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Abstract
With the pandemic of COVID-19, indoor crowd density mon-
itoring has become one of the most critical responsibilities
of public space managers. Beacon placement optimization
has been tackled as fundamental research work as the per-
formance of crowd density monitoring highly depends on
how BLE beacons are allocated. In this research, we pro-
pose a novel beacon placement optimization approach to
incrementally place the beacon on the updated detection sta-
tus adaptively in favor of Bayesian optimization, which can
help to provide the optimal beacon placement. Our proposed
method can optimize the beacon placement effectively to im-
prove the signal coverage quality in the given environment
and minimize human workload.

CCSConcepts: • Information systems→ Sensor networks;
• Networks→Mobile networks.

Keywords: placement optimization, crowd density monitor-
ing, adaptive optimization

ACM Reference Format:
Yang Zhen, Masato Sugasaki, Yoshihiro Kawahara, Kota Tsubouchi,
Matthew Ishige, and Masamichi Shimosaka. 2021. AI-BPO: Adap-
tive incremental BLE beacon placement optimization for crowd
density monitoring applications. In 29th International Conference on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SIGSPATIAL ’21, November 2–5, 2021, Beijing, China
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8664-7/21/11. . . $15.00
https://doi.org/10.1145/3474717.3483964

Advances in Geographic Information Systems (SIGSPATIAL ’21), No-
vember 2–5, 2021, Beijing, China. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3474717.3483964

1 Introduction
During the COVID-19 pandemic, Bluetooth Low Energy
(BLE) technology is widely used in contact tracing and in-
door crowd monitoring systems to prevent infectious dis-
eases. Some public service facilities take the responsibility to
prevent such situations and choose to deploy indoor crowd
monitoring applications to prevent the spreading of the epi-
demic. The University of Tokyo released an indoor density
monitoring system using BLE beacons to monitor the crowd
density of the classroom, laboratory, library, and dining hall1.
This indoor crowd density monitor system consist of the mo-
bile application at the user’s side and the beacon sensor
network as the infrastructure.
To obtain accurate result in indoor crowd density mon-

itoring, beacon placement should be carefully designed to
cover the spatial area. Finding the optimal beacon placement
is a challenging and laborious problem. First, knowing the
beacon’s detection status is difficult. Second, finding the op-
timal location to place the beacon is complicated because the
actual propagation of Bluetooth signals is unknown until we
install the beacon and take the measurement. Hence, most
installation of beacons relies on the experience of experts,
which significantly impairs their scalability.

Beacon placement optimization has been studied for years
in indoor localization, Wireless Sensor Network (WSN), and
Robotics communities [2, 3, 5, 10–13, 16]. Some researchers
proposed batch simulation-based sensor placement optimiza-
tion methods which use the radio wave propagation model
to estimate the radio map to maximize the coverage of bea-
con signals [3, 4, 8, 9, 17, 18]. However, they cannot reflect
the actual radio map in the target environment because the
true received signal strength indication (RSSI), which can

1https://mocha.t.u-tokyo.ac.jp/en
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be obtained through measurement, is not considered. Some
other research proposed optimization methods by select-
ing beacons from large distributed beacons [1, 6, 7, 13, 15].
This approach can provide the beacon placement consider-
ing actual radio propagation. However, it demands an ideal
initial beacon placement of adequate beacons and dense data
measurement.
This research focuses on the BLE sensor placement opti-

mization problem for the indoor crowd monitor application.
Our goal is to enlarge the high-quality Bluetooth signal cov-
erage on the target environment with limited beacons. We
propose a novel method named Adaptive Incremental Bea-
con Placement Optimization (AI-BPO), which effectively sug-
gests beacon placement that maximizes detection coverage
with minimal labor cost.

The contributions of this article include the following:

• We propose a beacon placement method AI-BPO by
alternating the measurement and beacon placement
processes.

• We acquire a dense beacon placed dataset for compar-
ing with all combinations of beacon placement and
evaluate the effectiveness of our method.

2 Problem Settings
Mobile application of the user’s side detects the peripheral
Bluetooth signals and determines user’s location by the sig-
nal with maximum RSSI from the beacon. Hence, the place-
ment of beacons is fundamental to crowd monitoring.
Beacon placement optimization finds the optimal num-

ber of beacons and the optimal locations to place beacons,
maximizing the beacon area coverage of expected detec-
tion probability. Let the discretized position of target envi-
ronment be L ⊂ R2, initially placed beacon locations be
𝑩 (𝐼 ) = {𝒃 (𝐼 )

1 , ..., 𝒃 (𝐼 )
|𝐵 (𝐼 ) |} ⊂ R

2, additional beacon locations be

𝑩 (𝐴) = {𝒃 (𝐴)
1 , ..., 𝒃 (𝐴)

|𝐵 (𝐴) |} ⊂ R2, and 𝑦 ∈ {1, 0} be the beacon
signal’s detection status where 𝑦 = 1 indicates that the sig-
nal is detectable, and 𝑦 = 0 is not, respectively. We define
the beacon detection probability at 𝒍 ∈ L under the beacon
placement 𝑩 = 𝑩 (𝐼 ) ∪ 𝑩 (𝐴) as 𝑃𝑩 (𝑦 |𝒍). We formulate the
beacon placement optimization as the follows:

argmax
𝑩 (𝐴)

∑
𝒍 ∈L

[[𝑃𝑩 (𝐼 )∪𝑩 (𝐴) (𝑦 = 1|𝒍) > 𝑡]], (1)

which is to find the additional beacon locations 𝑩 (𝐴) to im-
prove overall detection probability where [[𝑎]] is the indi-
cator function that [[𝑎]] = 1 if 𝑎 is true, else [[𝑎]] = 0, and 𝑡
is the target signal detection probability. In this paper, we
tackle the beacon placement optimization problem to place
beacons at optimal location incrementally from the initially
installed beacons 𝑩 (𝐼 ) to cover expansive space with Blue-
tooth signals of high detection probability.

3 Proposed Method
Our proposed method evaluates and optimizes the beacon
placement using the signal RSSI distribution. Owing to ob-
servations, we define the detection probability given RSSI as
a sigmoid function, as below,

𝑃 (𝑦 = 1|𝑟 ) = 1
1 + exp (−𝑠𝑟 + 𝑏) , (2)

where 𝑦 = 1 stands for the detectable status of the signal, 𝑟
is the RSSI of the received signal, and 𝑠 , 𝑏 are the parameters
of the sigmoid function.

3.1 Estimation of signal detection probability
To obtain an accurate RSSI distribution map with considera-
tion of environmental factors such as the floor layout, walls,
furniture which significantly influence the signal propaga-
tion and avoid heavy data gathering, we propose to model
RSSI distribution using Gaussian process regression and pick
up measurement location using Bayesian optimization to
approximate RSSI distribution as accurately as possible with
limited measurements.
We estimate the probability of RSSI from the beacon 𝑖

located at 𝒃𝒊 , at location 𝒍 being 𝑟 by Gaussian process re-
gression as the following,

𝑃 {𝒃𝑖 } (𝑟 |𝒍) ∼ GP(𝜇𝒍𝒃𝑖 , 𝑘 (𝒍, 𝒍
′)), (3)

where 𝑘 (𝒍, 𝒍 ′) is the Gaussian kernel function. Inspired by the
work by Shimosaka et al. [14], the accurate estimation with a
reduced number of data via Bayesian optimization. In order
to maximize the exploration and reduce the uncertainty of
RSSI distribution effectively, we choose to use the sum of the
standard deviation of each installed beacon from Gaussian
process regression.
Once an RSSI distribution map is generated, a detection

probability map can be generated using 𝑃 (𝑦 |𝑟 ), which is com-
mon among all the beacons. An estimated signal detection
probability at a location 𝒍 of a beacon 𝑖 is given as follows:

𝑃 {𝒃𝑖 } (𝑦 |𝒍) =
∫

𝑃 (𝑦 |𝑟 )𝑃 {𝒃𝑖 } (𝑟 |𝒍)𝑑𝑟 . (4)

Considering that a certain location is covered with signals
from multiple beacons, we estimate the detection probability
at location 𝒍 as a 1-coverage problem. The overall detection
probability 𝑃𝑩 (𝑦 |𝒍) of installed beacons 𝑩 at a location 𝒍 is
defined as:

𝑃𝑩 (𝑦 = 1|𝒍) = 1 − Π𝑖 (1 − 𝑃 {𝒃𝑖 } (𝑦 = 1|𝒍)) . (5)

A detection probability map can be generated by calculating
𝑃𝑩 (𝑦 |𝒍) at every location 𝒍 on 𝑦 = 1.

3.2 Determination of a new beacon placement
Although it is hard to estimate the actual RSSI distribution of
a new beacon, we hypothesize that approximating it with a
circular shape is sufficient. We calculate the RSSI distribution
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after placing beacon 𝑖 at candidate location 𝒍 using the circu-
lar shape signal coverage. We can obtain simulated detection
probability 𝑃 {𝒃𝑖 } (𝑦 |𝒍) of new beacon 𝑖 placed at location 𝒃𝑖
by applying the calculated RSSI to detection model Equation
2. Using the previous estimated joint detection probability
of already installed beacons 𝑃𝑩 (𝑦 |𝒍), we can derive the esti-
mated joint detection probability when with new beacon 𝑖

placed at 𝒃𝑖 as follows:

𝑃𝑩∪{𝒃𝑖 } (𝑦 = 1|𝒍) = 1 − (1 − 𝑃𝑩 (𝑦 = 1|𝒍)) (1 − 𝑃 {𝒃𝑖 } (𝑦 = 1|𝒍)) .
(6)

Comparing all the improvement of beacon placement candi-
date locations L\𝑩, we can determine the optimal location
by selecting the location 𝒃 obtaining the maximum detection
improvement as,

𝒃 = argmax
𝒃∈L\𝑩

∑
𝒍 ∈L

min(𝑃𝑩∪{𝒃 } (𝑦 = 1|𝒍), 𝑡)−min(𝑃𝑩 (𝑦 = 1|𝒍), 𝑡).

(7)

3.3 Iterative adaptive optimization
Admittedly, regarding the detection probability of the newly
placed beacon, the gap between estimated and ground truth
cannot assure we always place the new beacon at the optimal
location. More importantly, the updated overall detection
probability 𝑃 {𝒃𝑖 } (𝑦 |𝒍) cannot indicate the actual detection
probability since the detection probability of the new beacon
𝑖 is simulated. Hence, we propose updating the detectionmap
after placing the new beacon by taking measurements. After
this exploration process, we obtain the accurate estimated
detection map, reflecting the status the newly placed beacon.
Accordingly, we can estimate and incrementally place the
next location adaptive to the latest detection map until the
complete detection of every location.

4 Experiment
4.1 Experiment settings
To evaluate the effectiveness of our proposed method, we
conducted the experiment in the dense beacon placed envi-
ronment. The experiment location is one floor of a building
in a university, whose area size is around 300m2, as shown in
Figure 1; including 3 research laboratories, 4 faculty rooms,
and a meeting room. The rooms are separated by concrete
walls. The orange dots in the floor-map shown in Figure 1
indicate the measurable locations in the experiments in 1 m
distance.

Optimization via the selection of distributed candidate
beacons. In this experiment, to compare our optimization
result with the ground truth value, we distributed all the
beacons to each candidate location initially and obtained all
the beacons’ detection statuses by the measurement at every
measurable location. In the optimization process, we simu-
lated data measurement by providing RSSI of only currently
"installed" beacons at the required location and simulated
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Figure 1. Detection map of optimization (white space indi-
cates unmeasurable areas)

the beacon placement process by changing the beacon status
as installed. Regarding the candidate locations, 25 candidate
locations were chosen with candidate locations marked with
blue dots shown in Figure 1.

We calculate the performance on all beacon combinations
to evaluate our method and show the best, median, and
worst performance under several beacons. In other words,
the best beacon placement indicates the upper bound of the
performance, and the worst indicates the lower bound of
performance. We evaluated the percentage 𝑧 of the counted
number of locations over expected detection probability 𝑡 by
the total number of locations |L|, as follows,

𝑧 =

∑
𝒍 ∈L

[[𝑃𝑩 (𝑦 = 1|𝒍) > 𝑡]]

|L| . (8)

4.2 Experimental result
We evaluate the optimization results of the initial worst,
median, and best detection placements, and Figure 1 shows
the initial detection map of 2 beacons and the optimization
result of the initial median placement, where Figure 1(a) and
Figure 1(c) are the estimated and ground-truth initial beacon
placement indicated in red rectangles. Figure 1(b) and Figure
1(d) show the estimated and ground truth detectionmap after
adding to place 5 extra beacons indicated in blue rectangles.

Figure 2(a) shows our proposed method can cover 90.37%
of the area of signals over 80% detection probability with
2.15% lower than the ground truth optimal result. Figure
2(b) shows our proposed method can cover 84.88% of the
area of signals over 90% detection probability with 2.99%
lower than the ground truth optimal result. For the worst
initial placement case, our placement can cover 89.04% of
the area of signals over 80% detection probability with 3.15%
lower than the ground truth optimal result and 82.56% of
the area of signals over 90% detection probability with 4.82%
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the initialmedian detection place-
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(b) Area percentage over 90% de-
tection with number of beacons of
the initialmedian detection place-
ment

Figure 2. Area percentages changes over the different num-
ber of beacons

lower than the ground truth optimal result. Also, comparing
with non-adaptive placement, our placement can cover 2.32%
more space of over 80% detection probability and 4.49% more
space of over 90% detection probability. For the best initial
placement case, our placement can cover 90.03% of the area
of signals over 80% detection probability with 3.82% lower
than the ground truth optimal result and 83.55% of the area
of signals over 90% detection probability with 4.66% lower
than the ground truth optimal result.
We compare the labor cost of our proposed method with

the dense data gathering method in the walking distance and
time-consuming. We suppose the walking speed is 1m/s and
the time consuming of gathering data at each location is 10
s. With dense data gathering, the walking distance is 962.24
m, and the time is 2952 s for the initial placement estimation.
With our proposed method, the walking distance is 322.88
m and the time is 572 s for the initial placement estimation.
Our proposed method can reduce 66.4% walking distance
and 80% time-consuming for the data gathering.

From these results, we can see that our proposed AI-BPO
effectively enlarges high detection probability areas with
less human labor cost.

5 Conclusion
In this research, we focus on the beacon placement optimiza-
tion problem for indoor crowd monitoring applications and
propose AI-BPO to incrementally optimize the placement of
BLE beacons to improve the signal of high detection coverage
for the given environment. By conducting the experiment
of selection from candidate beacons, the results show that
our proposed method can optimize the placement of beacons
effectively in generality with less human labor.

However, the experiment result still shows a gap between
our proposed method and the ground truth best optimization.
We plan to optimize the model to estimate the RSSI distri-
bution considering the environmental factors instead of the
current only distance-based estimation for future work. Also,
we plan to optimize the walking distance in the measurement
process by applying a route optimization approach.
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