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Abstract— Wi-Fi fingerprint-based indoor localization is
one of the most practical localization methods, which does
not require extra infrastructure and special hardware. How-
ever, we need to acquire a dataset with a high-density
dataset in the target environment in this framework. To
overcome the data acquisition cost problem, we propose
a brand new data augmentation for Wi-Fi indoor localiza-
tion named Between-Location data augmentation (BL data
augmentation). We generate the fingerprint data for the
whole target environment with high density by only using
the sparsely sampled data. Between-Class learning, which
is the origin of BL data augmentation and the latest powerful data augmentation method for sound recognition and
image processing, mixes two data linearly with normalization; however, this mixing does not make sense in indoor
localization because mixed fingerprint has no meaning and the label of indoor localization is not categorical information
but physically correlated information. To overcome these two problems, we propose the generative model based on neural
networks installed the physical relationship of labels and Wi-Fi fingerprint property. BL data augmentation enables us to
reduce data sampled locations while keeping the localization accuracy even if some target locations have no data. From
the experimental results, indoor localization methods with BL data augmentation outperform the state-of-the-art data
augmentation method on several indoor localization models, whatever the data collection location is dense or sparse.
Moreover, the localization with BL data augmentation using 10 % sampled location achieves the same accuracy with
localization without data augmentation using all sampled locations.

Index Terms— Data augmentation, Fingerprinting, Indoor positioning, RSSI modeling, Virtual sensing

I. INTRODUCTION

Wi-Fi-based indoor localization [1], [2] is one of the most
practical techniques because of performing only with Wi-Fi ac-
cess points (AP) already installed in the target environment. In
the Wi-Fi indoor localization methods, the Wi-Fi fingerprint-
based indoor localization [1], [3] is the most attractive method
due to the availability of most of all devices without installing
special hardware or software. In this framework, a fingerprint
that uses the vector of signal strength of Wi-Fi called RSSI is
used as an input of the localization model.

However, we should acquire the fingerprint data in the target
environment with high density, and this labor-intensive cost
prevents us from practical use. To reduce the data acquisition
cost, some work tries to acquire the data with less effort by
crowd-sensing or unsupervised training; however, the number
of locations to acquire the data is not decreased, and the
acquisition cost is not decreased fundamentally. These meth-
ods distribute the data acquisition cost to the consumers or
crowd workers. However, these methods cause some other
costs such as budget cost or waiting time for enough data
acquisition. These other costs also prevent indoor localization
from practical use even if the data acquisition cost is resolved.
To reduce the data acquisition cost fundamentally, we need
to reduce the data acquisition location, while keeping the

localization accuracy in the whole environment even if some
target locations have no data. From the machine learning
perspective, this problem is how to improve the estimation
performance for unseen data, which is known as a difficult
setting named model generalization problem or zero-shot
learning. In other domains, especially on the image processing,
the data augmentation method [4], [5] is actively explored
as a possible solution for model generalization problems.
The data augmentation method generates the variation of
data to increase the generalization performance or avoiding
overfitting.

Recently, a powerful data augmentation method named
Between-class learning (BC learning) was proposed for sound
recognition and image processing [6], [7]. BC learning gener-
ates the synthetic data by mixing two data on different classes
with a random ratio. The advantage of BC learning not only
improves the generalization performance but also installs the
class relationship by the synthetic data between two classes.

By applying the BC learning for indoor localization to
generate unseen data (i.e., data for not sampled location),
the accurate localization model seems to be constructed with
sparse sampling location; however, there are two problems
to apply: 1) mixing the Wi-Fi signal strength does not make
sense and 2) label of the indoor localization is not categorical
information but a location that has a physical relationship
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between each label. In sound recognition or image processing,
the mixed data becomes sound data or image data, and a mixed
label indicates the two categories are mixed. However, in the
fingerprint, the directly mixed fingerprint is just the average
of signal strengths not related to any location. Therefore, it
is inappropriate to just apply the BC learning for the Wi-Fi
indoor localization.

Thus, we propose the new data augmentation method for
indoor localization based on BC learning named Between-
Location data augmentation (BL data augmentation). We pro-
pose the deep model-based fingerprint data generation at not
data sampled location by focusing on the relationship of the
location in each sampled data. We construct the generative
model for Wi-Fi signals of each AP by using sparse data, then
we form the synthetic fingerprint dataset that virtually sampled
the whole of the target environment with high density. By
mixing the generated synthetic dataset and sampled dataset,
we achieve a more robust localization model whatever the
data collection location is dense or sparse. Moreover, our BL
data augmentation can be applied to most indoor localization
methods regardless of the model type because our model just
requires mixing the generated synthetic data to the acquired
dataset. The contributions of our paper are as follows:
• We proposed a brand new data augmentation method for

indoor localization that installs the location relationship
and Wi-Fi signal property.

• We provide how to improve the performance of the
indoor localization model with sparsely sampled locations
regardless of the model type includes the linear model and
deep-structure model.

• We evaluated BL data augmentation with an actual
dataset on neural-based and linear indoor localization
models and demonstrated that our proposed model im-
proves the performance in any type of localization method
whatever the data collection location is dense or sparse.

Related work:
Wi-Fi-based indoor localization: Wi-Fi-based indoor local-

ization [1], [8], [9] is one of the most practical methods
because the localization is performed only using the Wi-Fi
signal of AP installed in the target environment in various
indoor localization [10]–[12]. In this framework, Wi-Fi signal
information, such as RSSI and channel state information
[2], [9], [13], is used to estimate the location of the target
device. Among the Wi-Fi indoor localization, fingerprint-based
localization is one of the practical techniques because this
technique works with almost all devices that support Wi-Fi.
Fingerprint-based localization estimates the location from the
fingerprint, which is a vector of RSSIs.

However, in fingerprint-based localization, the data acquisi-
tion process is problematic because of a time-consuming and
labor-intensive task. To construct the robust indoor localization
model, we need to acquire the fingerprint data whole the
target environment finely, several times. This task prevents the
practical use of fingerprint-based indoor localization.

Reducing the data acquisition cost in indoor localization:
In the last decade, some researchers try to resolve the data
acquisition cost problem with various approaches. Crowd-
sensing [14]–[16] and unsupervised learning [17]–[20] have

been explored as methods of increasing the data volumes
without increasing the provider cost. In the crowd-sensing
approach, they ask crowd workers to acquire the data or
explore which places are inaccurate. In the unsupervised learn-
ing approach, they try to create a localization model using a
large dataset uploaded by consumers. In these frameworks, we
can distribute the data acquisition cost to crowd workers and
reduce the provider cost; however, the data amount required to
construct a localization model is not decreased. The acquisition
of a large dataset causes large budget costs in the crowd
sensing or long waiting period in the unsupervised method.

Semi-supervised learning [21]–[23] have also been explored
as an indoor localization method with low effort. The semi-
supervised learning methods use the small labeled data and
large unlabeled data to construct the more accurate localization
model or less unlabeled data than the unsupervised framework.
In this framework, the waiting period of one of the significant
issues on the unsupervised frameworks is decreased; however,
the data acquisition on crowds still needed, and the waiting
period have remained.

RSSI distribution modeling [24]–[28] was explored as the
other way to reduce the data acquisition cost by modeling the
RSSI radio map. In this framework, there is two way to model-
ing; one is a GPR-based radio map modeling and another one
is wave propagation path-loss model-based modeling. In this
framework, once we construct the RSSI radio map for each
AP in the target environment, we can generate the fingerprint
or use the map matching method to localize. However, we
need to acquire the dense dataset in the target environment
to construct a radio map in the GPR-based method. This data
acquisition is problematic same as the fingerprint localization
method discussed in the previous section.

The path-loss model-based method requires the physical
property of the environment such as the accurate floor map
information, AP location information, and furniture placement
information or dense dataset to optimize with dense sampled
dataset. As for the physical property of the environment, we
need to accurate site survey of the physical property and
it is time-consuming and labor-intensive as well as dense
data acquisition. Moreover, the localization service provider
sometimes cannot access the floor map and access point
location information due to security issues.

Therefore, these methods cannot fundamentally resolve the
data acquisition cost problem. We need to reduce the data
sampled locations in the target environment to resolve the data
acquisition cost problem fundamentally.

Data augmentation in other domains: In image processing,
data augmentation methods [4], [5], [29], [30] are developed
to resolve data imbalance and data invariance problem. The
data augmentation method generates the new image by ro-
tating, moving, scaling, add noise, and so on. With the data
augmentation, the estimation model is generalized by avoiding
overfitting, especially for the mapped images (i.e., rotated,
moved, and scaled).

Recently, BC learning [6], also known as mixup [7], was
proposed as a data augmentation approach for image process-
ing and speech recognition. This framework generates artificial
data by mixing real data at a randomly generated ratio; hence,
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Fig. 1: Mixed data in sound recognition and image processing

we can generate a large amount of artificial data from a small
real dataset. BC learning not only generates the synthetic data
but also installs the relationship of the class categories thanks
to the generated data with two label properties. This property
improves furthermore generalization performance. However,
BC learning does not make sense at indoor localization. We
discuss the data augmentation in BC learning and problems
on indoor localization in the following sections.

II. WI-FI FINGERPRINT-BASED INDOOR LOCALIZATION
SETTING AND BC LEARNING REVIEWS

A. Problem setting of Wi-Fi-based indoor localization

A Wi-Fi-based fingerprinting indoor localization model is
constructed by the RSSI fingerprint x ∈ Rd labeled by location
y ∈ Y , where d ∈ N is the number of AP available in
the target environment. Let the fingerprint dataset be D =
{(x(i), y(i))}ni=1. By using the acquired labeled fingerprint
dataset, we construct the indoor localization model that is
defined as f(x) : Rd → Y such as the regression model,
multiclass-classifier model, and deep learning-based model.

In general, we need to acquire the fingerprint data from
dense locations in the target environment to achieve enough
accuracy localization model. For example, we want to con-
struct the localization model with 3 m average error, we
need to collect the dataset more precisely such as 1 m by
1 m. If we collect the data sparsely, the localization accuracy
is degraded and we cannot achieve the required accuracy.
Thus, we propose the BL data augmentation that generates
the synthetic fingerprint data by enhancing the BC learning
to the Wi-Fi fingerprint-based indoor localization. BL data
augmentation improves the localization performance whatever
the data sampled location is dense or sparse.

B. Review of BC learning framework in sound
recognition and image processing

Before discussing BL data augmentation, we review BC
learning for the sound recognition and image processing that

improves the model performance. In BC learning in sound
recognition and image processing, the data generation method
that matches the data property is a key point for improving
the model performance.

In the sound recognition and image processing case, BC
learning is easily applicable because of two properties: 1)
the mixed data can be simply generated from two input data,
and 2) the mixed class can be defined by linear interpolation.
In the sound recognition case, we generate the mixed data
x(G) from the two sound data with different labels {x(1), l(1)}
and{x(2), l(2)} with the posterior probabilities of the mixed
data for each mixed label P (l(1);x(G)

) = r and P (l(2);x(G)

) =

1 − r as px1+(1−p)x2√
p2+(1−p)2

where p = 1

1+10
G1−G2

20 1−r
r

. It is

natural data generation because the sounds can be overlapped,
e.g., two people saying ”three” and ”eight” simultaneously,
as shown in Fig. 1. In the case of image processing, we
generate the mixed data x(G) by regarding the two input
data {x(1), l(1)} and{x(2), l(2)} as a wave form data to create
natural mixing expression as p(x1−µ1)+(1−p)(x2−µ2)√

p2+(1−p)2
where

p = 1
1+

σ1
σ2

1−r
r

, µ is the static component when x is represented

as x = µ+d with the wave component d, and σ is a standard
deviation for the image. From this mixing method, we generate
effective synthetic image data to extract similar features for
two classes for the neural image processing model as shown
in Fig. 1.

However, Wi-Fi-based indoor localization does not follow
these two properties. We discuss the difficulty of applying BC
learning and propose a novel data augmentation method in the
next section.

III. BETWEEN-LOCATION DATA AUGMENTATION FOR
WI-FI INDOOR LOCALIZATION

In this section, we first discuss the requirement of BC
learning in Wi-Fi fingerprint-based indoor localization. Next,
we present the overview of the data augmentation method
to improve the accuracy of Wi-Fi indoor localization with
sparse data sampling, what we called Between-Location data
augmentation. We next discuss the property of Wi-Fi signal
related to the locations to define the Wi-Fi fingerprint genera-
tion model. Finally, we propose the fingerprint data generation
model for BL data augmentation.

A. Requirement of BC learning for Wi-Fi indoor
localization

Wi-Fi fingerprint-based indoor localization does not follow
the two properties of the requirement of applying BC learning
introduced in section II-B. As for the first property, we cannot
generate the mixed fingerprint data by linear interpolation
due to the radio wave propagation and the environmental
dependencies. As for the second property, the class in indoor
localization indicates the actual location and there is a physical
relationship between each class. From the physical relation-
ship, the label for generated data does not indicate mixed
label of y1 and y2 with the probability P (y(1);x(G)) = r
and P (y(2);x(G)) = 1 − r but actual different location y3.
Therefore, the naive data mixing method applied to the sound
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recognition and image processing does not make sense in the
Wi-Fi fingerprint data.

To enhance the BC learning idea to the Wi-Fi fingerprint, we
need to construct the data augmentation method that matches
the following condition: 1) considering the Wi-Fi signal prop-
erty, 2) considering the location relationship on the labels. As
for the matching to the Wi-Fi signal data property, the Wi-
Fi signal modeling considering the environmental condition is
required. As for matching the localization application property,
labeling by actual location for the generated synthetic data is
needed. To match these requirements, we construct the BL data
augmentation to obtain the data augmentation for the Wi-Fi
indoor localization that performs as the virtual data sampling
in the data acquisition location shown in Fig. 2.

B. Overview of BL data augmentation for indoor
localization

We propose a brand new data augmentation method for
Wi-Fi indoor localization that matches the two requirements,
1) considering the Wi-Fi signal property, 2) considering the
location relationship on the labels. We discuss the Wi-Fi signal
property on the real environment in the section III-C and
present how to construct the data generation model at section
III-D in detail.

Fig. 3 shows the overview of the BL data augmentation
framework architecture. In data acquisition, we acquire Wi-Fi
fingerprint data from the target environment with the sparse
sampling location. Using the acquired dataset, we construct
the generative model for the fingerprint data to create synthetic
data virtually acquired in the target environment. We generate
the synthetic fingerprint dataset with the constructed generative

(a) Mean RSSI in the target location: not deep blue locations is data
sampled location

(b) Relationship between mean and variances in each location

Fig. 4: RSSI characteristics from the view point of the location

model to the whole target environment densely. Finally, we
create the training dataset by mixing the generated synthetic
fingerprint dataset and the acquired dataset.

By using the generated dataset by BL data augmentation,
we construct the more robust indoor localization model with
sparse location sampling. It should be noted that BL data
augmentation can be applied to almost all indoor local-
ization methods that include neural network-based regres-
sion, multiclass-classification, linear regression, and linear
multiclass-classification models. It also should be noted that
the BL data augmentation works on the offline phase of the
indoor localization that is the model construction part.

C. Relationship between a location and Wi-Fi RSSI
Fig. 4a shows the mean RSSI value on each location and

Fig. 4b shows a relationship between the mean and variances
in each location in the dataset (that used in the experiment). We
observed that the RSSI means are changed with the location,
and the variances are around 20 (i.e., the standard deviation
is around 4 to 6 dBm) even if the location or mean of RSSI
are changed. From this observation, the RSSI distribution at
a single location p(x|y) can be approximated to the Gaussian
distribution.

Thus, the RSSI model on location y is simply formulated
as follows:

x̂i,y ∼ N (x̄i,y, σ
2), (1)

where x̄i,y is the mean of RSSI in the location y for i-th
AP and σ2 is the variance of RSSI. When we estimate the
mean value for the location that the data is not sampled,
we can generate the synthetic dataset of Wi-Fi fingerprint.
In next section, we provide the deep network-based method
for estimating x̄i,y (i.e., wave propagation model) from sparse
data.
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Fig. 5: Synthetic fingerprint generation with MLR and Gaus-
sian sampler

D. BL data augmentation: fingerprint generation model
from the location information

To generate the synthetic dataset of Wi-Fi fingerprint, we
define the RSSI generation model as follows:

x̂i ∼ N (gi(y), σ2), (2)

where gi(y) : Y → R is the mapping function of RSSI from
the location and σ2 is the variance of RSSI. We can generate
synthetic data by constructing the precise RSSI estimation
model even if the target locations have no data.

We choose the multi-layer regression (MLR) model that is
a deep learning-based model as modeling of a mean of RSSI
in each AP. MLR model has the flexibility to model the non-
linear structure. In RSSI, there is a non-linear propagation due
to the target environment structure, such as the doors, walls,
and furniture. MLR model can install these properties from the
dataset even if the sampled location is sparse while keeping the
smoothness of RSSI on the near location without applying any
radio propagation model explicitly. From this functionality, the
MLR model needs a few measurement locations for modeling
the wave propagation in the target area or room. Moreover,
the MLR model can model the RSSI radio map includes
environmental property only with the RSSI data and this model
does not require any floor map and AP location information.
This smooth modeling and fitting to the sparse data match
to consider RSSI propagation and the environmental effects
simultaneously.

It should be noted that the Gaussian processes [31], [32]
or path-loss model [33] that often used in the RSSI modeling
is considered as a possible solution to constructing the gi(y);
however, these models do not match to the sparsely sampled
location setting. In the Gaussian processes, the variances on
the location without data become large, and this change does
not follow the observed property. Because of this variance
changing, the quality of the generated data, especially on the
location without data becomes low. In the path-loss model, we
can fit the parameter from the sparsely sampled location data;
however, we cannot reflect the target environment structures
because of the fixed parameterized model. In comparison with
these models, MLR provides the most proper modeling for the
indoor localization model.

We employ the simple MLR model that has four fully con-
nected layers with the hyperbolic tangent activation function.
We apply the least squared error

√
(x̂− x)2 as a loss function

of this neural network. We train the MLP model with the
acquired dataset on sparse location for d-th AP, respectively,
and get the d-th MLP models. From these MLP model, as
shown in Fig. 5, the synthetic fingerprint data x̃ is generated
on y with Gaussian sampler as follows:

x̃ ∼ N (x̂y, σ
2), (3)

where x̂y = (g1(y) · · · gd(y)) is the vector of the estimated
mean by trained MLR model for each AP.

We construct the synthetic fingerprint dataset by generat-
ing multiple fingerprints to the dense location in the target
location. From the generation, we obtain the dense fingerprint
dataset for the target location. This synthetic dataset helps that
the localization model capture the fingerprint characteristics
related to each location.

By using the mixed dataset of the synthetic fingerprint
dataset generated by BL data augmentation and the acquired
dataset as a training dataset, we construct a more robust
localization model than trained only by the acquired dataset.
It should be noted that the BL data augmentation method
is independent of the localization model, we can apply any
indoor localization models even if the model structure is highly
complicated such as the deep localization model that recently
advanced.

It also should be noted that our model ignores the APs
that are not included in the acquired dataset. However, these
APs provide weak signals and less contribution for localization
than other APs with strong signals. From this fact, our model
provides accurate localization even if some weak signal APs
are ignored.

E. Analysis of the data acquisition cost

Here, we discuss the data acquisition cost in the sparsely
sampled location dataset. Let Y(S)

⋃
i y

(i) ⊂ Y is the sampled
location at the sparse dataset. The reduced ratio of data
acquisition location can be formulated as |Y

(S)|
|Y| . This ratio

directly affects the data acquisition cost, including the time of
data acquisition and the number of fingerprint scanning.

For example, we spent 5 hours acquiring the data at the
experimental target environment shown in Fig. 6a (5 times
fingerprint scanning at all target locations). When the reduced
ratio is 15% shown in Fig. 6c, we only need to acquire 45
minute to acquire the dataset. From this case, it can be said
that the data acquisition cost is drastically reduced.

IV. EXPERIMENT

We evaluate the performance of BL data augmentation with
two settings: 1) the performance under the different number of
the sample locations, and 2) the performance on three different
designed sampled locations.
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A. Experimental setting

To evaluate the model, we acquire the dataset from a floor of
a building of the university that area is 15 m×40 m as shown
in Fig. 6. We set 210 localization target locations on the floor.
We sample the data from each target location with Nexus 5.
We use the 5 fingerprint data in the selected sampled locations
that depend on each testbed as the training data. As for the
test dataset, we use the 30 data for all target locations, 6300
in total. It should be noted that some target location does not
have a training data depends on the sparse sampled location
setting (described in each experiment part).

B. Comparison methods of data augmentation

In this experiment, we compare the three data augmentation
methods on three localization models as follows.

1) Data augmentation methods: We generate 10 data for
each target location depicted in Fig. 6a and 2100 data are
augmented for the training indoor localization model with our
BL data augmentation and the following comparison models.

Without data augmentation (W/O): For the baseline, we
employ the localization model without data augmentation.

Linearly interpolation for normal BC Learning (BC-Linear):
For evaluating the normal BC Learning performance [6], we
employ the linear interpolation with rx1 + (1 − r)x2, where
r = ∆(ŷ,y2)

∆(ŷ,y1)+∆(ŷ,y2) and ∆(y1, y2) is function to calculate the
distance between y1 and y2.

Gaussian processes based data generation (BC-GPR): To
compare the data generation performance, we prepare the
Gaussian processes regression (GPR)-based data generation.
We used the Gaussian kernel exp(−‖xi−xj‖σ2 ) as a kernel of

GPR and we use 1.0 as parameter σ. We set −100 as a mean
of prior distribution and 2.0 as a variance of prior distribution.

It should be noted that we decided hyper-parameters with
checking the RSSI generation error on dense sampling location
settings for all data augmentation includes a proposed method
that is shown in section IV-D.4.

2) Localization models: We employ the three localization
methods to evaluate the effect of data augmentations. We
selected two classification methods and one regression method
to localize as follows:

Linear multiclass classifier with cost-sensitive hinge loss (Lin-
ear): We employ the multiclass classifier with cost-sensitive
hinge loss that considers the physical distance of each class
described in [34] as a linear localization model.

Deep multi-layer regression (MLR): We use multi-layer re-
gression with three fully connected layers and a hyperbolic
tangent activation function as a deep learning-based regression.

Deep multi-layer perceptron (MLP): We use the multi-layer
perceptron with four fully connected layers and a ReLU acti-
vation function as a deep learning-based multiclass classifier.

In the classification model that is Linear and MLP, we
construct the classifier f(x) : Rd → L where L is discretized
location label set. In the regression model that is MLR, we
construct the regressor f(x) : Rd → Y ⊂ R2 that estimates
2D coordinate directly. It should be noted that the CDFs
of the MLR model are smoother than the other methods
because MLR outputs the 2D coordinate directly; meanwhile,
the output of the MLP and a linear model is discretized 2D
location.

C. The number of data position vs performance

Fig. 7 shows the effect of changing the number of data
sampling locations with mean localization errors. In this
experiment, we randomly select the data sampling locations
under 10 to 30 by increasing 5 locations and from 50 to
210 by increasing 20 locations. From this figure, our BL
data augmentation method with 20 sampling locations achieves
almost the same accuracy with the localization that using all
sampling locations without data augmentation, in linear and
MLP localization models, and with 70 sampling location for
the MLR model. From this result, we confirmed our proposed
method to improve the performance for the several localization
models with 10% sampled location in the linear model and
MLP model, and 30% sampled location in the MLR model.

Moreover, our BL data augmentation most improves the
localization performance than the other data augmentation
methods at most settings of the number of sampling location
and localization models. From the result, our data augmen-
tation improved the performance on the settings from dense
setting (210 sampled location) to extreme sparse setting (5
sampled locations). This result indicates that our BL data
augmentation method generates the proper fingerprint data
either the sampling location is sparse or not. In compar-
ison with our method, linear and GPR data augmentation
sometimes decreases the localization accuracy. This accuracy
deterioration is because the improper fingerprint is generated
from the GPR data augmentation.
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TABLE I: Result on the errors in each setting

Error on 210 sample locations [m] Error on 83 sample locations [m] Error on 30 sample locations [m]
Localization Data augmentation Mean 90 percentile Max Mean 90 percentile Max Mean 90 percentile Max

Linear

W/O 3.58 7.07 41.00 3.97 7.81 41.19 4.62 9.06 41.19
BC-Linear 3.36 6.71 41.05 3.76 7.21 38.08 4.35 8.06 38.60
BC-GPR 4.63 8.54 41.59 5.94 12.00 40.31 7.73 16.40 42.20

BL (Ours) 3.12 6.08 22.20 3.35 6.32 22.02 3.63 6.40 22.00

MLR

W/O 4.37 7.49 24.10 4.46 7.86 24.32 6.92 12.73 34.45
BC-Linear 4.07 7.35 22.13 4.62 8.47 27.27 5.14 9.17 24.81
BC-GPR 4.29 7.63 21.25 4.93 8.97 24.52 5.31 9.55 30.29

BL (Ours) 4.03 7.04 20.08 4.28 7.80 22.08 4.29 7.93 25.15

MLP

W/O 5.38 10.20 38.05 5.52 11.00 39.01 5.91 11.18 37.34
BC-Linear 8.65 18.25 42.20 6.21 11.40 37.01 6.54 11.05 41.11
BC-GPR 5.54 10.00 38.05 6.18 11.40 40.01 5.64 10.05 31.00

BL (Ours) 4.73 8.06 40.00 5.39 10.44 39.12 5.57 10.05 39.00

(a) Linear model

(b) MLR model

(c) MLP model

Fig. 7: Localization error vs the number of location of training
data

Additionally, the linear localization model outperforms the
other localization method. This is because the linear model
uses the loss function that evaluates the distance metric
and employs the highly correlated feature representation to
localization task, while the deep model should learn these
properties from the limited dataset. It should be noted that
this is out of the scope of our work, a more accurate model
with deep learning would be constructed if we construct the
indoor localization, specialized multi-layer model. When the
accurate deep-learning model is realized, we can apply our BL
data augmentation in the same manner.

D. Results of localization performance in several
sampling location settings

Here, we evaluate the localization performance for three
settings: 1) sampling with all locations, 2) sampling at 83
locations with almost 2 m by 2 m, and 3) sampling at 30
locations with almost 3 m by 3 m. Table I is the error of
mean, 90 percentile, and max error at each localization model
and each data augmentation method on each setting. Fig. 8a
to 8c show the CDFs of each data augmentation method in
each localization model and each sampling setting. Moreover,
we evaluate the RSSI radio map construction performance on
our MLR model and GPR model in each setting.

1) Case 1: Dense setting with 210 sample location: Fig. 8a,
8b, and 8c show the CDF of the localization error with dense
sampling setting in each localization method, respectively.
From this result, our proposed model improves the 13 % in
mean error, 14 % in 90 percentile, and 46 % at max error in
linear model from the W/O result. In comparison with other
localization methods, our BL data augmentation outperforms
the other data augmentation method on accuracy improvement
because the BL data augmentation, written in a red line, is
placed on the most left upper side of the figure.

This result indicates that our proposed model improves the
localization performance in the dense sampling setting. This is
because generalization performance is improved owing to the
increasing in a variety of data in each target location. Also,
the result indicates that our BL data augmentation captures
the RSSI distribution for the target environment precisely
compared to other data augmentation methods when we use
the dense dataset.

2) Case 2: Sparse setting with 83 sample locations: Fig. 8d,
8e, and 8f show the CDF of the localization error in sparse
sampling setting with almost 2 m by 2 m. This result shows
the localization performance in 1 m by 1 m that contains the
127 unseen location. From the figure, our method outperforms
the other data augmentation method because our model is
located on the most left upper side than other localization
methods. From this result, our model improves the localization
performance not only in dense settings but also sparsely
sampled location settings.

Moreover, our method improves the mean error of the 6%
in the linear model, 2% in the MLR model, and almost the
same accuracy in the MLP model in case 2 setting from the
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(a) Linear model (210 sampled locations) (b) MLR model (210 sampled locations) (c) MLP model (210 sampled locations)

(d) Linear model (83 sampled locations) (e) MLR model (83 sampled locations) (f) MLP model (83 sampled locations)

(g) Linear model (30 sampled locations) (h) MLR model (30 sampled locations) (i) MLP model (30 sampled locations)

Fig. 8: CDF on the errors in each setting

localization without data augmentation in dense setting (Case
1). Therefore, our model achieves similar accuracy to the
localization model trained with the dense dataset with 40 %
data sampling location.

3) Case 3: Sparse setting with 30 sample locations: Fig. 8g,
8h, and 8i show the CDF of the localization error in sparse
sampling setting with almost 3 m by 3 m. This result shows the
localization performance in 1 m by 1 m that contains the 180
unseen location (only 15 % of the target location is sampled
location). Even if this extreme sparse sampled location setting,
our proposed model improve the localization performance at
all localization method, while other data augmentation method
less improves the performance or failure to improve the perfor-
mance. This slight improvement or failure of improvement on
comparison methods comes from the failure to generate the
fingerprint data with actual fingerprint property. Our model
generates the synthetic data that follows the actual fingerprint
property with a sparse dataset compared to these models.

Compared with the localization without data augmentation
in the dense setting, our method improves the −1% in the
linear model, 2% in the MLR model, and −4% in MLP for

the linear model in the sparse setting. From this result, slight
accuracy degradation is observed in the linear and MLP model;
however, we can regard almost the same accuracy with the
dense setting in case 1. Therefore, our model achieves the
accurate localization model only with sampling data from the
15 % of target locations.

TABLE II: Mean absolute error on RSSI in each setting

Data augmentation 210 sample 83 sample 30 sample
GPR 8.71 [dBm] 13.77 [dBm] 21.87 [dBm]

MLR (Ours) 7.10 [dBm] 7.21 [dBm] 7.76 [dBm]

4) Comparison of data generation in each setting: To evalu-
ate the modeled RSSI radio map for data augmentation, we
visualize the radio map modeled by our MLR model and GPR
model. In this experiment, we selected the AP that has long
propagation that set in the lab. 3. The ground truth is shown
in Fig. 4a and AP location is shown in Fig. 10. Fig. 9a to Fig.
9f show the Wi-Fi RSSI radio map estimation result on MLP
model and GPR model in each sampling setting at a specific
access point. Table II shows the mean absolute error of each
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(a) MLR (210 sampled locations) (b) GPR (210 sampled locations)

(c) MLR (83 sampled locations) (d) GPR (83 sampled locations)

(e) MLR (30 sampled locations) (f) GPR (30 sampled locations)

Fig. 9: Modeled RSSI radio map

: Access point

Fig. 10: Target access point location

method in each setting.
In the dense setting that is shown in Figs. 9a and 9b, the

modeled radio maps in both model has similar trends and
similar error value. From the fact that the RSSI has a 4 to 6
dBm noise discussed in the section III-C, both of the models
can model the RSSI accurately. From the figures, our MLR
model generated a more smooth RSSI radio map than the GPR
model in a dense setting.

GPR model estimates the variance of the RSSI to generate
the fingerprint in addition to the RSSI estimation and the mean
absolute error of standard deviation was 2.27 dBm. This result
indicated that the GPR model has an error on the variances as
well as RSSI estimation. This flexibility of variance estimation
on GPR causes accumulation error at the data augmentation.
Due to the accumulation error, the localization performance
on GPR data augmentation got worse.

Fig. 9c depicts the generated radio map on our model in
the 83 sampled location setting. From this figure, our model
could generate a smooth RSSI radio map even if the sampling
location is sparse. We can also observe that our model keeps
the error on RSSI estimation at a similar level with the
dense setting. Radio map generated by GPR that shown in

9d was affected sparse sampling location and RSSI estimation
error also get worse and mean absolute error on the standard
deviation is 2.78 dBm. This difference comes from the model
property of each method. MLR model is a parametric model
that estimates RSSI radio map by using learned parameters
from training data with the constraint of smoothness with a
loss function. On the other hand, the GPR model is a non-
parametric model that estimates RSSI radio maps by using
training data directly. This means that the GPR model requires
a dense sampling dataset for accurate radio map estimation and
is unsuitable for sparse data modeling.

Figs. 9e and 9f also show the RSSI radio map estimation
result on MLR and GPR model in 30 sampled location
setting, respectively. The mean absolute error on the standard
deviation for the GPR model is 2.72 dBm. The result shows
a similar trend with the 83 sampled location setting that our
model estimated the smooth radio map with keeping the RSSI
estimation error, and GPR got a worse result.

From the figure, our model successfully estimated the radio
map accurately, although our model fails to estimate the peak
of the RSSI distribution that is the AP location. This failure is
caused because we did not set the sampling locations besides
AP locations. However, from the localization errors discussed
in the previous section, this failure has less effect on the
localization error. From this observation, our model generated
the RSSI radio map for improving the localization accuracy
even if there is no sampling location besides AP locations.

V. CONCLUSION

We proposed a brand new data augmentation method for
Wi-Fi fingerprint-based indoor localization named BL data
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augmentation, whatever the data collection location is dense
or sparse. We first reviewed the BC learning and problems
to apply that method to Wi-Fi fingerprint-based indoor local-
ization. Then, we proposed the data generating methodology
that consider the Wi-Fi signal property and label structure on
indoor localization. Thanks to our method, we decrease the
data sampling location and reduce the data acquisition cost,
which is one obstacle for practical use of indoor localization.

In the experiment, we confirmed that BL data augmen-
tation improves the localization performance in any indoor
localization method. Also, the localization with BL data aug-
mentation achieves the same accuracy by only using 10 %
sampled location in the best case and 40 % in the worst case
with localization without data augmentation using all sampled
locations.
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