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Abstract: With the pandemic of COVID-19, indoor crowd density monitoring is on-demand by public service
providers. Due to the fact that its performance on crowd density monitoring highly depends on how BLE beacons
are allocated, BLE beacon placement optimization has been tackled as fundamental research work in the ubiquitous
computing community. However, the previous researches focus on the batch optimization and ignore the actual work-
load to obtain the optimal placement result. In this research, we propose a novel approach to incrementally optimize
the beacon placement by detecting the optimal placement of BLE sensors in favor of Bayesian optimization and deter-
mining the optimal location to place the beacon. Our proposed method can optimize the beacon placement effectively
to improve the signal coverage quality in the given environment and also minimize the human workload. The experi-
ment results on actual BLE sensing results show that our proposed method can provide over 13% area coverage than
the average placement while reducing 67% optimization time.
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1. Introduction
With the development of IoT technology, BLE beacons are

widely used in modern society for various purposes, as indoor
tracking, peripheral detection, and indoor localization [1]. Blue-
tooth Low Energy (BLE) technology is capable of providing con-
siderably reduced power consumption and cost while maintain-
ing a similar communication range. By deploying BLE beacons,
we can provide localization solutions for a robust indoor envi-
ronment with great power efficient both for the broadcaster and
receiver [2].

During the COVID-19 pandemic, BLE technology is widely
used for contact tracing and indoor crowd monitoring to prevent
infectious disease. Japanese government urges people to avoid
Three Cs (San Mitsu) to prevent factors from leading to clusters
of infection. Some public service facilities or organizations take
the responsibility to prevent Three Cs [3]. Thus, organizations
and companies have promoted indoor crowd monitoring applica-
tions to prevent the spreading of the epidemic. Beacapp corpora-
tion is one of the companies that provide indoor tracking systems
using BLE beacons to customers for the office space [4]. Mean-
while, some education facilities in Japan have also deployed BLE
beacons to monitor indoor crowd density.

Indoor localization with BLE beacons has been studied for
years [5,6]; especially, the localization algorithm gets most of the
attention. However, it is crucial to provide accurate results only
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with optimal beacon placement. Optimizing BLE beacon place-
ment is a challenging and laborious problem. First, knowing the
detection status of beacons is difficult, because the measurement
of all the locations is laborious. Second, knowing how to opti-
mize the placement is a more difficult problem, as we will never
know the exact propagation of the Bluetooth signal before placing
the beacon.

As for the optimization problem itself is not a decidable prob-
lem, and one cannot be solved in polynomial time. Many re-
searchers have attempted to solve it by Genetic Algorithm (GA)
to derive the optimal results [7–9]. Some other researchers also
propose the differentiable objective function and solve it by the
neural network [10]. The greedy algorithm is also proposed to
optimize the beacon placement. Shimosaka et al. propose the
backward greedy algorithm, which needs to place redundant bea-
cons at initial and then apply multiple rounds to reduce the bea-
cons and evaluate the performance [11].

The previous research focuses on analyzing the beacon place-
ment problem of theoretical geometry analysis and the batch in-
stallation phases but ignores that the environmental factors can
affect actual coverage status in the optimization [12–14]. Also,
the optimization workload has seldom been studied, which is im-
portant to the actual optimization. However, to apply neural net-
works, genetic algorithm, or greedy algorithm to solve the prob-
lem, those solutions require a large amount of data or a high cal-
culation cost, thus it is not fesiable for real-time optimization.

In this research, we focus on incremental placement optimiza-
tion placement in the given environment by balancing the work-
load. Our method generates the BLE radio map from small RSSI
samples and decides the next optimal BLE beacon placement lo-

© 2021 Information Processing Society of Japan 1



IPSJ SIG Technical Report

cation by simulating the signal propagation, and it can optimize
the BLE beacon placement in real-time deploying if we acquire a
small portion of signal RSSIs from the beacons.

The contributions of this article include the following:
• We propose the approach to place candidate beacons, derive

the detection probability map by Bayesian optimization, and
estimate the optimal location for the subsequent placement.

• We conducted the experiment on one building floor, and
evaluated our proposed method performance.

Related work
Batch beacon optimization from geometry perspectives

Most of the related work studies the batch optimization of sen-
sor optimization. Researchers propose the k-coverage objective
for the locations, which means signals should cover the objective
area from the k number of beacons. In the most of the case, to
solve the coverage optimization problem, the objective function
usually is not differentiable, and the genetic algorithm is often
used to find the optimal result [7, 13, 15].

Wu et al. propose a geometry model of sensor coverage op-
timization to improve the indoor localization accuracy and fo-
cus on the critical-grid coverage problem with accuracy and cost
objectives [13]. They define the objective as the k-coverage for
the critical-grid and propose the optimization objective as maxi-
mizing the average covering critical-girds of the beacons. Falque
et al. also propose a heuristic strategy to optimize the beacon
placement by defining a cost-function to maximize the average
coverage by the beacon and maximize the distance between bea-
cons [7].

However, batch beacon optimization is to find the optimal
placement of beacons all at once, and it could not consider the
actual beacon signal propagation in the environment. Thus, it is
not convincing of the batch optimization.
Batch beacon optimization of selection problem

Some research model the problem as the beacon selection
problem and define the differentiable loss function [10, 16, 17].
Schaff et al. propose an approach of beacon selection [10]. The
selection of beacon is defined as the 0-1 value. They define the
differentiable loss of received signal strength indicator (RSSI)
difference at each location between the estimated and measure-
ment. They derive the optimal placement by the neural network
training.

However, using deep learning technology requires a large
amount of data to avoid overfitting problems. Consequently, this
kind of solution requires a large workload.
Iterative optimization using greedy algorithm

On the other hand, some other researchers also employ the it-
erative optimization approach [11, 18]. Shimosaka et al. pro-
pose a backward greedy approach for Zigbee sensor placement
optimization in an indoor localization system [11]. This paper
proposed the backward and forward greedy algorithms of opti-
mization. For the backward greedy algorithm, all the beacons,
including redundant beacons, were placed first and then remove
the smallest effective beacon step by step by measurements and
calculations. In contrast, forward greedy algorithm starts from
none of beacons and decide to place the beacons decided by the

full measurements and calculations iteratively. Those approach
requires a high calculation cost and requires much more human
labor cost. Also, this approach requires a large number of redun-
dant beacons if for a large indoor environment.

2. Problem settings and beacon placement op-
timization

2.1 Problem settings for incremental beacon placement op-
timization

Indoor monitoring is realized by the mobile application on the
user side and the delicate beacon deployment as the infrastruc-
ture. The installed mobile application can provide the user local-
ization information. It will detect the peripheral Bluetooth sig-
nals and determine the user’s current location. Given radio wave
propagation, the power of the signal gets weaker after the long
distance. The application can help determine the nearest BLE
beacon by finding the maximum RSSI from received Bluetooth
signals.

From the BLE beacon’s placement location, the user’s location
can be easily determined. The placement of beacons is funda-
mental to monitoring functions. Therefore, the beacon placement
optimization is important to increase the performance of localiza-
tion by using BLE beacon efficiently.

Beacon placement optimization finds the optimal number of
beacons n as well as the optimal placement locations of beacons,
B = {b1, b2, ..., bn}, bi ∈ R2 is the selected optimal loca-
tion of beacon i. Beacon placement optimization is defined as the
follows:

argmax
B(A)

∑
l

[[P (y|l,B(I) ∪B(A)) > t]], (1)

where [[a]] is the indicator function that [[a]] = 1 if a is true, else
[[a]] = 0. P (y|l,B) is the beacon detection probability at loca-
tion l under the beacon placement B, B(I) is initially installed
beacon placement, and B(A) are the beacons to be installed. Our
research aims to find the optimal locations to place the beacons
while achieving P (y|l) > t where t is the thresholding detection
probability for each location l.

In this paper, we tackle the incremental beacon placement op-
timization problem is to place beacons at optimal location itera-
tively with the initially installed beacons B(I) to cover expansive
space with good-quality signals.

2.2 Existing problems of Beacon placement optimization
Even though we can roughly estimate the BLE signal propaga-

tion by path loss model, it is very hard estimate the propagation
for the indoor environment. The propagation of the BLE signal
is highly affected by environmental factors, such as the walls,
doors, and barriers, but current research mostly overlooks the ac-
tual propagation. Simply simulating the signal coverage of the
new beacon cannot be helpful in the actual environment. Also,
the signal detection probability is roughly modeled. In the [7],
0 − 1 detection probability is proposed once the RSSI is smaller
than a specific value, as shown as the follow. r(l) is the RSSI
distribution modeling function.
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Fig. 1 The overview of optimization process, including estimating RSSI
distribution, creating detection map and iterative determining and
placing the beacon and updating the detection

p(y|l) =

{
1 (r(l) > −100)

0 (otherwise)
,

The batch optimization decides the optimal number of beacons
n and the optimal placement of B all at once, but it can only
use the simulation of signal propagation or large training dataset
to determine the beacon’s placement. That means the actual en-
vironmental factors are hard to be considered or heavy human
labour cost is necessary by the batch optimization method.

The greedy algorithm requires multiple rounds of laborious
measurements and heavy calculation costs. It can determine the
next beacon bi+1 to be placed or removed by fully measurement
and calculation. Applying this approach in the actual optimiza-
tion will require much human labor for the measurement, costing
the longer walking distance and optimization time.

From the above analysis, we propose the method of incremen-
tal optimization. By using incremental optimization, we can con-
sider the environmental factors and balance the workload and cal-
culation.

3. Proposed method: Incremental beacon
placement optimization

3.1 Overview
Our method, first, models the BLE signal propagation for all

initially installed sensors with fewer data by using the Bayesian
optimization manner. We discuss the design of the acquisition
function and how to model the RSSI propagation for BLE bea-
cons. After constructing the BLE RSSI propagation model, we
decide to add the beacons inclemently from the signal detection
probability. We also discuss how to calculate the signal detection
probability from RSSI distribution and decide placement location
iteratively in section.

In order to ensure the availability of the beacon signals, the
given environment should be covered with good quality Blue-
tooth signals. Our proposed method consists of the processes
of beacon signal property analysis and incremental beacon opti-
mizations. As for the incremental beacon optimizations, we will
obtain the signal detection map of the environment for each round
of optimization and determine the new beacon’s optimal location.
The overview process of our proposed is shown in Fig.1.

3.2 Beacon signal property analysis
Before optimizing the placement, we need to analyze the prop-

erties of signal RSSI from observation. This observed informa-
tion is helpful to determine the signal quality evaluation.
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Fig. 2 The RSSI relationship with propagation distance

We conclude the following properties of RSSI properties from
the observed signal RSSI distribution.
• The signals whose RSSI is less than -100 [dbm] is nearly not

detected.
• The RSSI of detected signals is centered at -80 [dbm].
In this research, we analyze the detection problem from the

probabilistic perspective. By analyzing the RSSI distribution, we
can see that the detection probability reduces sharply when the re-
ceived signal RSSI is less than -90. Thus we define a conditional
probability of detection given RSSI.

P (y|r) = 1

1 + exp (−sr + b)
, (2)

In Equation 2, y stands for the detection probability of the sig-
nal, r is RSSI of the received signal, and s, b are the parameters
for the sigmoid function.

3.3 Estimation of signal RSSI distribution
The RSSI of signals is the only measurement data in our pro-

posed method, and we can get the detection probability signals
from the RSSI distribution. It is essential to estimate the RSSI
distribution accurately and effectively.

As the path loss equation is shown in Equation 3, the loga-
rithm RSSI r forms the linear relationship with the distance d to
the beacon, while r0 is the RSSI at the location from the 1m dis-
tance to the beacon. Figure 2(b) shows this relationship from our
observations.

r = r0 − η log10 d, (3)

However, the radio wave can be reflected or weakened by the
environment, such as the floor layout, walls, and existing barriers.
As a result, it is impossible to estimate signal RSSI distribution
without any measurement. Also, it is infeasible to estimate the
RSSI by measuring the RSSI of every location in the given envi-
ronment because not every location is assessable, and it will lead
to a heavy workload of measurement.

In order to obtain accurate RSSI distribution of a beacon with
less effort, we propose the method to estimate the RSSI distribu-
tion by Gaussian process regression via Bayesian optimization to
reduce measurement workload.
Estimation of RSSI distribution by Bayesian optimization

We model the signal RSSI distribution from the beacon as a
probabilistic model P (r|l), which is the probability of RSSI r

given location l. Because it is infeasible to acquire all the RSSI
from the measurement, we consider using Gaussian process re-
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gression to derive the mean of RSSI µl for every location l. How-
ever, as for Gaussian process regression, it still needs many data
to generate the accurate RSSI. Consequently, the probability of
RSSI r at location l forms the Gaussian distribution. σl is the
standard deviation at location l.

P (r|l) ∼ N (µl, σl), (4)

Bayesian optimization is a sequential strategy for global op-
timization, and it can suggest the following optimal location to
acquire the data. Because we want to reduce the uncertainty of
RSSI distribution, we employ the standard deviation of Gaussian
process regression as the acquisition function, shown in Equation
5. We can derive the next measuring location where exists the
most significant standard deviation.

AQ(l) = argmax
l

σl, (5)

Also, as it is impossible to measure the RSSI of every location,
to avoid the useless exploration of those unmeasurable areas, we
propose generating the artificial RSSI of those locations.

Using Equation 3, we can generate the artificial RSSI of a bea-
con with the distance d. With the generated RSSI, the uncertainty
of the unmeasurable locations can be eliminated. Furthermore,
because we set the artificial RSSI for all the measurable locations
and the acquisition function for all the beacons is uncertain, the
acquisition function value for every beacon is the same. In other
words, we can obtain the RSSI estimation accurately of every
beacon at the same time. It helps us to reduce the workload much
less.

3.4 Creation of the signals detection map
As we optimize the placement in the probabilistic coverage ap-

proach, the high-quality signal detection probability of can be de-
rived using the RSSI distribution of beacon i P (ri|l) and sig-
nal detection evaluation probability P (y|r) which is the same for
each beacon. As for single beacon i, we first define the signal de-
tection probability at location l as P (yi|l). By convoluting those
probabilities, we can derive the beacon i detection status yi of
beacon i given the location l.

P (yi|l) =
∫

P (yi|ri)P (ri|l)dri, (6)

As we want to derive the joint signals detection probability of
multiple beacons, which is the probability for the full-coverage
problem, we can use the coverage equation shown in Equation 7.

P (y|l) = 1− Πi(1− P (yi|l)), (7)

With the probability of P (y|l), we can acknowledge the cov-
erage of good-quality signal status at the given location l quanti-
tatively.

3.5 Iterative estimation of the optimal location to place new
beacon

After knowing the quantitative coverage status by the probabil-
ity P (y|l), we can estimate the optimal beacon placement loca-
tion.
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Fig. 3 Floor-plan with candidate locations for beacon placement

The RSSI distribution of a new beacon at any location can be
estimated by Equation 3 if the location is known, and we can
also get the new detection probability using Equation 2. With the
estimated new beacon detection probability, we can estimate the
updated detection probability of the given environment. We can
determine the optimal location by selecting the maximum detec-
tion improvement Ij when the new beacon at location j from all
the candidates from the candidates of different locations to place.

Ij =
∑
l

min(P (yj |l), t)−min(P (y|l), t), (8)

As shown in Equation 8, P (yj |l) is the new joint detection
probability after adding new beacon at location j, and t is the
expected threshold of detection probability.

By conducting the processes of updating the latest signals de-
tection map and the optimal location to place by estimation iter-
atively, we can finally derive the optimal placement of beacons
when the improvement I is reduced relatively small.

4. Experiment
We conducted the experiment to evaluate the effectiveness of

our proposed method. We wanted to optimize the beacon place-
ment from different initialization placement with our proposed
experiment.

4.1 Experiment settings
We experimented on one floor inside the university building,

and the floor plan is shown in Fig.3. The area of the floor is
about 300 m2. The orange dots on the figure indicates the mea-
surement point to measure the RSSI from beacons, and they are
by 1m distance. As for the faculty rooms, students cannot enter
due to administrative concerns, so these places are inaccessible
locations.

We used the FeasyBeacon FSC-BP104 beacons for the exper-
iment and set the same options for each beacon to ensure that
every beacon has the same property in the experiment. We had
up to 25 beacons for this experiment, and it was the redundant
number of beacons to place on this floor.

We chose 25 candidate locations for the experiment, as shown
in Fig.3. Our goal here was to validate the effectiveness; we con-
sidered making the experiment setting that the beacons could only
be placed at those candidate locations. Also, due to the limited
human labor, we placed 25 beacons to the candidate locations at
the beginning of the experiment. We only used the RSSI data
of the beacons assumed to be already placed in the optimization
process. This technique allowed us to evaluate our method per-

© 2021 Information Processing Society of Japan



IPSJ SIG Technical Report

formance of the same dataset. To prove the generality of our pro-
posed method, we chose the different groups of initial placement
of beacons.

4.2 Evaluation metrics
In order to evaluate the effectiveness and labor cost of our pro-

posed method, we employed the following evaluation metrics.
Area coverage with given number of beacons

This metric was to evaluate the signal coverage status of the
entire environment. We evaluated the percentage of the counted
number of locations over expected detection probability t by the
number of total locations N . c(xi, t) was the 0-1 function to
evaluate whether the detection probability of grid i was above
detection threshold t.

We showed this metric with the different number of beacons
placed. In the comparison, we also used the calculated best,
worst, and median percentage with the same number of beacons
from all the permutations.

p =

N∑
i=1

c(xi, t)

N
, (9)

c(xi, t) =

{
1 (xi ≥ t)

0 (xi < t)

Detection probability improvement
This metric was defined in Equation 8. It was to show the

change of detection probability improvement with the increased
number of beacons. We presented the result of three groups with
bad, medium and good initial coverage. This metric could con-
clude the optimal number of beacons for each initial status.
Labor cost

We presented the labor cost by the walking distance and the to-
tal optimization time. Walking distance and total time could show
the workload to obtain the optimal placement. We compared the
walking distance with the dense data measurement. Also, we as-
sumed the walking speed of the maintainer as 1 m/s, and once
measurement time as 10 s. From this setting, we could estimate
the total optimization time.

4.3 Experiment results
We chose 10 sets of different initial placement of 2 beacons,

and we chose those initial conditions from all the permutations,
including 3 sets of initial low detection probability, 4 sets of initial
median detection probability and 3 sets of high detection proba-
bility.

Fig.4 shows the bad initial detection optimization process, and
in which we estimated the optimal location to place and updated
the detection map iteratively. Fig.4(d) shows the final result of op-
timization after placing 3 extra beacons. Fig.5 shows the joint de-
tection probability when placing the beacon at certain locations.

Fig.6, Fig.7 and Fig.8 show the changes of percentage of lo-
cations of expected detection probability metric of the different
number of beacons. The best, median and worst results are the
results we choose from the permutation results of given the same

initial beacons. Fig.6 shows our proposed method can cover 20%
more areas than the median result for the bad initial placement,
Fig.7 shows our proposed method can cover 17% more areas than
the median result for the medium initial placement, and Fig.8
shows our proposed method can cover 13% more areas than the
median result. However, there is still a gap between the best so-
lution given from the all permutations.

Fig.9 shows the improvement metric goes down with the
growth of beacons. The normal and good line shows the im-
provement changes when placing a new beacon at the optimal
position suggested by our method, and the bad one shows that for
the initial bad case. We can see that the improvement gives near 0
improvement after we place 6th beacons. That means the optimal
number of beacons is 5 for good and normal initial placement.

Table 1 Measurement labor cost
Method measurements walking distance [m] time [s]
Dense data 199 412.79 2411.79
Proposed 25 528.88 778.88

Table 1 shows the measurement times, walking distance, and
required time of our proposed method compared to the dense
data approach, which is to measure all the measurable locations.
This result shows that our proposed method can save much of the
measurements and reduce 67% of the total time for optimization.
However, our proposed method make people walk 100 m more
distance than the dense measurement as for the walking distance,
because the walking route is optimized for the measurement. We
think the proposed method still reduces the labor cost because the
100 m is not a significant burden, and we can reduce most of the
total time.

5. Conclusion
In this research, we focus on the beacon placement optimiza-

tion problem for the indoor crowd monitoring applications. We
propose a method to incrementally optimize the placement of
BLE beacons from the initial placement to improve the signal
quality coverage for the given environment. By conducting the
experiment on a floor inside a building, the result shows our pro-
posed method can optimize the placement of beacons effectively
in generality with less human labor.

Applying our proposed method makes it easy to optimize the
beacon placement with the consideration of the environmental ef-
fect. Also, it will require much less time and labor cost.

However, the experiment result still shows a tiny gap between
using our proposed method and the best optimization from the
permutation.

For future work, we want to improve the process of detection
map update. Currently, the detection map update uses the estima-
tion of a new beacon, but the new beacon propagation is unknown
status to us, and it is necessary to update the detection map with
the measurement data. We need to propose an effective explo-
ration to update the detection map after the new beacon is placed
in the future.

For another thing, we have experimented in a given environ-
ment with setting up all the beacons at the beginning. As for
future work, we plan to conduct the experiment on the on-play
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Fig. 4 The estimated detection probability of optimization process
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Fig. 5 The ground truth detection probabilities of optimization process
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Fig. 6 Percentage changes of bad initial placement
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Fig. 7 Percentage changes of medium initial placement
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Fig. 8 Percentage changes of good initial placement

indoor monitoring system environment to evaluate our proposed
method.
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