time-only+C: ln�10(t) = [1, tT]W10

Linear+C: ln�11(d, t) = [1,dT
1 ,d

T
2 ,d

T
3 , t

T]W11

Bilinear+C: ln�12(d, t) = [1, V ecT([dT
1 ,d

T
2 ,d

T
3 ]⌦ t)]W12

Multilinear+C: ln�13(d, t) = [1, V ecT(d1 ⌦ d2 ⌦ d3 ⌦ t)]W13

External-only+C: ln�14(d) = [1,dT
1 ,d

T
2 ,d

T
3 ]W14

Linear+Bilinear+C: ln�15(d, t) = ln�2(d, t) + ln�12(d, t)
Linear+Multilinear+C: ln�16(d, t) = ln�2(d, t) + ln�13(d, t)
Bilinear+Multilinear+C: ln�17(d, t) = ln�3(d, t) + ln�13(d, t)
Linear+Bilinear+Multilinear+C: ln�18(d, t) = ln�2(d, t) + ln�3(d, t) + ln�13(d, t)
Bilinear+Time-only: ln�19(d, t) = ln�3(d, t) + ln�1(t)
Bilinear+Time-only+C: ln�20(d, t) = ln�3(d, t) + ln�10(t)
Bilinear+External-only: ln�21(d, t) = ln�3(d, t) + ln�5(d)
Bilinear+External-only+C: ln�22(d, t) = ln�3(d, t) + ln�14(d)
Bilinear (LR): ln�23(d, t) = [dT

1 ,d
T
2 ,d

T
3 ]U23V23t

Multilinear (LR): ln�24(d, t) = V ecT(d1 ⌦ d2 ⌦ d3)U24V24t
Bilinear+Multilinear (LR): ln�25(d, t) = [dT

1 ,d
T
2 ,d

T
3 , V ecT(d1 ⌦ d2 ⌦ d3)]U25V25t

Bilinear+Time-only (LR): ln�26(d, t) = [1,dT
1 ,d

T
2 ,d

T
3 ]U26V26t

Bilinear+External-only (LR): ln�27(d, t) = [dT
1 ,d

T
2 ,d

T
3 ]U27V27[1, t]

Bilinear+Linear+C (LR): ln�28(d, t) = [1,dT
1 ,d

T
2 ,d

T
3 ]U28V28[1, t]

Feature design: The formulation for the time factor was intro-
duced in Eq. (2). We used day-of-the-week, is-holiday-or-not, and
weather information as external factors. Day-of-the-week was a 7-
dimensional vector d1 with one-hot encoding; is-holiday-or-not was
a 2-dimensional vector d2; and weather data were collected from the
Japan Meteorological Agency’s website3. The weather was divided
into four categories: {sunny (1), cloudy (2), rainy (3), or severe (4)}.
Therefore, the weather factor was a 4-dimensional vector d3 with
one-hot encoding.

2A reference to the dataset is not included in the reference list due to the
double blind review policy. It will be made public if this paper is accepted.

3http://www.data.jma.go.jp/obd/stats/etrn

3) Performance Measurement: Mean absolute error (MAE)
rankings were used for performance measurement. Given the ground
truth data h(l,s) and prediction value ĥ(l,s) in l-th location, s-th time

segment in the test dataset, MAE: =
1
LS

LX

l=1

SX

s=1

|h(l,s) � ĥ(l,s)|,

and Rank: A five-fold cross validation (CV) was conducted for each
model in each target region. All the models were ranked by the
average value of MAE overall CVs in each target region.

4) Results:

Table II lists the predictive performance and Figure 2 shows the
distribution of rankings for each model. Note that in Table II,
MAE Mean is the average MAE value across all 300 target regions,
and rank Mean is the average rank. The first column shows the
five fundamental models and MOIRE models after combination. In
the second column: “Plain” means the plain model shown in the
first column, “+C” means the plain model combined with a constant
feature, “LR” means the model conducting low-rank decomposition,
“+C & LR” means the plain model with a constant feature and
conducting low-rank decomposition. We can conclude from the
results that

• the three proposed low-rank decomposition MOIRE models:
Linear+Bilinear+C (LR), Bilinear+Time-only (LR) and Bi-
linear+External-only (LR) all outperformed Bilinear (LR)
proposed by [14];

• the MOIRE model Linear+Bilinear+C (LR) ranked first in
82% (246 out of 300) of the regions, while Bilinear (LR) ranked
4th in 240 out of 300 regions (Figure 2);

• adding a constant term in the feature encoding helped to
improve the prediction performance of most of the models in
this experiment, probably because models including a constant
term can capture the basic, constant behavior of population
changes and thus make more accurate predictions;

• those models using low-rank decomposition outperformed the
plain model.

TABLE II
PREDICTIVE PERFORMANCE OF ALL 28 MODELS

Models MAE Mean Rank Mean

Time-only Plain 166.29 21.9
+ C 167.25 23.3

Linear Plain 134.95 21.7
+ C 134.71 20.8

Bilinear
Plain 118.37 15.8
+ C 116.95 10.4
LR 115.60 4.2

Multilinear
Plain 250.18 25.8
+ C 156.65 24.4
LR 130.87 21.4

External-only Plain 331.78 27.9
+ C 331.58 27.0

Linear+Bilinear
Plain 116.30 7.9
+ C 116.07 6.5
+ C & LR 115.07 1.3

Linear+Multilinear Plain 119.87 17.4
+ C 119.61 16.5

Bilinear+Multilinear
Plain 122.52 19.1
+ C 118.17 14.9
LR 117.64 13.6

Linear+Bilinear+Multilinear Plain 117.26 11.7
+ C 116.97 9.9

Bilinear+Time-only
Plain 116.16 7.5
+ C 115.80 5.1
LR 115.16 2.0

Bilinear+External-only
Plain 117.41 13.0
+ C 117.21 11.7
LR 115.46 3.2

B. Experiment on Fine-Grained Mesh Regions

1) Dataset: We carefully chose a large urban region and divided
it into grid cells as targets to be analyzed. The whole area covered
3 km ⇥ 3 km in the center of Tokyo. The size of each grid cell was
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Fig. 2. Distribution of ranking of each model

200 m ⇥ 200 m, so there were 225 grid cells in this experiment.
Similar to the previous experiment, we used data collected over 365
days and divided one day into 48 time intervals.

2) Performance Measurement: Given the ground truth data
h[l,s] and prediction value ĥ[l,s], we employ

MNLL = � 1
LS

LX

l=1

SX

s=1

ln p(h(l,s)|ĥ(l,s)),

as well as MAE used in the previous experiment.
3) Evaluated Models: Since the low-rank decomposition mod-

els showed advantages in the previous experiment, we evaluated
four of them with regularization using the Frobenius norm in this
experiment. The baseline model was the low-rank decomposition
bilinear model proposed in a prior study [14]. We also evaluated
three low-rank decomposition MOIRE models. The formulations of
� for these models are listed in Table III.

TABLE III
EVALUATED MODELS

Model Formulation of �
Bilinear (LR) ln�(d, t) = [dT

1 ,d
T
2 ,d

T
3 ]UV t

Bilinear+Time-only (LR) ln�(d, t) = [1,dT
1 ,d

T
2 ,d

T
3 ]UV t

Bilinear+External-only (LR) ln�(d, t) = [dT
1 ,d

T
2 ,d

T
3 ]UV [1, t]

Bilinear+Linear+C (LR) ln�(d, t) = [1,dT
1 ,d

T
2 ,d

T
3 ]UV [1, t]

4) Results: Table IV shows the mean and median of MAE and
MNLL of the evaluated models.4 Figure 3 is the box plot for MNLL.
We can learn from these results that

• our method provides up to a 5.43% reduction in MAE and
12.58% reduction in MNLL relative to the baseline model
Bilinear (LR) proposed by [14];

• as shown in the box plots, the proposed model Bilinear+Time-
Only (LR) has not only a smaller mean and median MNLL,
but also a much smaller variance, compared with the baseline
model.

TABLE IV
PERFORMANCE OF FOUR LOW-RANK DECOMPOSITION MODELS

Model MAE MAE MNLL MNLL
Mean Median Mean Median

Bilinear (LR) (Baseline) 4.121 2.349 3.791 2.722
Bilinear+External-only (LR) 4.232 2.458 3.528 2.640
Bilinear+Time-only (LR) 3.897 2.247 3.327 2.474
Bilinear+Linear+C (LR) 4.104 2.406 3.314 2.541

4The significance of the differences among the MNLL & MAE medians
was validated with a Mann–Whitney U test.
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Fig. 3. MNLL of four low-rank decomposition models
VI. NATIONWIDE ANOMALY DETECTION SYSTEM

Urban dynamics prediction can be used for anomaly detection.
Previous research has attempted to visualize the degree of an anomaly
[14], but as yet there is no system for visualizing the degree of huge
anomalies, such as a large-scale disaster, at the national level. In
this section, we present an innovative large-scale anomaly detection
system in terms of urban dynamics and exemplify the visualization
results for anomalies in the case of nationwide disasters in Japan.

A. Dataset

We used crowd flow data collected from individual location data
sent from a smartphone installed with an app and agreeing to GPS
transmission. The dataset was composed from GPS data acquired all
over Japan and canceled personal information. The degree of anomaly
was calculated for each grid cell measuring 500 m x 500 m. In the
system, we selected 82,842 cells among all the cells in Japan island
as targets of anomaly detection, where there are at least 3 million
GPS records for 90 days recording. In other words, we eliminate
areas where quite small number of GPS data. In the training phase,
the GPS data obtained for 90 days before the target date of anomaly
detection is used.

B. Model Used for Visualization

In constructing an anomaly state detection system, it is important
to accurately predict the steady state, or else the deviation from
the steady state cannot be obtained accurately. We selected Bilin-
ear+Linear+C (LR) for this experiment, on the basis of the results
of previous experiments. This model is one of the MOIRE models.
We used day-of-the-week and is-holiday-or-not as features of this
model. Each day was divided into 48 intervals.

C. Metric for Anomaly Measurement

The degree of the anomaly I(l,s) is defined as I(l,s) =
h(l,s)�ĥ(l,s)

ĥ(l,s) , and this score is used for anomaly visualization. Here,
h(l,s) indicates the observed value at each interval. Whereas ĥ(l,s)

denotes the predicted one. The score increases when the area is
congested, and it approaches -1 as the observed one becomes smaller
than the prediction. Note that we remove the anomaly calculation
when ĥ(l,s) approaches 0 due to instability.
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Fig. 4. Large anomaly detection system

D. Architecture of Anomaly Detection System

Figure 4 shows the overall system diagram. This system is roughly
divided into conduct two functions. The first is a steady-state esti-
mation using count data. Since this calculation can be performed
independently for each grid cell, it is performed using simultaneous
multi-expansion by a Spark application running on a Hadoop cluster.
The second function is to calculate the anomaly score using the
estimated value and the actual measurement for the day on which
the user wants to calculate the anomaly degree, and plot it on a map
of each grid cell and each interval.

E. Visualization Examples of Anomaly

This section exemplifies the visualization results on the degree
of anomaly via the system in order to verify the effectiveness of
MOIRE. As an intuitive confirmation of the effectiveness of the
anomaly visualization, we consider two cases of ultra-large disasters
(typhoons) in Japan, in September and October 2019 respectively.

1) Visualization of Anomalies after Typhoon Strikes in

Tokyo: A very large typhoon, ”Faxai,” born on September 5 at
distance 1,800 km south of Japan, was landing in Tokyo region in
early morning of September 9, 2019. Due to the strong rain and
wind caused by Faxai, all transportation systems in the region were
stopped through morning commuter time, then gradually recovered
by noon that day. In Tokyo-region transportation systems, very high
congestion was observed around late morning, because the crowd
had to stay at home until the recovery of transportation systems,
then immediately go out to their workplaces after that recovery.

In Figure 5, a timeline of the anomalies on the day after the
typhoon struck, and the anomalies on another (usual) day (the bottom
right) are illustrated. In this figure, the blue part indicates an anomaly
cell where fewer people stay than usual, while the red part indicates
more people than usual. The white part indicates a regular cell,
where the number of the people stays is expected to match the
prediction results. In contrast, the dark gray areas are out of anomaly
detection, where average population is less than some threshold. If
we employ such areas for visualization, the result tends to be noisy
and interferes without understanding of crowd behavior through the
systems. Therefore, we eliminate such areas from the visualization
result.

The timeline shows a snapshot of anomalies in Tokyo at 30 minutes
intervals, indicating that 1) trains were stopped in a wide area (7:00
AM), and so anomaly few people stayed at railway stations 2) some
trains began operating, and so more people started to commute, that
is, anomaly congestion at railways in suburban regions was observed
(9:00 AM), 3) the congestion gradually shifted into the central part
of metropolitan Tokyo (11:00 AM), 4) the congestion was eliminated
and the operation of trains recovered to normal level (2:00 PM). This
sequence implies that our anomaly detection systems could capture
local transition of congestion as well as global trend of congestion
behavior in the Tokyo region. It should be noted that we found

anomaly areas with red parts in the east side of Tokyo region (Chiba
prefecture) and the south side (Kanagawa prefecture) even when
congestion in the central region of Tokyo disappeared. This may be
because people in this region stayed at home due to the out-of-service
railways and interruption of electric service. In contrast, for crowd
behavior on the day the typhoon struck, the rightmost part at the
bottom in Figure 5 shows the degree of the anomaly at 7:00 AM
on another day, where the crowd commuted regularly. This implies
that the proposed anomaly detection system is able to suppress false
positives.

2019/09/09 05:30 06:3006:00 07:00

2019/09/02 07:00 12:00

12:30

13:30

11:30

08:3007:30 08:00 09:00

10:3009:30 10:00 11:00

12:00 13:00

14:00

Fig. 5. Sequence of anomalies in transportation systems due to Typhoon
Faxai

2) Large-Area Anomaly Visualization: Next, we exemplify
the visualization result of the anomaly detection system for another
typhoon, ”Hagibis,” which struck Japan in October 2019. Hagibis,
born October 6, 2019, in the Mariana Islands, landed in Japan on
October 12. It was notorious as one of the largest typhoons ever to hit
Japan; as this implies, its effects were not merely local, but spanned
the national level, where 64 people in Japan were killed by Hagibis.
The case of this nationwide disaster is used for the verification of our
anomaly detection system. Throughout the visualization of anomalies
caused by this typhoon, we also illustrate the corresponding rainfall
map in Japan in order to ascertain the relationship between the
damage done by Hagibis and anomalies in terms of urban dynamics.

Figure 6 depicts the anomaly visualization at nationwide scale
when Hagibis struck Japan. The weather maps are provided by
JAXA5. The snapshots are taken from October 11 at 6:00 to October
14 at 0:00 per every 6 hours. At 12:00 and 18:00 on October 12 th, it
is obvious that there are wide areas of anomaly in the east of Japan
due to the strong rain and wind when Hagibis was landing Japan. This
sequence implies that the anomaly trend in terms of urban dynamics
is highly ascertained with the movement of the gigantic typhoon
Hagibis. It should be noted that our anomaly detection system is
able to capture anomalies on a finer-grained map in rural areas. The
bottom right figures show the anomalies in Nagano prefecture where
flooding occurred in this area 6. As this visualization result shows,
our anomaly detection system is able to help us understand anomalies
at both the nationwide scale and the fine-grained local scale.

5https://sharaku.eorc.jaxa.jp/GSMaP/index.htm
6https://www.sankei.com/affairs/news/191014/afr1910140011-n1.html
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Fig. 6. Anomaly scores and precipitation during Hagibis struck in national scale, and fine grained anomaly scores in flooded area

VII. CONCLUSION

We proposed the Mixed-Order Poisson Regression (MOIRE) model
for urban dynamics prediction. MOIRE enables us to combine higher-
and lower-order effects of contextual information on crowd flow.
Moreover, we also designed a practical approach to produce MOIRE
models with high predictive power. We evaluated our method in
experiments on two massive datasets composed from smartphone
mobility logs. In addition, we constructed a large-scale nationwide
anomaly detection system using highly accurate steady-state pre-
dictions of MOIRE. We found that the system captured not only
anomalies caused by traffic disruption but also the spatio-temporal
anomaly distribution along the path of the typhoon.
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