
CityOutlook: Early Crowd Dynamics Forecast towards Irregular
Events Detection with Synthetically Unbiased Regression

Soto Anno
Tokyo Institute of Technology

Tokyo, Japan
anno@miubiq.cs.titech.ac.jp

Kota Tsubouchi
Yahoo Japan Corporation

Tokyo, Japan
ktsubouc@yahoo-corp.jp

Masamichi Shimosaka
Tokyo Institute of Technology

Tokyo, Japan
simosaka@miubiq.cs.titech.ac.jp

ABSTRACT
Early crowd dynamics forecasting, such as one week in advance,
plays an important role in risk-aware decision-making in urban
regions such as congestion mitigation or crowd control for pub-
lic safety. Although previous approaches have addressed crowd
dynamics prediction, they have failed to deal with the scarcity of
anomalous events, which results in a large model bias and could
not quantify the number of visitors in anomalous crowd gathering.
To provide an elaborate early forecast, we focus on the successive
properties of importance weighting (IW) to penalize the anomalous
data in terms of model bias; however, leveraging the concept of
IW is challenging because dividing dataset into normal and ab-
normal sets is difficult. Motivated by these challenges, we propose
CityOutlook, a novel forecasting model based on unbiased regres-
sion with importance-based reweighting. To make IW applicable
to our approach, we design an anomaly-aware data annotation
scheme by utilizing the heterogeneous property of mobility data
to determine the data anomaly. We evaluate CityOutlook using
the datasets of large-scale mobility and transit search logs. The
experimental results show that CityOutlook outperforms the state-
of-the-art models on crowd anomaly forecast, providing the same
level accuracy in forecasting normal dynamics.
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1 INTRODUCTION
This study explores early forecast of crowd dynamics, i.e., one week
in advance, to detect regular and irregular events, and enable appro-
priate countermeasures for anomalous people movements. Crowd
dynamics, i.e., the crowd density changes over the time, consid-
erably increases during unusual events, which has a tremendous
threat to public safety (e.g., the New Year’s celebration at Shang-
hai in 2014). Forecasting crowd dynamics in the early stage is of
great value to congestion mitigation or crowd control in anoma-
lous people gatherings [11]; however, the task of forecasting crowd
dynamics becomes much more difficult when it comes to both
the normal dynamics (i.e., daily patterns of density changes) and
abnormal dynamics (i.e., changes under irregular events).

Owing to the recent affluence of data (e.g., GPS-based mobility
logs), analyzing and forecasting crowd dynamics in a city has been
intensively studied [9]. In terms of crowd anomaly forecast, simu-
lating the crowd flows using regressive models in an online learn-
ing manner is one of the prominent methods [5]; however, these
approaches cannot provide long-term predictions (e.g., one week
ahead) because the crowd flow starts to change only just before the
anomalies. In contrast, given the fact that people’s behavioral sched-
ules reflect future human mobility patterns, empowering the early
forecast with people’s schedule patterns using additional data (e.g.,
searching histories of train transit) has also been explored [2, 6].

However, as yet, there are no methods to forecast in advance
the number of people visiting unusually, because the existing meth-
ods suffer from the rarity of anomalous events, and consequently,
the problem of data imbalance. Since events that cause abnormal
congestion (e.g., fireworks displays, New Year’s celebrations) are
very infrequent, most of the data becomes normal and the num-
ber of anomalous records is limited. This results in a significant
estimator bias when we consider a regression model of anomalous
crowd dynamics; that is, while it well represents normal patterns of
dynamics, the model cannot fit to anomalous data. A similar prob-
lem has discussed in the literature of cost-sensitive learning [4].
However, determining the criteria that indicate the relevance of
anomalous data in learning the regression model is still challenging.

Although density ratio-based importance, which is commonly
used in covariate shift adaptation [7], reasonably elucidates the rel-
evance of anomalies, employing it for the crowd dynamics forecast
is non-trivial. Importance weighting (IW) involves reweighting the
loss function to be minimized (e.g., ordinary least squared loss) and
provides an unbiased estimate for the distribution of anomalous
data. In applying IW to the crowd dynamics forecast, we encounter
the difficulty: To build the importance, the set of schedule patterns
(as inputs of the regression model) should be divided into normal
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and abnormal sets. However, unlike the problem settings of covari-
ate shift adaptation and outlier detection, dividing the input set
is challenging because whether the schedule patterns are regular
or irregular complicatedly depends on the contextual information
(e.g., weekday or weekend, schedules for one week ahead or 10
days ahead).

Motivated by these challenges, we propose CityOutlook, a novel
regression approach with importance-based reweighting of anoma-
lous data. Specifically, the model regresses the irregularity score of
crowd dynamics from people’s schedule patterns and contextual
information such as time, weather, and weekday or weekend. We
leverage the concept of IW to penalize the loss to reduce the estima-
tion bias for anomalous crowd dynamics. To tackle the difficulty in
estimating the importance, we design an anomaly-aware data anno-
tation scheme by utilizing the heterogeneous property of mobility
data. This schema can generate the quantified relevance of anoaml-
ity without depending on the contextual information. Consequently,
the model can learn the anomalous patterns effectively.

The contributions of this work are summarized as follows: 1)
We explore the problem of crowd dynamics forecast from the view-
point of a regression problem with imbalanced data in an attempt to
provide the effective criteria for the relevance of anomalies. 2) We
propose a novel regression framework with importance estimation-
based reweighting, called CityOutlook, to robustly model both nor-
mal and abnormal crowd dynamics. 3) We evaluate the proposed
method on a large-scale real dataset. The experimental results and
several case studies on real events demonstrate that the proposed
model outperforms the baselines on abnormal dynamics, while pro-
viding the same level of accuracy in forecasting normal dynamics.

2 PROBLEM SETTING AND BASELINE
2.1 Problem Setting
Let t be a time segment on a day, and each day be divided into T
time segments (i.e., t = 1, 2, ...,T ). In addition, l denotes the point
of interest (POI), which is a certain urban region on which we are
focusing. We consider the number of mobility records in a certain
area in a certain time segment as the ground-truth crowd density.
The crowd density observed at the POI l on the date d and time
segment t is denoted by y(l )d ,t . To capture the crowd dynamics in
the future, we define the scheduled crowd density. Especially, we
use the transit search logs to obtain the scheduled crowd density
patterns. The future activity patterns are described by the number of
transit search queries as s(l )d ,t |d ′ with the scheduled date d and time
t , searching date d ′, and destination POI l . In general, d ′ denotes
the prior to d (i.e., s(l )d ,t |d−i denotes the number of logs searched i
days before the scheduled date d). Finally, we define the scheduled
crowd density set S(l )

d ,t for date d and time t at a destination POI l

as S(l )
d ,t = {s

(l )
d ,t |d−i | i = pd , pd + 1, ..., pd +pw }, where pd is the

earliest day before the scheduled date, and pw denotes the range of
days considered.

Under anomalous crowds, the irregularity score should be large
to reflect the high degree of congestion. In contrast, it should be
close to zero if no abnormal crowds occur. Based on this notion, we
define the crowd dynamics irregularity score ν (l )d ,t to represent the

deviation of the ground-truth crowd density y(l )d ,t from the normal

dynamics ȳ(l )d ,t as ν
(l )
d ,t = (y

(l )
d ,t − ȳ

(l )
d ,t )/ȳ

(l )
d ,t , which is forecasted by

the scheduled crowd density and the contextual information such
as time, day, and the weather.

2.2 Baseline: Supervised-CityProphet
Drawing on the previous work [2], we design a predictive model
of the irregularity score ν̂ . In this model, the crowd anomaly is
forecasted by associating the mobility logs and schedule patterns by
transit search logs. We build a regression function ν̂ (l )d ,t = f (ξ (l )d ,t ;θ ),

where θ is the learning parameter. ξ (l )d ,t ∈ Rpw is the schedule

deviation score calculated by the scheduled crowd density set S(l )
d ,t ,

and the normal scheduled crowd density s̄(l )d ,t . This is expressed as

ξ (l )d ,t = {ξ
(l )
d ,t−j |d−i | ξ

(l )
d ,t−j |d−i = (s

(l )
d ,t−j |d−i − s̄

(l )
d ,t )/s̄

(l )
d ,t }, where

s
(l )
d ,t |d−i ∈ S

(l )
d ,t−j , and j = −1, 0, 1. Based on the defined terms,

we formulate the irregularity prediction model f (ξ (l )d ,t ;θ ) using

an autoregressive model [1] as ν̂ (l )d ,t = f (ξ (l )d ,t ;θ ) = [1, ξ (l )d ,t
⊤
]θ ,

where θ ∈ R3pw+1. For estimating the normal crowd dynamics ȳ(l )d ,t
and s̄(l )d ,t , we internally use bilinear Poisson regression [8], which
predicts ordinary crowd dynamics from external contextual factors
such as holiday-or-not, weekday-or-weekend, or the weather. A
detailed formulation of this model is described in Section ??. To
simplify the notation for readability, we omit l,d , and t from the
description.

The learning parameters are inferred by minimizing the ordi-
nary least squared (OLS) loss L, as minθ ∈Θ[ 1

N
∑
n L(ν, f (ξ ;θ ))] =

minθ ∈Θ[ 1
N

∑
n (νn − f (ξn ;θ ))2], where Θ is the parameter space,

and N and n denote the number of data and its index, respectively.
Note that minimizing OLS loss over the imbalanced dataset in-
creases the estimator bias for the anomalous patterns because the
model the model fits a large amount of normal data and tends to
ignore rare patterns.

3 PROPOSED METHOD: CITYOUTLOOK
3.1 Bias Reduction by Importance Weighting
To address the problem of large estimator bias, we quantify the
relevance of anomalous patterns for reweighting the data. To define
the relevance for anomalous crowd dynamics data, we consider
the closeness of the normal and abnormal data distributions. A
promising measure of the closeness between distributions is im-
portance based on the density ratio. We leverage the basic concept
of the density ratio estimation-based IW technique. The impor-
tance w(ξ ) is defined by considering the density ratio between
normal and abnormal data asw(ξ ) =

p(s=1 |ξ )
p(s=0 |ξ ) , where s is the flag

of anomalies which takes 1 when ξ is abnormal and 0 otherwise.
The importance weighted least squared loss can be minimized as
minθ ∈Θ

[
1
N

∑
n
p(sn=1 |ξ )
p(sn=0 |ξ )L(ν, f (ξ ;θ ))

]
. Theoretically, the density

ratio-based importance-weighted least squared loss provides con-
sistent estimates over the abnormal distribution p(ξ , s = 1), which
means the estimator bias is reduced for the anomalous data and the
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model can learn anomalous patterns effectively. In practice, we use
relative importance [10] to prevent learning instability caused by
importance explosion and allow the model to learn both normal and
abnormal patterns. This is defined as w̃(ξ )

p(s=1,ξ )
βp(s=1,ξ )+(1−β )p(s=0,ξ ) ,

where β ∈ [0, 1] is a hyper-parameter.

3.2 Heterogeneous Anomaly-Aware
Annotation Scheme

However, setting up the importance is very complicated because the
abnormality of the input ξ highly depends on the contextual factors,
which results in the fact that there are no explicit anomality labels,
and consequently makes it much more challenging to separate
the input dataset into normal and abnormal. To address this issue,
we propose the heterogeneous anomaly-aware annotation scheme
which is tailored for penalizing the data by importance-based rele-
vance and anomalous crowd dynamics learning. This scheme refers
to the crowd dynamics irregularity score ν which is defined based
on the number of mobility logs, and explicitly define the anomality
labels for the input ξ . We spuriously separate the input dataset
by using the upper bound of the normality ν̄thre. The normal in-
put dataset Dno and anomalous input dataset Dano are defined as
Dno = {ξ | (ν, ξ ),ν < ν̄thre} and Dano = {ξ | (ν, ξ ), ν̄thre ≤ ν }.
We estimate the density p(s = 0, ξ ) and p(s = 1, ξ ) respectively in
a non-parametric manner by using kernel density estimation [3]
with a Gaussian kernel as follows:

p(s = 0, ξ ) =
1

|Dno |

∑
ξ̃i ∈Dno

1
(2πh2)D/2 exp

{
−
||ξ − ξi | |2

2h2

}
, (1)

p(s = 1, ξ ) =
1

|Dano |

∑
ξ j ∈Dano

1
(2πh2)D/2 exp

{
−
||ξ − ξ j | |2

2h2

}
,

(2)

where h denotes the Gaussian kernel width, and D = 3pw + 2. From
Bayes’ theorem, we can obtain the density ratio without directly
observing p(ξ ). Based on the estimated density, we calculate the

importance as w̃(ξ̃ ) =
p(s=1,ξ̃ )

βp(s=1,ξ̃ )+(1−β )p(s=0,ξ̃ )
, We use the defined

importance w̃ to penalize least squared loss.

3.3 Parameter Learning and Dynamics Forecast
In the learning process of the proposed model, we minimize the
importance-weighted least squared loss. The learned parameter θ̂
can be obtained by solving the following optimization problem:
θ̂ = arg min

θ ∈Θ

1
N

[∑N
n=1 w̃(ξn )L(νn, f (ξn ;θ ))

]
+ γ | |θ | |22 , where L is

the least squared loss, and γ | |θ | |22 is the L2 regularization term with
hyper-parameter γ . In the forecasting process, the crowd density
ŷ
(l )
d ,t is rebate from the inferred irregularity score ν̂ (l )d ,t as ŷ

(l )
d ,t =

(1 + ν̂
(l )
d ,t )ȳ

(l )
d ,t , where ȳ

(l )
d ,t is the normal dynamics discussed in

Section 2.

4 EXPERIMENTS
4.1 Dataset
The mobility logs were collected via a disaster alert mobile appli-
cation1 from Yahoo! JAPAN by masking user IDs with dummies.
Each record was completely anonymized, and characterized by
timestamp, latitude, and longitude. We aggregated the mobility logs
in the POIs at each time segment, and counted their number as
crowd dynamics. For the scheduled crowd dynamics, we also uti-
lized transit search history data, which were searched by passengers
of train, bus, or taxi. These logs are gathered by the transit search
engine2, also released by Yahoo! JAPAN. Each record contains an
anonymized user ID, searching timestamp, scheduled timestamp,
and destination. Similar to the mobility logs, we added the number
of search records per stations and time segment; therefore, we did
not use any personal information for model learning. We utilized
the data collected over six months (from October 1, 2019, to March
31, 2020). We selected 58 specific square areas as POIs and their
corresponding stations. POIs contain not only the Greater Tokyo
Area (where many people are observed daily), but also stadiums,
shrines, and venues of the fireworks displays. The size of each POI
was set to 600 × 600m2.

4.2 Experimental Setups and Baselines
We consider one day as a 24-h period, and the number of time
segments T is set to 24. Following previous research [8], the start
of a day was 3:00 AM, which had the least active population, and
the end was 3:00 AM the next day (i.e. 27:00 in 24-h notation).

As mentioned in the Section 2, we used bilinear Poisson re-
gression [8] to predict normal crowd dynamics. In this model,
the crowd density yd ,t is assumed to follow a Poisson distribu-
tion as yd ,t ∼ Pois(·|λcd ,t ), where λcd ,t denotes the parameter of
the Poisson distribution. We model λcd ,t with parameter matrix
W ∈ RC×T by using the context cd of date d and time segment
t as ln λcd ,t = φ(cd )⊤Wϕ(t), where φ(c) ∈ RC is the external
factor vector expressing the contexts c by the one-hot encoding
method, and ϕ(t) ∈ RT is a time factor denoted by ϕ(t) = {ts |ts =
N(s |τ ,σ 2), s = 1, ...,T }. N(·) is a Gaussian distribution with mean
τ and variance σ 2. For the context denoted by cd , we used holiday-
or-not, weekday-or-weekend, and weather information in one-hot
encoding. Weather information is a four-dimensional vector: sunny,
cloudy, rainy, and the others. We used the tensor product to com-
pose these features into one input vector. For the regularization
term, we set γ = 0.01. For the hyper-parameter settings, we set
β = 0.1, ν̄thre = 6.0, h = 5.0.

We evaluated the performance for two types of predictions: ir-
regularity score forecast and crowd density forecast. To eval-
uate the performance fairly, we conducted five-fold cross validation.
On the each round of the cross validation, we divided the dataset
into 88 days for training and 22 days for testing.

To evaluate the performance of our model, we adopted amean ab-
solute error (MAE) conditioned by the anomaly score-based thresh-
old ν̄ in an attempt to measure the prediction performance on

1http://emg.yahoo.co.jp/
2https://transit.yahoo.co.jp/
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Table 1: Performance comparison for forecasting one week in advance on 58 POIs across different thresholds.

NS-MAE AS-MAE
Model ν̄ = 10.0 ν̄ = 15.0 ν̄ = 20.0 ν̄ = 10.0 ν̄ = 15.0 ν̄ = 20.0

Score Density Score Density Score Density Score Density Score Density Score Density
CityProphet [6] 3.684 210.135 3.684 210.488 3.694 210.586 25.749 234.710 29.530 165.390 33.751 129.372
SCP (Baseline) [2] 0.566 91.951 0.570 92.004 0.575 92.060 15.695 109.380 23.871 144.344 34.063 140.510
CityOutlook 0.796 93.881 0.801 93.921 0.805 93.968 14.482 102.163 23.132 138.420 32.698 132.301

both normal dynamics and anomalous crowd gathering forecast-
ing. For the irregularity score forecast, we adopt normal sample
(NS)-MAE and anomalous sample (AS)-MAE defined as NS-MAE =

1
DT

∑D
d=1

∑T
t=1 |ν

(l )
d ,t − ν̂

(l )
d ,t |, where ν

(l )
d ,t < ν̄ , and AS-MAE =

1
DT

∑D
d=1

∑T
t=1 |ν

(l )
d ,t − ν̂

(l )
d ,t |, where ν (l )d ,t ≥ ν̄ , where D is the num-

ber of days. Similarly, for the crowd dynamics forecasting, we
used NS-MAE = 1

DT
∑D
d=1

∑T
t=1 |y

(l )
d ,t − ŷ

(l )
d ,t | where ν (l )d ,t < ν̄ , and

AS-MAE = 1
DT

∑D
d=1

∑T
t=1 |y

(l )
d ,t − ŷ

(l )
d ,t | where ν

(l )
d ,t ≥ ν̄ , where

ŷ
(l )
d ,t is the predicted urban dynamics at POI l on date d and time t

andy(l )d ,t is the ground truth. Note that, if NS-MAE is evaluated with
a small threshold ν̄ , this means that the performance is evaluated
only for normal dynamics observed on a daily basis. Furthermore,
if the AS-MAE is evaluated with a large threshold ν̄ , this means
that performance is assessed on the exceptional anomalous crowd
gathering, which is a significant deviation from daily life.

CityProphet [6] and Supervised-CityProphet (SCP) [2] were
used as comparative models. CityProphet is a method that uses
context information and scheduled crowd dynamics as input data.
In CityProphet, two prediction models, schedule-based population
(SP) and descriptor-based population (DP), are proposed to predict
the number of search queries, and the anomaly score is computed
based on the comparison between the two models. Supervised-
CityProphet is discussed in Section 2.

4.3 Experimental Results
Table 1 shows the overall evaluation in irregularity score forecast
(Score) and crowd density forecast (density). The results show that
the proposed method CityOutlook achieves the best performance
in anomalous crowd dynamics forecasts compared to the baseline
approaches, simultaneously providing the same level of accurate
forecasting in normal dynamics as SCP. From the results of the
irregularity score forecast in AS-MAE, the proposed method out-
performs the baseline model SCP [2] by 7.7% for ν̄ = 10.0, 3.0% for
ν̄ = 15.0, and 4.0% for ν̄ = 20.0. From the results of crowd dynamics
forecast in AS-MAE, the proposed method provides a reduction of
6.6% on ν̄ = 10.0, 4.1% on ν̄ = 15.0, and 5.8% on ν̄ = 20.0 relative to
SCP. On the contrary, baselines cannot forecast normal dynamics
and abnormal dynamics simultaneously. We can confirm that SCP
also has severe performance drawbacks in that forecasting per-
formance deteriorates in AS-MAE, in contrast to the performance
in NS-MAE. This indicates that SCP was not able to capture the
anomaly patterns well and sticking to the ordinary forecast output.

The evaluation of CityOutlook compared to SCP indicates that
IW produces effective measures for anomalies, while ensuring the

performance in normal dynamics forecast. The proposed method
achieved a dramatic performance improvement in forecasting anoma-
lous crowd dynamics, i.e., 8.20 improvement in MAE, in contrast
to a small inferiority in performance as in normal dynamics fore-
cast, i.e., 1.90 difference in MAE, on the threshold of ν̄ = 20.0. The
numerical degradation in the performance of normal dynamics
forecasting in comparison with SCP is not problematic when the
forecasting system is deployed to the real-world scenario, because
it is a small error in prediction in a situation where there is no risk
of an accident due to a crowding.

5 CONCLUSION
In this paper, we proposed CityOutlook for early crowd dynamics
forecast one week in advance. Compared with the recent advances
in forecasting systems based on mobility logs and people’s schedule
patterns, the proposed method provides an effective learning strat-
egy of anomalies, addressing the problem of data imbalance and
scarcity of anomalies by the importance-based reweighting with
anomaly-aware anotation scheme tailored with heterogeneous data.
The experimental results on massive real datasets demonstrate the
superiority of our model over the existing methods. Our approach
shows better results in the forecasting performance of an anomaly,
outperforming the baseline approach SCP by 6.6% on crowd anom-
aly forecasts, while providing accurate normal crowd dynamics
forecasts at the same level as comparative models. For our future
work, forecasting in the typical environments, such as subways or
rural areas, could be addressed.
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