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Abstract. In recent years, the use of smartphone Global Positioning
System (GPS) logs has accelerated the analysis of urban dynamics. Pre-
dicting the population of a city is important for understanding the land
use patterns of specific areas of interest. The current state-of-the-art
predictive model is a variant of bilinear Poisson regression models. It
is independently optimized for each point of interest (POI) using the
GPS logs captured at that single POI. Thus, it is prone to instability
during fine-scale POI analysis. Inspired by the success of topic model-
ing, in this study, we propose a novel approach based on the hierarchical
Dirichlet process mixture regression to capture the relationship between
POIs and upgrade the prediction performance. Specifically, the proposed
model enables mixture regression for each POI, while the parameters of
each regression are shared across the POIs owing to the hierarchical
Bayesian property. The empirical study using 32 M GPS logs from mo-
bile phones in Tokyo shows that our model for large-scale finer-mesh
analysis outperforms the state-of-the-art models. We also show that our
proposed model realizes important applications, such as visualizing the
relationship between cities or abnormal population increase during an
event.

Keywords: First keyword · Second keyword · Another keyword.

1 Introduction

The analysis of urban dynamics is of significant importance in urban planning,
especially in the placement of restaurants, shopping centers, or open spaces, and
for local services such as transportation. Owing to the increase in smartphone
usage, extensive Global Positioning System (GPS) logs, which are sufficient to
reflect real-world population flow, are stored. Hence, several researchers have
recently begun to analyze urban dynamics using these GPS logs.

For example, Fan et al. [4] assumed that population flow patterns represent
the features of the cities and extracted patterns from GPS logs. This pattern
extraction is an important approach in urban dynamics analyses, and has been
studied widely [8, 13]. The extracted patterns help in understanding the urban
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characteristics of the city, and improve planning efficiency for store openings or
local commercial distributions.

Population prediction is another important topic in urban dynamics research.
Shimosaka et al. [12] predicted active populations in the areas including big sta-
tions and amusement parks using external variables such as weather or day of the
week. These predictions enable practical applications such as traffic prediction
[9], sales prediction based on external variables, and the detection of anomalies
by evaluating the difference between a predicted and an actual population.

Moreover, predicting or interpreting urban dynamics in small individual
meshes (e.g., 200 m × 200 m) enables effective responses to social needs, such
as promotion of location-specific products and services . In the state-of-the-art
research [12], they independently constructed a predictive model for each point
of interest (POI). However, it is difficult for the model to predict urban dynam-
ics accurately in the smaller meshes. This is because the observed number of
logs can be affected by its noise and increasing the sample size can suppress the
effects of the noise but it is not always possible to achieve such an increase.

However, similarity of functions in various cities can be used to overcome
this limitation. Cities may have certain functions in common. For example, if a
considerable part of one city is a business district and some parts of another city
are also business districts, it means that these two cities have the same urban
function. It can be assumed that such cities with certain similar functions share
similar urban dynamics. Therefore, to effectively learn the predictive model for
a city, data from other cities having partially similar functions to one of the
functions of the target city can be utilized.

Inspired by the success of hierarchical Bayesian models that extract latent
urban dynamics patterns across cities [8, 13], in this study, we propose a hi-
erarchical Dirichlet process (HDP) regression mixture model that utilizes data
of other areas having functions similar to those of the target city to achieve
stable prediction in small areas This utilization of data from other areas virtu-
ally increases the sample size for learning a predictive model of the target area
and stabilizes the learning even for small areas. The HDP regression mixture
model also achieves parameter reduction. This is because the model for each
city consists of a mixture of latent models; only the mixture coefficients and the
parameters of latent models are learned.

The contributions of this work are as follows.

– We proposed the HDP regression model to make stable predictions of urban
dynamics even for smaller areas by utilizing the data in the other areas and
reduce the total parameter size by sharing the parameters among the cities.

– We conducted experiments using a real-world dataset, 32 M GPS logs from
smartphones, to show that the proposed model predicts the urban dynamics
more accurately than previous predictive models.

– We show two important industrial applications that can be realized using the
model; detection of the abnormal congestion of an event and a visualization
of the mixing coefficient of our proposed model to better understand the
relationship.
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2 Related Work

In this section, we describe work related to urban dynamics modeling. Research
on extracting urban dynamics patterns have been conducted actively in recent
years. In the present work, tensor factorization [21, 14, 4, 19, 18] or mixture mod-
eling [8, 13] has been used to extract patterns. In the tensor factorization ap-
proaches, many researchers have modeled the urban dynamics data as a tensor
with cities, time of the day, and date axes, and they extract latent patterns by
factorization. For example, claims of city noise [21], check-in activities [14], and
GPS logs [4] were modeled as a tensor to analyze their latent patterns. Nishi et
al. [8] modeled the active population transition in one day using the Dirichlet
mixture model and extracted the latent patterns shared by cities. Shimosaka et
al. [13] also extracted patterns by mixture modeling. Moreover, they simultane-
ously clustered the cities using their proposed hierarchical Bayesian framework.
This clustering provides an explicit understanding of the similarities between
cities. However, these to extract latent patterns in past datasets do not predict
future urban dynamics.

Several researchers have attempted to predict the activities in cities using
external variables [17, 2, 12]. Wang et al. [17] proposed the negative binomial
regression model by using external variables such as population or weather to
predict traffic volume. Bogomolov et al. [2] constructed a model to predict the
number of crimes using a random forest with demographic information. The
research by Shimosaka et al. [12] is state-of-the-art research in urban dynamics
prediction.

However, they constructed predictive models for each city using data specific
to that city. Therefore, learning may be unstable, particularly for small areas. To
solve these problems, some studies[20, 11] that utilized data from other cities to
learn the model of the target area and improve accuracy. Zheng et al. [20] mod-
eled the flow of people in the cities by a convolutional neural network (CNN).
They trained the model while sharing the dataset between neighboring areas by
convolution. However, the CNN only shared the data were among neighboring
areas. Shimosaka et al. [11] also proposed a predictive model called SPF, which
shared parameters between meshes while retaining spatial preservation and re-
duced the number of parameters using a factorization approach. In terms of
model expression, however, the method proposed herein is a mixture regression
and can model complex multimodal data more effectively than SPF, which is a
single regression model.

3 Urban population pattern analysis system with HDP
regression

This section presents an outline of the proposed urban population pattern anal-
ysis system with HDP regression using GPS logs from smartphones. Further,
the applications realized by the proposed system are discussed. As shown on the
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left side of the system diagram in Fig. 1, the number of GPS logs from smart-
phone use is sufficient to represent the populations of a city, thus we regard the
counting logs as the population in each area. These population counts, as well
as external factors such as weather and holiday information, were used as the
datasets for the urban dynamics prediction system. In particular, for the popu-
lation count, one day was segmented into S parts; then, it was assumed that the
number of GPS logs in area l within the τth time segment was an active popu-

lation. We modeled the transition of the active population y
(l)
c,τ,n of the n-th day

with conditions c (e.g., weather, day of the week, national holiday) through the
time segments τ = {1, ..., S}. The transition of the population is commonly used
for the application of urban dynamics analyses. The proposed model realizes
three main areas of urban dynamics: population prediction, anomaly detection,
and inter-city relationship analysis that are widely studied by researchers. In the
following subsections, we describe the detailed setting of each application.

Active population prediction is the problem of predicting the active popula-

tion y
(l)
c,τ,n in the area l, in the τ -th time segment on the n-th day using external

factors c. Active population prediction helps to provide real-world applications
such as predictions of sales or traffic volume. As can be expected, prediction ac-
curacy is quite important for the quality of the application. However, prediction
accuracy can be unstable owing to the lack of a sufficient sample size for training,
particularly in fine-grained meshes. Thus, it is necessary to share a dataset over
the meshes to enable improved prediction.

Anomaly detection is one of the hot topics in urban dynamics research [10, 6,
12]. It is also useful in several practical applications, including the detection of
city events and traffic obstacles. One method for detecting anomalies in the pop-
ulation is evaluating a difference between a predicted and an actual population.
Some studies [6, 12] evaluated the anomalous population counts in a city based

on the irregularity index, 1

ŷ
(l)
c,τ

(y
(l)
c,τ,n− ŷ(l)c,τ ),, where y

(l)
c,τ,n is an actual population

and ŷ
(l)
c,τ is the prediction. Owing to the accurate population estimate by the bi-

linear Poisson regression, they successfully detected or predict a large event and
unexpected heavy rain. Note that the anomaly detection significantly depends
on the prediction accuracy; unstable prediction in the fine-grained mesh leads to
impractical anomaly detection. Thus, stable prediction is essential for anomaly
detection in fine-grained meshes.

Understanding the relationships between the different areas of a city is an-
other important aspect of urban dynamics analysis. Finding areas that have
similar features within a region is helpful in deciding the placement of new
commercial entities such as restaurants or stores. As mentioned above, the re-
lationships between areas were investigated based on pattern extraction using
generative models in previous research [8, 13], and these aspects of generative
models that is extracting latent pattern is helpful for updating predictive per-
formance. We proposed the combination model of a generative and discriminative
model described in the following section.
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Fig. 1. Urban population pattern analysis system proposed in this paper.

4 Definition of proposed method: HDP mixture
regression

In this research, we proposed the regression mixture model for accurate pre-
diction in fine-grained meshes such as 200 m × 200 m mesh while the existing
state-of-the-art model [12] predicts in 900 m × 900 m mesh. A model for an area
consists of a mixture of latent models shared by all cities; each area has a specific
mixing coefficient. LDA [1] and HDP [15] are widely known methods for latent
allocation. We proposed a predictive model using HDP mixture regression, which
uses the HDP as the prior of the mixture model.

In HDP mixture regression, the model is learned by Bayesian inference. How-
ever, it is difficult to analytically infer the Poisson regression under Bayesian in-
ference. To infer the Poisson regression in the Bayesian framework, the Poisson
distribution can be approximated by a Gaussian distribution [3]. Approximation
around zero is inadequate and can result in poor prediction. Here, Gaussian re-
gression, which can be analytically applied to Bayesian inference, is used. We
confirm the prediction accuracy of the Gaussian regression, as well as the Poisson
regression in the experiment described in section V. This section first explains
prediction by the state-of-the-art model (bilinear Poisson regression) and then
describes prediction by the proposed HDP mixture regression.

4.1 Urban dynamics prediction by bilinear Poisson regression

As mentioned earlier, the predictive model using bilinear Poisson regression[12] is
the state-of-the-art model in urban dynamics prediction research. They assumed

that the active population y
(l)
c,τ,n follows the Poisson distribution P(y

(l)
c,τ,n|λ(l)c,τ ),

where λ
(l)
c,τ is the mean parameter of the Poisson distribution. They considered
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a combination of the time feature, which drastically influences the active popu-
lation, with other features. This enabled them to model the differences between
the patterns under different conditions, such as weekday and weekend.

In the bilinear Poisson regression, the parameter of the Poisson distribution

λ
(l)
c,τ > 0 is represented using the weight matrix Wl ∈ RM×S , the time feature

φ(τ) ∈ RS , and ϕ(d) ∈ RM as lnλ
(l)
c,τ = ϕ(d)>Wlφ(τ). Shimosaka et al. [12]

reduced the rank of the weight matrix by decomposing the weight matrix as
Wl = UlV

>
l , where Ul ∈ RM×K and Vl ∈ RS×K are the decomposed matrices

satisfying the condition K �M,K � S. Although this low-rank matrix reduces
the risk of overfitting, the model only uses the dataset in a single area. This
results in an insufficient sample size as shown in the next subsection. Moreover,
the total number of parameters across all areas is K(M + S)L where L is the
number of areas. The parameters will increase linearly with the number of areas,
and this large number of parameters causes the instability in learning.

4.2 Definition of HDP mixture regression

We formulate herein the HDP mixture regression to utilize the data from other
areas to learn the model of the target area while suppressing the increase in
the number of parameters. Following the work by Wang et al. [16], we used
Sethuraman’s construction was used to represent the stick-breaking process that

realizes the HDP. The latent variable zl,n,m represents an active population y
(n,l)
c

as defined in the previous chapter, and is assigned to the cluster m. It follows
the condition zl,n,m ∈ {1, 0},

∑
m zl,n,m = 1 and m is an area-level cluster. This

area-level cluster is defined to analytically apply the variational inference as the
document-level cluster in the previous work [16]. zl,n,m = 1 indicates that the
active population in the area l on the day n is assigned to cluster m. The latent
variable rl,m,k represents the correspondence between an area-level cluster m of
the area l and a global cluster k. The global clusters are shared between areas;
rl,m,k also follows the requirement rl,m,k ∈ {1, 0},

∑
k rl,m,k = 1. rl,m,k = 1

indicates the area-level cluster m of the area l, and corresponds to the global
cluster k.

To utilize the data from other areas focusing on the peak of the urban dy-
namics pattern rather than the volume of the active population, we normalize

the active population in the learning process as ỹ
(n,l)
c,τ = 1

ηl
y
(l)
c,τ,n, where ηl is

calculated by ηl = 1
N

∑N
n=1

∑T
τ=1 y

(l)
c,τ,n using the training dataset. The joint

distribution ỹ
(n,l)
c,τ , zl,n,m, rl,m,k is represented as follows,

p(ỹ(n,l)c,τ ,zl,n,m, rl,m,k) =∏
m

π
zl,n,m
l,m

∏
k

ρ
rl,m,k
k N (ỹ(n,l)c,τ |λc,τ,k, σ2

k)zl,n,mrl,m,k (1)

where πl,m is the mixing coefficient for the area l, and ρk is the global mixing
coefficient. λc,τ,k = ϕ(c)>Wkφ(τ), where φ(τ) is the time feature and ϕ(c)> is
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the feature with other conditions. πl,m and ρk are generated by the stick-breaking
process as follows,

p(π′l,m) = B(1, β0), p(ρ′k) = B(1, γ0)

πl,m = π′l,m
∏t−1
s=1(1− π′l,s), ρk = ρ′k

∏k−1
j=1 (1− ρ′j) (2)

The priors of zl,n,m, rl,m,k, and the weight parameter Wk are represented as
follows,

p(zl|πl) =
∏
n,m π

zl,n,m
l,m , p(r) =

∏
l,m,k ρ

rl,m,k
k

p(Wk) = N (vec(Wk)|µk,Σk), p(σ2) = Gamma(σ2|a0, b0), (3)

where vec(·) is the vectorization of the matrix. For example, for theA = [a1,a2, ...aK ],
vec(A) = [a>1 ,a

>
2 , ...a

>
K ]>. Generally, the posterior of the parameters or latent

variables cannot be analytically estimated in the model using HDP. A sampling
method such as Gibbs sampling [7, 5] or variational inference [16] is used to esti-
mate the posterior approximately. In this research, we use variational inference
to estimate the approximated posterior of the parameters and latent variables.

Our proposed mixture model using HDP as a prior reduces the number of
parameters compared to the previous method. As mentioned earlier, in the pre-
vious predictive method [12], the number of parameters is K(M +S)L where K
is the dimension of the low-rank matrix, M is the dimension of the time feature,
and S is the dimension of the other feature. If we set L = 100 × 100 = 10000,
M = 48, S = 28, and K = 5, the number of all the parameters is 3.8M. In
our proposed method, the number of parameters is dependent on the number
of global clusters B. Considering the number of mixing coefficients, the total
number of parameters is BMS + LT + B where B is the maximum number of
global clusters and T is the maximum number of area-specific clusters. In the
aforementioned setting, the number of parameters is suppressed to 567K with
the setting B = T = 50.

4.3 Prediction by HDP mixture regression

It is assumed that the posterior estimated with the dataset Y = {ỹ(n,l)c,τ }n,l,τ in
all areas is approximated as follows,

p(ρ,π, r,z,W ,σ|Y ) = q(ρ)q(π)q(r)q(z)q(W ,σ). (4)

The predictive distribution of the HDP mixture regression is a mixture and is

multimodal. The predictive distribution p∗(ỹ
(l)∗
c,τ |Y ) and the prediction value of

the model ŷ
(l)∗
c,τ are defined as follows

p∗(ỹ(l)∗c,τ |Y ) '
∑
m

Eq(π)[πl,m]
∑
k

Eq(r)[rl,m,k]Eq(W ,σ)[p(ỹ
(l)∗
c,τ |λc,τ,k, σ2

k)], (5)

ŷ(l)∗c,τ = ηl arg max
ỹ
(l)∗
c,τ

(p∗(ỹ(l)∗c,τ |Y )). (6)
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4.4 Urban dynamics prediction systems using HDP mixture
regression

We describe the outline of the urban dynamics prediction system using the pro-
posed model, the HDP mixture regression shown in Fig. 1. The proposed method
shares the datasets of all areas of interest during the training (see the upper part
of the figure). Because only the component regressors (except for the mixing co-
efficients) have parameters, the proposed method can suppress the number of
parameters (see the upper right part of the figure). As shown in the right lower
part of Fig. 1, the HDP mixture regression model realizes important applica-
tions. The model provides a prediction for each area because each area has its
own mixing coefficient (see the right part of the figure). Consequently, owing to
the prediction, the model can also realize anomaly detection for each area. The
mixture coefficients represent the manner in which the model for each area de-
pends on each component regressor; thus, users can find the similarities between
cities in terms of active population transition by visualizing the value of one of
the mixture coefficients.

5 Experimental results

To evaluate the performance of the proposed urban dynamics prediction method,
we conducted experiments comparing the proposed method with existing meth-
ods used to model urban dynamics.

5.1 Dataset

This experiment utilized the GPS logs obtained by the smartphone app Bosai
Sokuho1 released by Yahoo Japan Corporation. The GPS logs were collected
from users across Japan who consented to providing their location information,
and they have all been anonymized. In the Kanto region alone, 15 M logs were
collected per day. Each GPS log includes a time stamp, longitude, and latitude
and is collected when the user moves. Thus, the logs represent human activi-
ties. Logs collected from July 1st, 2013 to June 30th, 2014 were used in this
experiment. The number of logs in each mesh in the 3 km × 3 km square area
shown in Fig. 2 were counted at 30 minute intervals. We used the dataset for
this experiment. In this experiment, we divided the target area into two different
sizes of meshes: one was 600 m × 600 m mesh and the other was 200 m × 200
m mesh as shown in Fig. 2.

5.2 Evaluation metric

We used Mean Negative Log Likelihood (MNLL), Mean Absolute Error (MAE)
as evaluation metrics. They were also used in the existing state-of-the-art re-

search [12]. MNLL is defined as MNLL = 1
NT

∑N
n=1

∑T
τ=1(− ln p(y

(l)
c,τ,n|λ(l)c,τ )),

MAE is defined as MAE = 1
NT

∑N
n=1

∑T
τ=1 |y

(l)
c,τ,n − ŷ(l)c,τ |.

1 https://emg.yahoo.co.jp/
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Fig. 2. Left: First mixing coeffieint in each mesh l, right: Second mixing coefficient in
each mesh l

5.3 Comparison methods

We compared the proposed HDP regression mixture model (HDP-reg) with the
bilinear Poisson regression model (BP) [12], and the bilinear Gaussian regression
model (BG) , and SPF [11] in terms of MAE and MNLL. The bilinear Gaussian
regression model used in this experiment, models urban dynamics with Gaussian
distribution as the HDP-reg does, and it was used to compare with MNLL fairly.
We also verified that the bilinear Gaussian regression model has accuracy equiv-
alent to that of the bilinear Poisson regression model to confirm the validity of
the comparison between HDP-reg and the bilinear Gaussian regression model.

In the bilinear Gaussian regression setting, we assumed population count

y
(l)
c,τ,n was sampled from a Gaussian distribution,N (y

(l)
c,τ,n|µ(l)

c,τ , σ2) and the mean

parameter µ
(l)
c,τ was estimated by the bilinear form, µ̂

(l)
c,τ = ϕ(d)>W (l)φ(τ). We

conducted the experiments using two types of bilinear regression (Poisson or
Gaussian) as shown below,

1. BP / BG 1 for All: One regressor for all meshes. These models can be
learned using all the datasets in all meshes, and this can stablize the learning.
However, these models provide the same predictive results for All meshes,
which implies that they cannot represent the differences between cities.

2. BP / BG 1 for 1: One regressor for each mesh. Each model can model the
characteristics of the urban dynamics for each mesh; however, the dataset
used during the learning is specific to the respective mesh, and this small
dataset can cause overfitting.

We use the expectation of the model as the prediction value for the bilinear
Poisson/Gaussian regression model. In this experiment, we used two types of
features; one is the time feature and the other is the weekday feature.

5.4 Comparison with previous predictive methods

We compared our proposed model with previous predictive models using datasets
in two different meshes, as shown in Fig. 2. MAE and MNLL were used as
metrics on the five-fold cross-validation in this experiment. We did not compare
the MNLL between the bilinear Gaussian regression and the bilinear Poisson
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Table 1. Comparison on predictive metrics

mesh size 600m × 600m 200m × 200m
MAE MNLL MAE MNLL

BG 1 for All 26.0 ± 8.6 1.55 ± 0.25 3.73± 0.83 2.14 ± 0.19
BP 1 for All 26.0 ± 8.6 1 10.0 ± 3.4 3.73 ±0.83 1 2.88 ± 0.45
BG 1 for 1 24.2 ± 8.7 1.44 ± 0.27 3.45 ± 0.83 1.94 ± 0.17
BP 1 for 1 23.8 ± 8.9 1 8.73 ± 3.3 3.42 ± 0.86 1 2.67 ± 0.42
SPF 24.4 ± 8.7 1 9.68 ± 3.1 3.44 ± 0.83 1 2.80 ± 0.39
Proposed 23.1 ± 7.2 1.37 ± 0.25 3.38 ± 0.68 1.92 ± 0.24

regression because each measurement in each model was different. We used the
30-day dataset for training and the 180-day dataset for testing.

The experimental results are shown in Table 1. With this experiment, we
confirmed that the performance of BP and BG on MAE was almost equivalent.
This result ensured the validity of comparison of HDP-reg and BG. The per-
formance of the proposed model was better than any of the bilinear regression
models in MAE The smaller mesh size made the number of datasets in each mesh
small, and made the MAE smaller. Proportionally, the performance difference
in the 200 m meshes was bigger than for the 600 m meshes. The performance of
HDP-reg in the MNLL was better than those of BG 1 for ‘1’ and BG 1 for All.

5.5 Application using HDP mixture regression

In this section, we show that the proposed model has the potential to realize the
applications mentioned in Section III, especially, Anomaly detection and City
relationship analysis.

We evaluated the congestion caused by cherry blossom viewing using predic-
tion by HDP mixture regression. The actual populations and predictions every
Saturday from March 8 to April 12 around Nakameguro Station (Tokyo, Japan)
are shown in Fig. 3. It is famous for cherry blossom viewing along the Meguro
River. Cherry blossoms come into full bloom from the end of March to the be-
ginning of April and the figure also shows that the congestion on April 5 is the
heaviest. This abnormal congestion can be automatically detected by setting the
threshold of the anomaly metric shown in (3). This anomaly detection also can
be used for evaluating the effect of the events in terms of the increase or decrease
of visits, compared to normal.

We also visualized the mixing coefficients for understanding the relationship
between meshes. Mixing coefficients represent how each mesh area relies on each
component regressor, and the cities that have similar mixing coefficients have
similar active population transition. The mixing coefficient for the visualization
was calculated as ζl,k =

∑
m Eq(π)[πl,m]Eq(r)[rl,m,k]. ζl,k represents how a mesh

area l relies on k-th component regressor. The left figure of Fig. 4 represents the
k = 1-st and k = 2-nd patterns from K = 12 patterns. The right figure of Fig. 4

1 The performance of bilinear Poisson regression in MNLL should be compared only
between BP 1 for ‘1’ and BP 1 for All because the measurement of a Poisson distri-
bution and that of a Gaussian distribution are different.
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Fig. 3. The actual populations and predictions in cherry blossom season in Tokyo.
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Fig. 4. left: 1-st mixing coeffieint in each mesh l, right: 2-nd mixing coefficient in each
mesh l

shows a large number of models because the areas on the railway or station area
rely on the k = 1-st component regressor. The k = 2-nd components are relied
on by the downtown areas around stations. From these visualizations, it can be
said that the proposed model can represent the relationship between mesh areas.

6 Conclusion

In this research, we modeled urban dynamics on large-scale high-resolution
meshes using GPS logs of mobile phones for urban dynamics analysis systems.
To predict future population stably even in smaller areas, we proposed using
an HDP mixture regression model that uses the datasets in all the meshes for
the training phase and predicted the urban dynamics for each mesh stably. We
conducted the experiments using smartphone GPS logs in 3 km × 3 km squares
in the Tokyo region, and the number of datasets was 32 M. The proposed model
was compared with an state-of-the-art model and achieved an MAE improve-
ment of 1.3. We also showed the two types of applications: evaluating anomalous
congestion caused by the cherry blossom viewing activities and visualizing the
coefficients to understand the relationship between mesh areas.
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