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Abstract— Driving behavior modeling (DBM) is widely used
in the intelligent vehicle field to prevent accidents, which pre-
dicts actions that vehicles should take to optimize safe driving
behaviors. According to some statistics, accidents easily happen
at un-signalized intersections. Modeling driving behavior at
such places is of great importance. However, current inverse re-
inforcement learning-based DBM methods fail to predict proper
behaviors at the un-signalized intersections in the aspects of
smoothness and stopping behavior by just using a single Markov
decision process (MDP). We propose a novel sequential MDPs
approach to model the driving behavior at the un-signalized
intersections to solve the problems. Our approach decomposes
the target behavior through the un-signalized intersections into
three parts and models each decomposition’s driving behaviors
with appropriate time durations by a stopping-time-interval
distribution through dynamic programming. Experiments on
real driving data show that the proposed method achieved a
better result and successfully improved the smoothness and
stopping awareness of the planned driving path compared to
the baselines.

I. INTRODUCTION

Intelligent vehicles have been attracting attention in recent
years for various driving tasks and safety guarantees. On the
one hand, accidents are more likely to happen at intersections
on residential roads, especially the intersections that do not
have any signal. Driving behavior modeling (DBM) is one
of the techniques to ensure the safety of proper driving
behavior when passing those un-signalized intersections to
prevent pervasive driving and accidents, which can be used
in applications such as the advanced driver assistance system
(ADAS) and the driver support system to avoid potential
dangers [1]. On the other hand, driving through the in-
tersection is a very complicated task. Since vehicles come
from various locations and perform different behaviors (e.g.,
going straight, turning left, or right), drivers have to be
aware of other cars and pedestrians sometimes. Therefore,
the prevention of such accidents is known to be a significant
problem in recent years.

Accidents are likely to occur if vehicles enter the intersec-
tion rashly due to the low visibility at the un-signalized inter-
sections. To avoid such accidents, we found that the desired
driving behaviors for passing the un-signalized intersections

1Authors are with the Department of Computer Science,
Tokyo Insititute of Technology, Tokyo, Japan. E-mail:{yang,
simosaka}@miubiq.cs.titech.ac.jp

2Authors are with the Department of Human and Engineered
Environmental Studies, The University of Tokyo, Chiba,
Japan. E-mail: hyoshitake@edu.k.u-tokyo.ac.jp and
motoki@k.u-tokyo.ac.jp

will be "stop", "watch", and "pass". Consequently, decreasing
the speed before entering the intersections and stopping at
the temporary stop line to check the surrounding environment
is requested by most countries and regions. In this research,
we aim to model this driving behavior.

Electronic pedestrian protection (EPP) [17] is a system to
ensure pedestrians’ safety. However, this system works only
when the accident has already happened. It cannot prevent
accidents from happening efficiently due to the drawbacks
of the sensor’s accuracy and the short braking distances. By
analyzing the causes of accidents at the intersections, we
found that those drivers who encounter the accidents often
drive vehicles through specific locations at improper speeds.
As a result, it is necessary to build a robust model towards a
safe driving behavior with reasonable velocities at particular
positions by taking the accelerations and decelerations into
consideration.

As a prominent approach for this issue, inverse reinforce-
ment learning (IRL) is gaining popularity in recent DBM
tasks [14] [12]. Figure 1 demonstrates the basic framework of
how IRL is applied to DBM at the un-signalized intersections
The reward functions of a Markov Decision Process (MDP)
will be obtained from real driving data by IRL, which returns
a high reward for the desired driving behaviors at specific
locations of the target intersection. The trained MDP will
then be used for planning the expected driving behaviors
according to the obtained reward functions.
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Fig. 1: IRL based DBM at the un-signalized intersection

However, path planning has some problems at such un-
signalized intersections by current single-MDP IRL methods.
When planning behavior by maximizing the total reward, the



car tends to stop for a long time around the stop line to
earn as much reward as possible. While by stochastic policy
from reward expectations, stopping time around the stop line
becomes shorter but unusual accelerations will happen. In
other words, it is difficult for methods based on the single
MDP to maintain a balance between the stability of the speed
and rationality of the stopping behavior around the stop line.
Both cases are abnormal with human driving behavior [16]
[18].

To pursue the decent stopping behavior and good smooth-
ness property of the DBM at the un-signalized intersections,
we propose a novel sequential MDPs approach. To improve
the stopping behavior, we divided the target intersection ac-
cording to the stop line’s position. A sequential MDPs struc-
ture with the stopping-time-interval distribution is applied to
the intersection partitions for planning the path independently
and separately. To make the driving path smoother, we also
considered using the Viterbi path’s property and a more
profound feature functions design, which considers the speed
difference of a pair of states. In this sense, it is possible
to generate a driving path close to human performances
smoothly.

The contributions of this paper are as follows:

• Applying a stopping-time-interval distribution, which
better simulates the stopping behavior, increases the
awareness of the appropriate stopping behavior around
the stop line for the path planning process at the un-
signalized intersections.

• The sequential MDPs structure enables the agent to plan
a smoother and closer driving path to expert drivers at
the un-signalized intersections.

Related work:
Driving pattern matching: For planning the expected

expert driving path, a regression model [11] was proposed
to model the acceleration behaviors of drivers. But it is
very likely to be overfitted with only a limited number of
training data. Some approaches [6] [15] [3] used Hidden
Markov Model (HMM) to estimate behaviors through vehicle
dynamics. However, it is hard to deploy it into diverse
environments. Another approach [19] models driving be-
havior at the intersections, and some possible driving path
expectations are generated from topology. Then Dynamic
Bayesian Networks (DBN) is used as an estimator to select
the path. Although this approach can be applied to some
specific environmental contexts, the hierarchical structure
is time-consuming and sometimes cannot keep the driving
path’s anticipated smoothness. To smoothen the driving path,
Han et al. [7], proposed a Bézier curve-based path planner.
But as for some specific behaviors like stopping behavior at
the intersections, this method still couldn’t make a satisfying
reaction towards certain behaviors.

Imitation learning: Imitation learning [8] is an ap-
proach to learn the policy of state-action pairs in a supervised
manner from human demonstrations. Behavior cloning [10]
is one of the methods in this category. However, Behavior
cloning methods suffer from inaccuracies when the environ-

ment changes, and those inaccuracies have influences on the
safety of the driving. Methods based on computer vision [13]
[4] [2] [9] take driving videos as training demonstrations
to learn policy directly. But, videos information is hard to
process and difficult to sense the driving course’s geomet-
rical information. Fine-Grained driving behavior modeling
approaches discretize the state space for driving course [14]
[12], then use inverse reinforcement learning to learn the
reward function with given environmental features for the
Markov decision process (MDP) from expert driving data.
The driving path is then generated by considering the total
earned reward, which effectively solves the inaccuracies of
the unseen environment. But it fails to consider certain
behaviors when planning over a broader spectrum of driving
actions. Our previous work [18] briefly introduces the con-
cept of application of the sequential MDPs in the situation of
the un-signalized intersections. However, it lacks a thorough
experiment and a more confident result analysis.

The rest of the paper is organized as follows: Section 2
describes the baselines of a single MDP-based DBM. Section
3 describes our work of sequential MDPs at the un-signalized
intersections. Section 4 presents the experimental results in
terms of smoothness and stopping behavior of the planned
driving path. Finally, section 5 provides concluding remarks
and future work.

II. PROBLEM SETTINGS AND SINGLE-MDP IRL

This section describes the problem settings of our research
and its baselines, single-MDP IRL, then also shows the
critical issues raised by the baselines.

A. Problem settings

In this research, we want to model safe driving behavior
specifically at the un-signalized intersections. And we realize
the importance of velocity at each position when crossing the
intersections. Thus the suitable acceleration driving actions
are crucial to avoid pervasive driving. Thanks to the advanced
navigation system today, it is easy to obtain the road geome-
try information before entering the un-signalized intersection.
Therefore we do not have to plan a long-distance and long-
time driving path but focus on the target intersection’s length.
Based on the assumptions mentioned above, we aim to model
the proper velocity for each position concerning the time
when passing the target intersection, as shown in Figure 2.

The dynamics of the vehicle is defined for designing the
Markov decision process. xt ∈ R2 is a continuous state at
the time t represented by a pair of position, pt, and velocity,
vt, as xt = (pt, vt)>. Action, ut ∈ R, describes acceleration
and deceleration behaviors at time t. The assumed dynamics
of transitions among states is expressed as

xt+∆t =
(

1 ∆t
0 1

)
xt +

(
0

∆t

)
ut. (1)

Then we discretize the continuous state space, xt, and action
space, ut, into discrete state space, S, and discrete action
space, A, in a certain way we will discuss in detail in the
experiment section. A MDP, < S, A, T, R >, can be applied
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Fig. 2: Modeling target

to represent the problem. Transition, T , is a probability dis-
tribution among states obtained from the vehicle dynamics,
P (s′ | s, a) 7→ {0, 1}, where s ∈ S represents the current
state and s′ ∈ S is the next state by taking action a ∈ A;
and R denotes the reward function. For each state s ∈ S, we
obtain its reward by a linear function defined as follows,

R(s) = w>f(s), (2)

where R(s) ∈ R, and w ∈ Rn denotes the weights for
feature functions, f(s) ∈ Rn, designed manually.

Regarding the design of feature functions, we mainly con-
sider how to encode the intersection’s geometrical informa-
tion. Therefore, as one of the simple but effective approaches
to designing rewards, we employ Gaussian kernels. These
are placed in specific positions to emphasize the importance
of acceleration and deceleration behaviors. We will discuss
more details in the experiment part.

B. Standard single-MDP

To optimize the reward function, Maximum entropy
IRL [20] is utilized to train weights, w. This approach’s
core concept is to maximize the likelihood of given expert
samples, what we call paths, in the rest of the paper. Firstly,
the likelihood of a path, p(ζ(i) | w), is defined as

p(ζ(i) | w) =
exp (

∑T (i)

t=1 R(s(i)
t ))

Z(i)(w)
, (3)

where ζ(i) = {s
(i)
1 , a

(i)
1 , s

(i)
2 , a

(i)
2 . . . , s

(i)
T } denotes a path

from driving dataset, D, which contains N paths performed
by expert drivers, whose time duration, T (i), is expressed
by |ζ(i)| = T (i). Z(i)(w) means the partition function.
The optimal weights, w∗, is obtained by minimizing the
negative log-likelihood of expert data with a regularization
term, Ω(w),

w∗ = argmin
w

(−
N∑

i=1
log p(ζ(i) | w) + Ω(w)). (4)

Planning driving paths from the learned model is essential
for driving behavior modeling. In this paper, a specific time
duration is used to restrict the total time for performing path
planning, called finite horizon path planning. There are two
basic kinds of paths to be planned.

1) Viterbi path: The Viterbi path, ζ∗, is an estimate of
the series of states from MDP, which has a maximum accu-
mulated reward or likelihood within a finite time duration.

ζ∗ = argmax
ζ∈Ξ

R(ζ | w)

= argmax
ζ∈Ξ

∑
s∈ζ

R(s | w), (5)

where a set of trajectories, Ξ, contains instances whose
duration are all equal to t, Ξ = {ζ | |ζ| = t}.

2) Stochastic path: Since there are a number of possible
paths for the planning, and each of them has its probabil-
ity, the stochastic path will be generated from the reward
expectations in a probabilistic way.

C. Existing problems of standard single-MDP IRL

Comparing the generated Viterbi path by the standard
single-MDP IRL with the expert driving data, we found
that the stopping time is extremely longer than experts’
performances, as shown in Figure 3. This is because the
reward at the temporary stop line is higher than in other
positions. Consequently, the agent tends to earn more rewards
by stopping at the temporary stop line for a long time.
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Fig. 3: Long stopping time behavior generation by standard
single-MDP IRL

In order to solve the problem brought by the Viterbi path,
some studies have adopted the stochastic path instead of the
Viterbi path when doing the path planning [16]. However,
due to the stochastic property, unusual accelerations will
happen, as illustrated in Figure 4. That will affect the
smoothness of driving behaviors significantly. Plus, for some



generated stochastic paths, stopping behavior will be ignored
and that is very dangerous.
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(a) position-velocity graph of generated stochastic path by
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0 5 10 15 20
time [s]

0

5

ve
lo

ci
ty

 [m
/s

] time-velocity
single MDP
expert path

(b) time-velocity graph of generated stochastic path by
standard single-MDP IRL

Fig. 4: Unusual accelerations driving behavior generation by
standard single-MDP IRL

III. PROPOSED METHOD: IRL ON SEQUENTIAL MDPS
WITH TIME-INTERVAL MODEL

A. Overview

This section aims to improve the path planning per-
formance at the un-signalized intersection for awareness
of proper stopping behavior and trajectory smoothness. To
enhance the path planning with satisfying smoothness, we
determine to divide the intersection into few steps and
choose a reasonable path generation strategy. To keep a
good awareness of stopping behavior at the un-signalized
intersection, we propose a time-interval model to increase
the awareness of the stopping behavior.

B. Intersection decomposition

By analyzing experts’ stopping behavior, we notice that
they often stop around the temporary stop line before enter-
ing the intersection. Hence we consider the idea of stopping
range, which is an area around the temporary stop line
for vehicles to conduct the stopping behavior. Then we
decompose the intersection into three parts: before, during,
and after the stopping range. Each part of the decomposition
is modeled by an independent MDP defined as follows:

MDPx =< Sx, A, Tx, Rx >, (6)

where x is b, s and a, the MDPx represent the MDP before,
during and after the stopping range, respectively.

C. Probabilistic modeling with sequential MDPs and time-
interval distribution.

The second section mentioned the problems caused by the
standard single MDP. We will introduce how the proposed

method based on the sequential MDP solves the above issues
in two aspects.

1) Enhancement of stopping behavior awareness: For
simulating the time duration within the stopping range, ts,
precisely, we use a Poisson distribution to model the time
duration by the following definition,

ts ∼ Poisson(λ), (7)

where λ is the parameter for the Poisson distribution.
A typical problem is how to decide the total duration and

durations for each part of the decomposition. Time durations
are given by equation, tall = tb +ts +ta, where tall indicates
the whole duration; tb, ts, and ta are the time durations
before, during and after the stopping range, respectively. tall
should maximize the likelihood of the simulated driving path,
ζ̂,

tall = argmax
tall

p(ζ̂|MDPb, Poisson, MDPa)

= argmax
tb,ts,ta

p(ζ̂b|MDPb, |ζ̂b| = tb)p(ts|Poisson)

p(ζ̂a|MDPa, |ζ̂a| = ta). (8)

where ζ̂b and ζ̂a are paths generated by MDPb and MDPa.
And ts is the time duration of the path ζ̂s generated by
MDPs. This problem can be solved by dynamic program-
ming efficiently in algorithm 1.

Algorithm 1 Calculating time partition by dynamic program-
ming
Input: max trajectory length maxT, min trajectory length before

stopping range minTb, min trajectory length after stopping
range minTa, trained MDP and Poisson models MDPb, MDPa,
Poisson

Output: time partitions tb, ts, ta
Function: FindTimePartitions(maxT, minTb, minTa, MDPb,
MDPa, Poisson)
// Caching the posterior for each partition for all possible
time durations
for t← minTb; t ≤ maxT−minTa; t← t + 1 do

fb(t)← p(ζ̂b|MDPb, |ζ̂b| = t)
end for
for t← 0; t ≤ maxT−minTa −minTb; t← t + 1 do

fs(t)← p(ζ̂s|Poisson, |ζ̂s| = t)
end for
for t← minTa; t ≤ maxT−minTb; t← t + 1 do

fa(t)← p(ζ̂a|MDPa, |ζ̂a| = t)
end for
// Calculating time partitions by dynamic programming
for t← minTb; t ≤ maxT−minTa; t← t + 1 do

fbs(t)← maxtb,ts fb(tb)fs(ts), t = tb + ts
end for
for t← minTb + minTa; t ≤ maxT; t← t + 1 do

fbsa(t)← maxtbs,ta fbs(tbs)fa(ta), t = tbs + ta
end for
ta, tbs ← argmaxta,tbs

fbsa(t), t = ta + tbs
tb, ts ← argmaxtb,ts fbs(tbs), tbs = tb + ts
return tb, ts, ta

2) Enhancement of driving path smoothness: In the
single-MDP method, both Viterbi and stochastic algorithms
are used for path planning for the driving behavior modeling,



but it is hard to keep the smoothness while also retain the
good stopping behavior. In the proposed method, we only use
the Viterbi path for planning instead of using the stochastic
path. The first reason is that the Viterbi path is unique if the
time horizon is fixed, which eliminated the uncertainty. On
top of that, due to the property of stochastic path, unusual
accelerations and decelerations always happen, which highly
affects the comfort of driving. Lastly, we usually generate
hundreds of stochastic paths and pick up some or take
the mean values of them. However, this process is time-
consuming, and the qualities of the stochastic paths are too
heterogeneous.

D. Inference process for planning the driving behavior

The only problem left to be solved is that the way
to connect three Viterbi paths obtained from the trained
sequential MDPs. The velocities at the connection boundaries
have to be considered, as shown in Figure 5. Currently, we
use one intuitive way by taking the average speed of each
boundary position from the expert demonstrations. Finally,
the full driving path will be planned by combining three
generated Viterbi paths together.
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Fig. 5: There are four velocities need to be determined for
one intersection noted by b1, b2, b3, and b4, respectively.
Each velocity is calculated by the average speed when expert
drivers tend to perform at this position.

E. Model optimization

A training dataset, D, contains n expert trajectories, D =
{ζ(1), ζ(2), . . . ζ(n)}, is divided into three sub-datasets ac-
cording to the intersection decomposition as the sub-dataset
before the stopping range, Db, the sub-dataset during the
stopping range, Ds, and the sub-dataset after the stopping
range, Da. For example, the sub-dataset Ds can be expressed
by Ds = {ζ

(1)
s , ζ

(2)
s , . . . ζ

(n)
s }, where ζ

(i)
s is a series of states

from the trajectory, ζ(i), in case those states are inside the
stopping range. We train each MDP from the sequential
MDPs model by the maximum entropy IRL [20] individually.

Besides, the parameter for the Poisson distribution, λ, is
estimated by the sub-dataset Ds alone,

λ̂ =
∑n

i=1 |ζ(i)
s |

n
. (9)

IV. EXPERIMENT

A. Experimental purpose

The experiment was carried out at an un-signalized in-
tersection. We collected expert driving data and trained the
driving behavior model based on those data. We wanted
to see whether the stopping behavior and smoothness of
planned paths are improved by the proposed method or not.

B. Dataset

A Honda Civic is used as the experimental vehicle, and
we equip the car with a driving recorder (Finefit Design,
Tough More-Eye) to record the front views and web cameras
(Logitech, C930e) to film drivers’ status. A GNSS antenna
(Hemisphere, AtlasLink) is used to record the vehicle’s
positions to calculate the velocity and accelerations. The
experiment was conducted in an un-signalized intersection
with six different scenes from A to F as the Table I shows.
cc (L) and cc (R) mean left corner cut and right corner cut,
respectively.

TABLE I: Six scenes of collected data
Scene name Road width [m] cc (L) cc (R)

A 6.0 Blind Blind
B 3.5 Blind Blind
C 3.5 Available Blind
D 3.5 Available Available
E 3.5 Blind Available
F 6.0 Available Available

Figure 6 illustrates an example of an experimental envi-
ronment when the vehicle crosses through the intersection
with scene C. We collected driving data from two driving
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Fig. 6: The experiment settings for scene C, where road width
is 3.5 meter with the left corner cut and without the right
corner cut.

instructors, who drove 15 times in each scene. The data of
one of the instructors were used as training and testing data
for this experiment.

C. Fine-grained state space discretization

The driving data are sampled at 5 [Hz] for the timestamp.
We also discretize state space and action space for the
training purpose. The position is discretized from 0 [m] to
50 [m] at 0.16 [m] intervals into 300 parts, and speed from
0 [m/s] to 7 [m/s] at 0.2 [m/s] intervals into 35 parts.



Therefore, the total number of states is 10, 500. Moreover,
we control the acceleration from −4.0 [m/s2] to 4.0 [m/s2]
to make the states’ transitions from vehicle dynamics.

D. Feature design

We design the feature functions, f(s), manually. We
consider (1) reducing speed at the beginning and end of each
decomposition, (2) avoiding high speed or slow speed for
the overall course, (3) zero velocity at the temporary stop
line. And those features are represented by two-dimensional
Gaussian kernels with their positions in discretized state
space. Figure 7 shows the initial reward of feature designed
of above statement, which takes the weights of equation (2)
as all one, 1.

0
2
4
6

v
e

lo
c
it
y
 [

m
/s

]

0 10 20 30 40 50

position [m]

Fig. 7: Initial reward.

To tackle large, improper accelerations at some positions
of the un-signalized intersections, we apply a new feature
function that takes the difference of velocity of a pair of
states into consideration [16]. We call it bi-potential features
with the following reward representation,

R(s, s′) = w>f(s, s′). (10)

E. Comparison methods

Sequential MDPs: In sequential-MDPs methods, we train
the models on the decomposed intersection with stan-
dard IRL feature functions and bi-potential feature func-
tions, called standard sequential MDPs (Sequential) and bi-
potential sequential MDPs (Sequential-Bi), respectively.

Single MDP: In this category, only one MDP is used
to model the whole intersection driving behavior. We also
train the models with different types of feature functions.
The following paths are used to compare: (1) Single-V,
Viterbi path generated from trained standard single MDP.
(2) Single-S, stochastic path generated from trained standard
single MDP. (3) Single-Bi-V, Viterbi path generated from
trained bi-potential single MDP. (4) Single-Bi-S, stochastic
path generated from trained bi-potential single MDP.

F. Evaluation metrics

In physics, jerk is the rate at which an object’s acceleration
changes with respect to time. So it is frequently used as a
method to evaluate the smoothness of the driving path. The
mean squared jerk, MSJ, for a trajectory, ζ, is

MSJ =
∑(|ζ|−1)

t=1 (acct+1 − acct)2

|ζ| − 1
, (11)

where acct represents the acceleration of path, ζ, at time t.
We also evaluated the stopping time near the temporary

stop line to understand whether the stopping behavior is

appropriate. The stop time should be the time within the
stop range, and its speed should be less than 0.2 m/s at any
time.

We applied modified Hausdorff distance (MHD) [5] to
see the similarity of planned paths with paths performed by
expert drivers. MHD matches two sequences with different
lengths and evaluates their difference. In this experiment,
we evaluated paths in a position-velocity manner and set
the MHD parameter α equals to 0.5 or 0.9. α means the α
percentile of the distances (e.g., α = 0.5, the median of the
distances). And we represent them by MHD50 and MHD90.

Due to the limited number of data, the test of significance
(t-test) is a formal procedure for comparing observed results
with the claims, the truth of which is being assessed or not.

G. Experimental results

The experimental results were obtained from 6 fold cross-
validation, which leaves one scene out for testing and the
rest for training. Figure 8 illustrates experiment results of
boxplots for proposed sequential-MDPs methods, single-
MDP methods, and raw expert data.
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Fig. 8: boxplots for evaluation results

Table II gives the errors of comparison methods with the
test data in smoothness and stopping behavior evaluation.
Sequential-MDPs methods have achieved the best perfor-
mances among others.

Table III shows the MHD50 and MHD90 results, re-
spectively. Sequential MDPs with the bi-potential IRL have
achieved the best result, but it is almost the same as the
performance of Single-V.
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Fig. 9: Planned paths and raw expert path

TABLE II: Evaluation errors with test data
Method MSJ error[m2/s6] Stopping time error[s]

Sequential 2.30± 1.43 0.80 ± 0.27
Sequential-Bi 1.62 ± 1.13 0.60 ± 0.27

Single-V 3.47 ± 1.55 3.42 ± 0.31
Single-S 8.59 ± 1.66 1.10 ± 0.23

Single-Bi-V 3.96 ± 1.52 4.68 ± 0.31
Single-Bi-S 8.64 ± 1.60 1.07 ± 0.22

TABLE III: MHD results
Method MHD50 MHD90

Sequential 0.28± 0.05 0.57 ± 0.09
Sequential-Bi 0.30 ± 0.04 0.57 ± 0.10

Single-V 0.33 ± 0.06 0.60 ± 0.12
Single-S 0.34 ± 0.02 0.80 ± 0.10

Single-Bi-V 0.38 ± 0.06 0.69 ± 0.10
Single-Bi-S 0.34 ± 0.02 0.75 ± 0.08

Due to the limited number of testing data, we conducted
statistical hypothesis testing (two-sample t-test) to verify the
real difference among those methods. First, we set up the
null hypothesis, H0, as the means of two evaluation results
are equal to each other. The t-test results shown in Figure 10
represent whether the null hypothesis, H0, should be rejected
or not. Asterisks represent whether p-value, p, is less than a
predetermined significance levels. "**" represents p < 0.001,
and "*" indicates p < 0.1.

We also checked the planned driving paths by each com-
parison method. The smoothness and stopping behavior for
the proposed sequential-MDPs methods are greatly improved
as shown by Figure 9.

H. Discussion

We want to discuss the experimental results in both quan-
titative and qualitative ways. In terms of the smoothness of
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Fig. 10: two-sample t-test results: figures show the bar graph
of mean values of evaluation results with error bars for each
method.



the planned paths, sequential-MDPs methods have achieved
the best result, especially for bi-potential sequential MDPs,
which improved the error by at least 53%. As for the
stopping behavior, sequential MDPs methods also increased
the stopping awareness by at least 46%. The most important
fact is that sequential-MDPs methods successfully satisfies
both sides of decent stopping behavior and good smoothness
property, which was not fulfilled by previous works of DBM
at the intersection [12] [16] [14]. Regarding the MHD results,
sequential-MDPs methods also outperformed all comparison
methods that the planned paths were most closer to experts’
data.

The t-test results showed that sequential-MDPs approaches
outperformed other methods in smoothness and stopping
behavior evaluation with statistical significance. Also, it is
hard to deny that standard sequential MDPs and bi-potential
sequential MDPs have different performances in MHD eval-
uation regardless of their statistical figures’ differences.

Figure 9a and 9b are paths generated by the sequential-
MDPs approaches, whose smoothness and stopping behavior
are close to the expert data shown in Figure 9g. In contrast,
Figure 9c-9f illustrate the paths planned by the single MDP
approach. They do not have proper stopping behavior and
also do not meet the satisfactory smoothness property. It
is noteworthy that Figure 9b has a sudden acceleration and
deceleration behavior before entering the intersection. This
abnormal behavior might be due to the property of bi-
potential reward that constant acceleration tends to be re-
warded. The vehicle keeps the acceleration before decreasing
the speed.

V. CONCLUSION

We proposed a sequential-MDPs approach to model the
driving behavior at the un-signalized intersections, which
effectively improved the smoothness and stopping awareness
of the planned paths. Moreover, we evaluated our model
by running the experiments on real driving data. The pro-
posed sequential MDPs with standard or bi-potential features
achieved the best results among other comparison methods.
We also conducted the t-test to verify the evaluation results
to guarantee confidence in a limited number of data. As
for the limitation of this work, the computational cost will
increase if we expand the number of segmentation and
course distances. The future work will focus on more generic
applications of driving behavior modeling to diverse driving
tasks and dynamic environments to realize the long-term
driving behavior modeling.

REFERENCES

[1] N. AbuAli and H. Abou-zeid, “Driver behavior modeling: Devel-
opments and future directions,” International Journal of Vehicular
Technology, 2016.

[2] P. Aditya et al., “Exploring data aggregation in policy learning
for vision-based urban autonomous driving,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020.

[3] N. Akai et al., “Driving behavior modeling based on hidden markov
models with driver’s eye-gaze measurement and ego-vehicle localiza-
tion,” in 2019 IEEE Intelligent Vehicles Symposium (IV), 2019.

[4] M. Bojarski et al., “End to end learning for self-driving cars,” 2016.

[5] M. . Dubuisson and A. K. Jain, “A modified hausdorff distance for
object matching,” in Proceedings of 12th International Conference on
Pattern Recognition (ICPR), 1994.

[6] V. Gadepally et al., “A framework for estimating driver decisions
near intersections,” IEEE Transactions on Intelligent Transportation
Systems, pp. 637–646, 2014.

[7] L. Han et al., “Bézier curve based path planning for autonomous
vehicle in urban environment,” in IEEE Intelligent Vehicles Symposium
(IV), 2010.

[8] A. Kuefler and A. Zisserman, “Imitating driver behavior with gener-
ative adversarial networks,” in IEEE Intelligent Vehicles Symposium
(IV), 2017.

[9] K. Lee et al., “Approximate inverse reinforcement learning from
vision-based imitation learning,” 2020.

[10] S. Lefèvre et al., “Comparison of parametric and non-parametric
approaches for vehicle speed prediction,” in American Control Con-
ference (ACC), 2014.

[11] S. Mondal et al., “Modeling driver acceleration behaviour at signalized
intersection under mixed traffic environment,” Journal of the Eastern
Asia Society for Transportation Studies, pp. 1761–1776, 2019.

[12] K. Nishi et al., “Fine-grained driving behavior prediction via context-
aware multi-task inverse reinforcement learning,” in Proceedings of
the 2020 IEEE International Conference on Robotics and Automation
(ICRA), 2020.

[13] D. Pomerleau et al., “Alvinn: an autonomous land vehicle ina neural
network.” in In Advances in Neural Information Processing Systems
(NIPS), 1988.

[14] M. Shimosaka et al., “Modeling risk anticipation and defensive
driving on residential roads with inverse reinforcement learning,” in
International IEEE Conference on Intelligent Transportation Systems
(ITSC), 2014.

[15] T. Streubel and K. H. Hoffmann, “Prediction of driver intended path
at intersections,” in IEEE Intelligent Vehicles Symposium Proceedings
(IV), 2014.

[16] K. Tachibana et al., “Driver modeling at unsignalized intersection
with stop lines using inverse reinforcement learning (in japanese),” in
Society of Automotive Engineers of Japan (JSAE) Congress (Spring),
2020.

[17] J. Tilp et al., “Pedestrian protection based on combined sensor
systems,” in International technical conference on the enhanced safety
of vehicles (ESV), 2005.

[18] S. Yang et al., “Driving behavior modeling at unsignalized intersection
with inverse reinforcement learning on sequential MDPs,” in The
Society of Instrument and Control Engineers (SI), 2020.

[19] J. Zhang and R. Bernd, “Situation analysis and adaptive risk assess-
ment for intersection safety systems in advanced assisted driving,”
Autonome Mobile Systeme (AMS), pp. 249–258, 2009.

[20] B. D. Ziebart et al., “Maximum entropy inverse reinforcement learn-
ing,” in Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 2008.


