
RRT-based maximum entropy inverse reinforcement learning for
robust and efficient driving behavior prediction

Shinpei Hosoma1, Masato Sugasaki1, Hiroaki Arie2, and Masamichi Shimosaka1

Abstract— Advanced driver assistance systems have gained
popularity as a safe technology that helps people avoid traffic
accidents. To improve system reliability, a lot of research on
driving behavior prediction has been extensively researched.
Inverse reinforcement learning (IRL) is known as a prominent
approach because it can directly learn complicated behaviors
from expert demonstrations. Because driving data tend to have
a couple of optimal behaviors from the drivers’ preferences, i.e.,
sub-optimality issue, maximum entropy IRL has been getting
attention with their capability of considering suboptimality.
While accurate modeling and prediction can be expected,
standard maximum entropy IRL needs to calculate the partition
function, which requires large computational costs. Thus, it is
not straightforward to apply this model to a high-dimensional
space for detailed car modeling. In addition, existing research
attempts to reduce these costs by approximating maximum
entropy IRL; however, a combination of the efficient path
planning and the proper parameter updating is required for
an accurate approximation, and existing methods have not
achieved them. In this study, we leverage a rapidly-exploring
random tree (RRT) motion planner. With the RRT planner, we
propose novel importance sampling for an accurate approxima-
tion from the generated trees. This ensures a stable and fast IRL
model in a large high-dimensional space. Experimental results
on artificial environments show that our approach improves
stability and is faster than the existing IRL methods.

I. INTRODUCTION

In recent years, advanced driver assistance systems
(ADAS) have improved the safety of one’s driving, for
example, adaptive cruise control (ACC [12]) and traffic sign
recognition (TSR [23]). Many cars have been equipped with
these technologies, which reduced the rate of traffic acci-
dents [7]. Researchers extensively investigate ADAS, aiming
to further improve the safety of automatic driving systems.
Driving behavior prediction is crucial for the robustness of
ADAS, with methods such as model predictive control [1]
or reinforcement learning [15].

In driving behavior predictions via model predictive con-
trol, the sequence of control inputs is obtained by maxi-
mization of sum of rewards, an indicator of the preferred
behaviors. Therefore, the careful design of reward function
is necessary. Meanwhile, designing reward functions tends to
be complicated due to the complex nature of human factors
in driving, such as slow acceleration or comfortable steering.

Inverse reinforcement learning (IRL), inverse problem of
reinforcement learning, is known as a promising approach to

1The authors are with the Department of Computer Science, Tokyo In-
sititute of Technology, Tokyo, Japan. E-mail: {hosoma, sugasaki,
simosaka}@miubiq.cs.titech.ac.jp

2The author is a researcher at the DENSO Corporation, Tokyo, Japan.
E-mail: {hiroaki.arie.j8k}@jp.denso.com

solving this problem. This is because the reward functions
can be directly learned from demonstration data without a
complex design. Among IRL methods researched in the last
20 years [14], [24], maximum entropy IRL [24] is known to
be one of the common frameworks thanks to its theoretical
properties. The property is known as "sub"-optimality; i.e.,
the model could learn not only optimal behaviors but also
suboptimal ones.

Notably, the human demonstrations highly tend to be
tentative even if the preference of the demonstration is
consistent, and their behaviors naturally include multiple
"sub"-optimal decisions. The suboptimality-reflected reward
recovery of maximum entropy IRL is suitable for expressing
these noisy driving behaviors. In the last decade, techniques
based on maximum entropy IRL for driving behavior predic-
tion have been actively explored in acceleration / deceleration
modeling [17], [18].

Despite its popularity in maximum entropy IRL, its orig-
inal form is not so suitable for generic driving behavior
modeling because it assumes the state space is discretized.
In other words, the applied driving scenario is quite limited
within a reasonable computational cost. For more generic
driving behavior modeling, non-holonomic motion dynamics
should be treated, i.e., not only the x-y positions, but also
velocity, angle, and angular velocity should be handled to-
gether. This setting causes exponential growth of the number
of discrete states; therefore, it is not so feasible to directly
apply the discrete type maximum entropy IRL [19].

Towards more practical usage of maximum entropy IRL,
recent advances in maximum entropy IRL expand the models
into continuous settings, i.e., continuous optimal control [8].
The techniques were born in machine learning literature,
then the successful results in continuous maximum entropy
IRL are reported in the robotics and autonomous driving
literature [21], [22] in recent years.

In the literature, the way on approximations of the log-
partition function in maximum entropy IRL is known to be
the key to its success due to the intractable integral on reward
functions over the possible trajectories [8]. Various types
of approximation spanning from Laplace approximation [8],
importance sampling [4], and soft-max approximation with
perceptron training [16] are proposed.

Though various types of algorithms are presented in the
literature, their performance is not sufficient for practical
driver behavior modeling. Most of the methods with inno-
vative way on approximated log partition function assume
to use of proper efficient motion samplers from the current
given reward function; however, its stability and efficiency

is not fully considered for the driving behavior prediction
problem.

In this paper, we pursue a more reliable approach to
continuous maximum entropy IRL by seeking the best com-
bination of proper approximation on log-partition function in
maximum entropy IRL, and efficient and robust motion sam-
pler in driving behavior prediction. Throughout the motion
generators presented in the literature, we focus on rapidly-
exploring random tree (RRT) [6] as one of the efficient and
robust motion samplers in this paper.

In this paper, we investigate how we use the leaf nodes
from the given RRT tree to approximately obtain the log par-
tition function efficiently. Finally, we propose the new RRT
based continuous maximum entropy IRL for driving behavior
prediction ensuring robustness and efficiency. Contributions
of this paper can be summarized as follows:

• In this study, we propose a new type of maximum en-
tropy continuous IRL method with RRT as a path plan-
ner in training / inference phase for pursuing robustness
and efficiency. Specifically, we employ a new type of
motion sampler for obtaining approximated log partition
function and its derivative in an importance sampling
manner. The motion sampler is quite efficient under the
tree is given while the other previous approaches require
additional computational cost with on-policy evaluation.

• The experimental results on a couple of driving behavior
prediction scenarios show that our model could achieve
faster and more stable results than the state-of-the-art
methods.

Related work:
IRL for driving behavior prediction: In the last two

decades, various trials on driving behavior prediction with
IRLs have been presented. Typical examples include avoid-
ance of other cars [19], driving behaviors at unsignalized
intersections [17], [18], car following scenarios [22], and
lane changing scenarios [21]. Though their report shows
prominent successful results in each scenario, the application
scenario of each paper is not flexible but fixed.

IRL on continuous settings: The continuous inverse
reinforcement learning has been proposed as a practical
alternative to the traditional discrete IRL in the literature. In
the setting, the model directly optimizes the reward function
of the continuous space without discretizing it. Due to the
intractability of integral on reward function, i.e. log-partition
function, the model requires its approximation. Levine et
al. [8] applied Laplace approximation to maximum entropy
IRL; however, it highly depends on initial guesses owing
to the local approximation. Therefore, the result is prone to
instability and is not suitable for driving behavior prediction.
Shiarlis et al. [16] and Xin et al. [22] obtained the highest
reward path without planning all possible paths for the
calculation of the partition function. However, they only
referred to a single optimal path; therefore, it is not possible
to consider the suboptimality in driving principles. Finn et
al. proposed GCL [4], which approximated the partition
function by importance sampling. In contrast to the other
approaches mentioned above, their approach is theoretically

stable from the viewpoint of convergence thanks to the
nature of importance sampling. However, it is also reported
that the probabilistic control with KL divergence [4] is not
so stable [21], therefore many demonstrations and trials is
necessary. This stems from the fact that the probabilistic
control with model-free approach, i.e., motion dynamics is
not given in IRL, requires on-policy evaluation during IRL
training process. In contrast, the motion dynamics is given as
non-holonomic in the driving behavior prediction, therefore
the proper model-based motion planner should be employed
instead.

II. FORMULATION OF CONTINUOUS IRL

In this section, we describe the problem settings of con-
tinuous maximum entropy IRL and the existing approaches
on approximated solution.

A. Problem setting of continuous IRL

We define the continuous state space X and the control
input space U . When a continuous state xt ∈ X and a
control inputut ∈ U at a discrete time t are given, the agent
moves to the next state based on the dynamics function F as
xt+1 = F (xt, ut). To express detailed models, addressing
high-dimensional state space is needed with its multiple state
variables of nonholonomic dynamics; such as x, y positions,
velocity v, and body angle θ. In addition, we assume that
the agent gains the below immediate reward rw throughout
the dynamics transition parameterized by w. Here rw can be
modeled by either linear function of w or non-linearly such
as neural networks parameterized by w. The purpose of IRL
is to learn w from the driving behavior demonstration.

B. Maximum entropy IRL for continuous space

Continuous maximum entropy IRL, which has been
commonly used in the IRL modeling, is one of
the probability models that defines a path τ =
{(x1, u1), (x2, u2) . . . (xT , uT)} as probability as follows:

p(τ ; w) =
exp

(∑
xt,ut∈τ rw(xt, ut)

)
Z(w)

,

Z(w) =
∫

exp
(∑

x̃t,ũt∈τ̃

rw(x̃t, ũt)
)

dτ̃ . (1)

By minimizing the negative log-likelihood of the demonstra-
tion data, we can obtain the optimal parameter w∗. With the
gradient-based techniques to obtain w∗, we should use the
following the loss function and its gradient as follows:

L(w) =
∑

τ∈Ddemo

(
log Z(w)−

∑
xt,ut∈τ

rw(xt, ut)
)

,

dL(w)
dw

=
∑

τ∈Ddemo

(d
dw

log Z(w)−
∑

xt,ut∈τ

d
dw

rw(xt, ut)
)

.

(2)
It should be noted that it is infeasible to exactly obtain the
log partition function Z(w) and its gradient. In contrast, this
intractability of the integral inspires a series of research work
on continuous IRL with various approximations.

C. Importance sampling for the reliable approximation
Among a couple of approaches for approximation, Finn

et al. [4] employ importance sampling for (1) as

Z(w) ≈ 1
|Dsamp|

∑
τ∈Dsamp

exp
(∑

xt,ut∈τ rw(xt, ut)
)

q(τ)
,

(3)
where q(τ) depicts the auxiliary density function for motion
paths, also used as a motion sampler, and Dsamp depicts a
collection of generated motion paths from density q(τ). With
this assumption, the gradient of (1) can also be approximated
as

d
dw

log Z(w) ≈ 1
G

∑
τ∈Dsamp

g(τ)
∑

xt,ut∈τ

d
dw

rw(xt, ut).

(4)

Where we use g(τ) =
exp

(∑
xt,ut∈τ

rw(xt,ut)
)

q(τ) , and G =∑
τ∈Dsamp

g(τ). It should be noted that the importance
sampling could assure the unbiased estimator of log Z(w)
and its gradient with a sufficient number of motion samples
Dsamp, therefore the theoretical convergence for obtaining
optimality of w∗ can be obtained.

However, its efficiency is governed by the accuracy of mo-
tion sampler q(τ) and GCL faces the inefficiency or degraded
performance due to the utility of model-free probabilistic
control. Specifically, they used a linear Gaussian controller
based model-free planner as a distribution q(τ) to sample
paths. In addition, the execution of path planner is required
per single motion sample τ ∈ Dsamp, and this causes a lack
of scalable training process.

To overcome this limitation, in this research, we pursue a
more reliable and efficient motion generator and its sampling
process by focusing on the target is driving behavior, i.e.,
motion dynamics is given.

III. RRT-BASED MAXIMUM ENTROPY IRL
In this research, we attempt efficient path sampling by

adopting one of the model-based planners, rapidly-exploring
random tree (RRT). Though it seems to be a naive extension
from GCL, the key of our algorithm is not only limited to
just employing RRTs alternative to the probabilistic control,
but also providing an efficient approach to generate motion
samples τ ∈ Dsamp from q(τ).

A. Efficient path planning with RRT
As previously mentioned, path planners that are used in

existing fast IRL methods for driving behavior prediction,
only search for a limited part of state space; hence, they
cannot work on the many types of tasks. To resolve this
problem, we use an RRT-based motion planner [6], [13],
[20] for nonholonomic dynamics. RRT [6] has been known
as a stable, fast, and versatile planner for several decades.

RRT generates trees covering a diverse region of the
state space, and is expected to obtain near-globally optimal
results. In addition, owing to the simplicity of its incremental
sampling approach, the computational cost is not very large
even if it is used in a high-dimensional space.

B. Exploiting tree structures for highly efficient motion sam-
pling

In this research, we need to carefully define the auxiliary
probability density function for motion path τ by q(τ) for
reliable and efficient continuous maximum entropy IRL. In
its designing process, we should take care of the number of
executions of the path planner per objective and its gradient
computation.

Generally, multiple executions of path planners are re-
quired to obtain a set of sampled paths. The linear increase
in computational cost prevents us from modeling a fast IRL
method despite the rapidity of RRT. To tackle this problem,
we focus on leveraging all the tree structures generated by
single execution of RRT generation to obtain multiple motion
samples efficiently.

In general setting of RRT motion planning, the best
path is pursued while the rest possible paths are discarded;
however, these “sub”-optimal paths can also be naturally
reused for the motion samples as generated samples from
q(τ). This process enables us to collect many paths with
only a single execution. Hence, the computational cost of
planning becomes smaller than that of the existing sampling-
based approach.

Fig. 1 shows concepts of our RRT-based importance
sampling approach. If the density function q(τ) is properly
defined, the set of paths can be obtained efficiently.

Dall
<latexit sha1_base64="SfLSsv7eFcek8vFzd3e1gZbIEok=">AAADQnicnVLLShxBFD3T8dmJOkaQgBvJYAgiQ824UFyJceEmxEdGhelhqG7LsbH6QXfNoHbmB/IDWWQVwUXQv9CFP5CFnxBdhQlk4yK3HxiSIQpW0133nrrn3K57r+lLO1SMXeW0Jz29ff0Dg/rTZ0PDI/nR55uh1wwsUbE86QXbJg+FtF1RUbaSYtsPBHdMKbbM/Tfx+VZLBKHtue/VoS9qDm+49q5tcUVQPT9uVPXlemQ4XO0FTsSlbLd1o1bPF1iRJWuy2yhlRgHZWvVGczoM7MCDhSYcCLhQZEtwhPRUUQKDT1gNEWEBWXZyLtBGzG1SlKAITug+fRvkVTPUJT/WDBO2RVkkvQExJzHFvrGvrMMu2Sn7zm7/qxUlGvG/HNJuplzh10c+vtj49SDLoV1h7w/rHoZJ0emdlslPaxCQ9TbTeEcMQUjsxbeYJo6RxDSIadNt21mNGoTP3GGPVeQ46FJMsfvqrrCL+aTecXY/QeJOWGkNWkefOhsL61PRK3bMbqgHX9gVO6cuuK2f1smaWP9M6jrNUenfqek2NsvF0myxvFYuLC5lEzWACbzEa5qaOSxiBauoUOYPOMYpzrQL7Vr7oXXSUC2Xccbw19JufwNdmrsj</latexit>

Generate RRT Get possible paths
and their likelihoods

Dsamp
<latexit sha1_base64="aplh2CID6J9LGTEdFpg5nO9KvGs=">AAADQ3icnVLLShxBFD3TGh9t1NEsDLgRB0WCDDXjQnEl0UU24nNUmB6G6rYcG/tFd82gNvMD/oALVxpcBPUrQiA/kIWfENxFwY1Cbj+IJIMKqaa77j11z7ld917ds8xAMnadUdra33R0dnWrPW97+/qzA4MbgVv3DVEyXMv1t3QeCMt0REma0hJbni+4rVtiU9+bj843G8IPTNdZlweeqNi85pg7psElQdXskFZWF6qhZnO569thwG2v2VS1SjWbY3kWr5FWo5AaOaRr2R3IqNCwDRcG6rAh4ECSbYEjoKeMAhg8wioICfPJMuNzgSYibp2iBEVwQvfoWyOvnKIO+ZFmELMNymLR6xNzBGPsB/vCbtl3dsF+sodntcJYI/qXA9r1hCu8av/R+7X7V1k27RK7T6wXGDpFJ3daID+pgU/WYqqxRAxBSORFt/hAHC2OqRHTpNs20xrVCJ/8g/2vIsd+i2KCvVR3iR3MxPWOsnsxEnXCSGrQODy+XZtdHQvH2Rm7oR6csmv2lbrgNO6M8xWxekLqKs1R4d+paTU2ivnCVL64UszNfUwnqgvDGMUETc005vAJyyjFmT/jElfKN+VG+aXcJaFKJuW8w19LefwN2lK7pQ==</latexit>

Resampling paths
from using q(⌧)

<latexit sha1_base64="wuxUGH8JTgSz+9o8qxn0IXTXaQk=">AAADN3icnVJLL8RQFP6m3vVmI7ERE4LI5M5YECvBwkY8B8l0Im1do9Fpq70zwcQf8AcsbJBYiF9gbeMPWFjZCbESEhsLp48QJkjcpr3nfPd83+k952iOaXiCsZuYVFFZVV1TWyfXNzQ2Nbe0ti15dsHVeVq3Tdtd0VSPm4bF08IQJl9xXK7mNZMva5sT/vlykbueYVuLYsfh2byas4x1Q1cFQVklI2/1KUIt9MtKdrUlzhIsWF3lRjIy4ojWrN0ak6FgDTZ0FJAHhwVBtgkVHj0ZJMHgEJZFiTCXLCM459iDzy1QFKcIldBN+ubIy0SoRb6v6QVsnbKY9LrE7EIPu2Zn7JldsXP2wN5+1CoFGv6/7NCuhVzurDbvdyy8/snK0y6w8cn6haFRdHinSfLDGrhkTUcaM8TghPief4sB4ihBTI6YBt12L6pRjvDBD+y/iiq2yxRD7Le6C6xjJKi3n90JEL8TeliD4u7B88LofE+pl52wR+rBMbthl9QFq/iin87x+UNSl2mOkt+nptxYSiWSQ4nUXCo+Nh5NVC060Y0+mpphjGEKs0hT5i0c4AjH0oV0K91J92GoFIs47fiypKd3QfK2Tw==</latexit>

q(⌧1)
<latexit sha1_base64="NFHV+YFUH0ua7Xpd79jaut5qpzc=">AAADO3icnVI9T9tQFD0xLQW3JQldkFgQURCtqug5Hag6odKBBUECSZDiKLLdl2DFsY39EjWN8gf4Ax2YqMqA+A1MXfoHOjAztXRLKxYGrj8EgqhU6rXsd+9595znd+/VXcv0BWOnCWnswcPxRxOT8uMnT6eSqfR02Xc6nsFLhmM53rau+dwybV4SprD4tutxra1bvKK3VoL9Spd7vunYW6Ln8lpba9pmwzQ0QVA9lVSr8u6iKrROXXkuq7V6KsNyLLS5UUeJnQxi23DSCRkq3sOBgQ7a4LAhyLegwaenCgUMLmE19AnzyDPDfY4BAm6HsjhlaIS26NukqBqjNsWBph+yDTrFotcj5hyy7Ds7YkP2jR2zH+zyr1r9UCP4lx6tesTlbj25N7N58U9Wm1aBnRvWPQydsqM7vaM4qoFH3lqssU4MTkgQBbd4QRw1zGkS06TbDuIaNQl/eY39r6KGDyOKEXZf3QUaeB3WOzjdDZGgE0ZUg+7HT8PNN8Vsf4F9ZufUgwN2yr5SF+zub+OwwIv7pC7THCl3p2bUKedzyqtcvpDPLL+NJ2oCs5jHIk3NEpaxig2UwsnaxxccSifSmfRT+hWlSomY8wy3TPpzBcXxtyQ=</latexit>

q(⌧2)
<latexit sha1_base64="J02xwPx/GnMr7a5x7q9Q6Im+Eg0=">AAADO3icnVI7T9tQFP7i8kgNJaEslVhQo1RphaKbMLTqFNEOLKi8ApHiKLLNJVg4tmvfRIQof6B/oAMTCIaK38DEwh9gYO7EYwuIhaHHD4EgAqQey77nfPd83/U952iOaXiCsdOY9Kqvf2Aw/loeGn4zkkiOvl327Iar86Jum7Zb0lSPm4bFi8IQJi85LlfrmslXtI1v/v5Kk7ueYVtLouXwSl2tWcaaoauCoGoyoZTlnxlFqI1q/qOsVKrJFMuywCZ6nVzkpBDZnD0ak6FgFTZ0NFAHhwVBvgkVHj1l5MDgEFZBmzCXPCPY5+jA5zYoi1OGSugGfWsUlSPUotjX9AK2TqeY9LrEnECanbA/rMuO2QE7Y7dParUDDf9fWrRqIZc71cSvd4s3L7LqtAqs37OeYWiUHd7pO8VhDVzyZiONH8TghPiRf4tPxFGCnBoxDbptJ6pRjfDJO+x/FVVs9iiG2HN1F1jDl6De/ulOgPid0MMaNLd+dxe/LqTbH9guu6Ae7LBTdkRdsJpX+v48X9gmdZnmKPd4anqd5Xw2N5XNz+dTheloouIYx3tkaGo+o4AZzKEYTNY29rAvHUp/pXPpMkyVYhFnDA9Muv4HyLy3JQ==</latexit>

q(⌧3)
<latexit sha1_base64="z+I5j4EDHXXGBy2anAYd6PyKS+w=">AAADO3icnVI9T9tQFD0xlA9TSIAFiQU1AgGqopcwtOqEgIEFkQABpDiKbPclWDi2a79EQJQ/wB9gyASCAfEbmFj6Bzowd+JjA9SlA9cfagURIHEt+9173j3n+d17Ncc0PMHYZUzq6PzQ1d3TK/d97B+IJwaH1j275uo8r9um7W5qqsdNw+J5YQiTbzouV6uayTe07Xl/f6POXc+wrTWx6/BiVa1YRtnQVUFQKRFXCvKPSUWotdLMlKwUS4kkS7HAxtqddOQkEVnWHozJUPAdNnTUUAWHBUG+CRUePQWkweAQVkSDMJc8I9jnaMLn1iiLU4ZK6DZ9KxQVItSi2Nf0ArZOp5j0usQcwzj7xU7ZHfvJztgV+/uiViPQ8P9ll1Yt5HKnFN8fWf3zJqtKq8DWf9YrDI2ywzstUBzWwCVvKdJYJgYnxI/8W0wTRwlyKsQ06LbNqEYVwj//w96rqGKnTTHEXqu7QBlfg3r7pzsB4ndCD2tQ3zu4W/22Mt6YYEfshnpwyC7ZBXXBqt/rJzm+0iJ1meYo/Xxq2p31TCo9k8rkMsnZuWiiejCKT5ikqfmCWSwii3wwWS0c40Q6l35L19JtmCrFIs4wnpj08AjLh7cm</latexit>

q(⌧4)
<latexit sha1_base64="sB0YIU+/OdNybwBvO1atmPg0x7I=">AAADO3icSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvwx0RzFWrElCSWxptocsXExgsoG+gZgIECJsMQylBmgIKAfEFGLoYYhhSGfIZkhlKGXIZUhjyGEiA7hyGRoRgIoxkMGQwYCoBisQzVQLEiICsTLJ/KUMsA0lsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowqMjCaga4icXIB8SBkVAli/UDH+gjlSgCIgH8oUWUE8MWE06UGcm0Le10DBKB4rrwMXINTGRoQLDRIgYvnAvYUhjsACHN8j2ArAIKCaSIWFQVjX9c7BVkGq1msEig9fAOFhocNPgMDAW8sq+JC8NTA2aDTSdC5iODNFTDSYjzEjP0FjPKNBI2cEJmqI4GKQZlBg0gKnGnMGBwYMhgCEUnLJmMyxhWMq0l+kx0yumNxClTIxQPcIMKIDpKwDOUrcn</latexit>

q(⌧5)
<latexit sha1_base64="paYp1S6boKhydw2sH+daqc90cqQ=">AAADO3icSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvwx0RzFWrElCSWxptqcsXExgsoG+gZgIECJsMQylBmgIKAfEFGLoYYhhSGfIZkhlKGXIZUhjyGEiA7hyGRoRgIoxkMGQwYCoBisQzVQLEiICsTLJ/KUMsA0lsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowqMjCaga4icXIB8SBkVAli/UDH+gjlSgCIgH8oUWUE8MWE06UGcm0Le10DBKB4rrwMXINTGRoQLDRIgYvnAvYUhjsACHN8j2ArAIKCaSIWFQVjX9c7BVkGq1msEig9fAOFhocNPgMDAW8sq+JC8NTA2aDTSdC5iODNFTDSYjzEjP0FjPKNBI2cEJmqI4GKQZlBg0gKnGnMGBwYMhgCEUnLJmMyxhWMq0l+kx0yumNxClTIxQPcIMKIDpKwDRHbco</latexit>

Dall
<latexit sha1_base64="SfLSsv7eFcek8vFzd3e1gZbIEok=">AAADQnicnVLLShxBFD3T8dmJOkaQgBvJYAgiQ824UFyJceEmxEdGhelhqG7LsbH6QXfNoHbmB/IDWWQVwUXQv9CFP5CFnxBdhQlk4yK3HxiSIQpW0133nrrn3K57r+lLO1SMXeW0Jz29ff0Dg/rTZ0PDI/nR55uh1wwsUbE86QXbJg+FtF1RUbaSYtsPBHdMKbbM/Tfx+VZLBKHtue/VoS9qDm+49q5tcUVQPT9uVPXlemQ4XO0FTsSlbLd1o1bPF1iRJWuy2yhlRgHZWvVGczoM7MCDhSYcCLhQZEtwhPRUUQKDT1gNEWEBWXZyLtBGzG1SlKAITug+fRvkVTPUJT/WDBO2RVkkvQExJzHFvrGvrMMu2Sn7zm7/qxUlGvG/HNJuplzh10c+vtj49SDLoV1h7w/rHoZJ0emdlslPaxCQ9TbTeEcMQUjsxbeYJo6RxDSIadNt21mNGoTP3GGPVeQ46FJMsfvqrrCL+aTecXY/QeJOWGkNWkefOhsL61PRK3bMbqgHX9gVO6cuuK2f1smaWP9M6jrNUenfqek2NsvF0myxvFYuLC5lEzWACbzEa5qaOSxiBauoUOYPOMYpzrQL7Vr7oXXSUC2Xccbw19JufwNdmrsj</latexit>

Fig. 1: Importance sampling process based on RRT results

Next, we explicitly formulate the density function q(τ) to
obtain the efficient RRT-based maximum entropy IRL.

C. Fast partition function calculation by RRT-based impor-
tance sampling

In this paper, we leverage the fact that the score to
obtain the sum of rewards in each path from the root
to the leaf in generated RRT can be efficiently calculated
via backward calculation. To enhance the efficiency of the
motion sampling, we assume all the motion paths whose path
length is T as possibly generated. We also assume that the
path with a higher sum of rewards is likely to be generated
from the given reward function. With this flavor, we define
the probability density function q(τ) over the motion path τ
as

q(τ) =
∑

xt,ut∈τ exp (rw(xt, ut))∑
τ̃∈Dall

∑
x̃t,ũt∈τ̃ exp (rw(x̃t, ũt))

. (5)

Using this definition, we can calculate q by assuming that
Dall contains all the possible paths in the space. Besides,
we can use q as a path generator, which probabilistically
selects a path from Dall, because q is normalized to Dall.
Therefore, we conduct resampling from Dsamp using q, and
obtain the new sampled set Dsamp, as of the right side of
Fig. 1. Through these algorithms, we can approximate the
partition function (3) using q and Dsamp.

Algorithm 1 summarizes all the processes of our param-
eter updating method based on importance sampling, where
winit, N , and T denote an initial weight parameter, the
maximum number of iterations, and generated tree informa-
tion, respectively. Thus, we completely formulate an efficient
RRT-based maximum entropy IRL on the continuous state
space for driving behavior prediction.

Algorithm 1 RRT-based maximum entropy IRL

Input: winit, Ddemo, N
1: w ← winit
2: while i < N do
3: for τ̃ ∈ Ddemo do
4: x0 ← τ̃
5: T ← generateRRT(x0, |τ̃ |)
6: Dall, q ← backtrackTree(T) (Fig. 1 and (5))
7: Dsamp ← resampling(Dall, q) (Fig. 1)
8:

dL(w)
dw ← getGrad(Dsamp, q) ((2) and (4))

9: w ← update(w, dL(w)
dw)

10: i← i + 1
11: end for
12: end while
Output: w

D. Comparison to the existing approximated methods

To highlight the advances in our method, we describe the
comparison of existing methods on the approximation of the
partition function with ours.

1) Laplace approximation: Levine et al. [8] applied max-
imum entropy IRL to a continuous space using Laplace
approximation. Although it makes learning faster in the high-
dimensional space, its dependency on initial guesses and
unstable results are caused by the local approximation.

2) The highest reward path approximation: Shiarlis et
al. [16] and Xin et al. [22] approximated the partition
function Z(w) with a path that gained the highest reward as
Z(w) ≈ maxτ exp

(∑
x∈τ rw(x)

)
. This requires only one

highest-reward path, whereas (1) needs all possible paths;
hence, a significant cost reduction is expected. However, this
model is not suitable for noisy driving data because it only
refers to the optimal behavior and ignores other suboptimal
ones. It should be noted that Shiarlis et al. [16] employ
variants of RRT as motion planner during its IRL; however,
the combination of approximated log partition function Z(w)
and motion planner is still important for proper behavior
modeling.

3) Approximation with multiple paths: Wu et al. [21] cal-
culated the summation of the set of sampled paths Dsamp as
Z(w) ≈

∑
τ∈Dsamp

exp
(∑

x∈τ r(x)
)

. Needless to say, this
increases when the number of samples |Dsamp| increases.
therefore, this approximation is not mathematically correct.

GCL presented by Fin et al. [4] is the closest work to
our model; however, its motion sampler is quite different.
In contrast to the use of guided policy search (GPS [9]) in
GCL, our model prefers to employ a more robust motion
sampler even if it is specific to vehicle motion dynamics.

IV. EXPERIMENTAL RESULTS

We confirm that our method can perform more stable and
faster than existing methods on the multiple driving tasks,
using both quantitative and qualitative evaluations.

A. Target scenarios: lane-change & intersection behavior

We use two driving scenarios in the experiment. One is a
lane-change task. When obstacles surrounded by cones are
placed on the road, we learn behaviors to avoid them by
changing lanes.

The second task is the turning task at the intersection.
The agent should move from the initial position to the target
lanes by steering the car. Using these scenarios, we con-
firm whether the models stably learn the driving behaviors
regardless of the type of task.

B. State space and dynamics settings

In this experiment, we consider a 5-dimensional state
space, where a xt at time step t is expressed as xt =
(xt, yt, θt, vt, ωt)⊤ , where xt, yt, θt, vt, and ωt denote the
x-position, y-position, angle, velocity, and angular velocity,
respectively. In addition, the input vector is defined by a
2-dimensional vector consisting of acceleration and angular
acceleration: ut = (at, αt)⊤. When the state and input at
time step t are given, the agent moves to the next state
xt+1 by following nonholonomic dynamics. ∆T denotes
time granularity.

C. Reward representation

To simplify the evaluation protocol, we represent reward
function rw(xt, ut) as linear mapping function parameter-
ized w. Specifically, the reward function can be defined as
rw(xt, ut) = w⊤ϕ(xt) in the evaluation. It should be noted
that the time-variant and nonlinear neural models for r can
be used in the evaluation for practical use cases; however, the
main objective of this experiment is to confirm the validity
of using RRT-based motion sampler in contrast to the other
log partition approximation or other motion generators.

In this experiment, we design feature ϕ with 11 factors, for
example, the center of a lane, obstacles, and roadsides. The
number of lanes varies from 2 to 4 and the reward function is
time-invariant. For tasks at the intersection, we use additional
features: desirable velocity, angular velocity, and positions of
target lanes.

For simplicity, we deal with time-invariant settings, where
the surrounding environment does not change with the pas-
sage of time; however, the planning and learning in our
method can work on time-variant settings.

D. Dataset

We artificially generate training data by executing path
planners on ground-truth reward maps, and probabilistically
choosing paths based on their obtained rewards. In this
experiment, we used 100 training paths for lane-change tasks
and 45 paths for turning tasks at intersections. In the learning
phase, we used 80 paths for training and 20 paths for the test
on lane-change tasks. For turning at the intersection, we used
35 paths for training and 15 paths for the test.

E. Evaluation metrics

1) Modified Hausdorff distance: Modified Hausdorff dis-
tance (MHD [3]) is often used to evaluate the similarity
between test paths and recovered paths on the learned reward
function. MHD is an extension of Hausdorff distance to
measure the distance of the time-sequential paths. The pa-
rameter β was set to 0.5 and 0.9. When the distance between
related points was calculated and these values were sorted
in ascending order, β = 0.5 represented the 50th percentile
value, and β = 0.9 represented the 90th percentile value.
Subsequently, we refer to them as MHD50 and MHD90.

2) Ground truth reward difference: We adopted another
metric to evaluate the accuracy of the learned rewards. Even
if the MHD is large, we cannot conclude that the recovered
path is poor because of the suboptimality of driving behav-
iors. When the demonstration path τdemo, a generated path
τgen, and ground-truth weight wgt are given, the ground-truth
reward difference is defined as w⊤

gt

(∑
x̃t∈τdemo

ϕ(x̃t) −∑
xt∈τgen

ϕ(xt)
)

. This metric is also often used to evaluate
the stability of IRL when we know the ground-truth reward.

3) Calculation time: To evaluate the speed of the IRL
methods, we measured the calculation times, and took their
average. All methods use the same optimization metric,
gradient descent, and the number of iterations is fixed at
30; therefore, we can directly compare the total calculation
time.

F. RRT algorithm employed in the experiment

Thanks to the rigorous development of RRT based motion
sampler, we need to take care of the selection of RRTs
towards reliable and efficient RRT based maximum entropy
continuous IRL. Among various kinds of RRT motion plan-
ners, we employ variants of template-based RRT generators
presented by Ma et al. [11]. It is reported that this algorithm
generates natural motion behavior with the combination of
the registered motion templates while reducing its com-
putational cost. Therefore, we chose this template-based
algorithm in this experiment. It should be noted that we
manually implement this algorithm for this experiment and
modify it to the parallel computation to obtain the tree.

In the experiment, we use tens of motion templates to
generate a tree where the number of nodes for RRT is 25200

on lane-change tasks and 31200 on intersection turning tasks,
respectively. For importance sampling, we resampled 100
paths using (5). Specifically, this planner enabled us to obtain
T = 150 length 100 paths from q(τ) within 20 [s] under this
condition.

G. Comparison methods

First, we adopted iLQR [2], [10] as a model-based planner.
It uses a quadratic approximation around the initial path. In
the existing research, Laplace approximation-based IRL [8]
is often used, but it requires considerable memory to store
the Hessian of each path. Hence, we substitute iLQR-based
IRL for this Laplace approximation: 1) combination with the
max path approximation (iLQR+max) and 2) with the sum
sampling-based method (iLQR+sum). The iteration of iLQR
planning is 20, and the sampled path size for the sum sam-
pling is 5. Besides, 3) linear controller-based IRL (lc+max)
proposed by Xin et al. [22] is selected. This is the baseline
calculation time a very simple planner. We generated 7000
paths at each iteration. We also used 4) RRT with the max-
path (RRT+max) and 5) with the sum sampling (RRT+sum)
to evaluate the effects of our importance-sampling-based
approach. RRT+max is a model similar to RRT*+perceptron
by Shialis et al. [16], except that they employ RRT* [5]
for holonomic dynamics, and RRT+sum is a model similar
to Wu et al. [21] in terms of how log partition function
is approximated while their sampling method is based on
discrete the elastic band.

H. Results

Fig. 2 shows the quantitative evaluation results on lane
change tasks. Our proposed method achieves the best result
on MHD and the reward difference. As for calculation time,
our method works 2.5 and 1.5 times faster than iLQR+max
and lc+max, respectively. Fig. 3 shows the result of turn-
ing tasks at the intersection. Our proposed method also
outperforms the other methods in terms of stability. The
computational time is 2.2 and 1.2 times less than iLQR+max
and lc+max, respectively. In addition, the computational time
of iLQR+sum linearly increases from iLQR+max because of
five executions of the planner to sample five paths. On the
other hand, our proposed method only requires a 1.5 times
larger cost than RRT+max, even though it samples 100 paths.

We add Table I and II, which compare the results among
RRT-based methods on both tasks to compensate for Fig. 2
and Fig. 3. We can confirm that our importance sampling-
based parameter updating is effective and achieves better
results on average than other approaches: max-path approx-
imation and sum-sampling-based approximation.

Fig. 4 is the result of the situation when the number
of lanes is four. The data include demonstrations that pass
the left side of the road as in Fig. 4a. Nevertheless, our
method has successfully recovered another optimal behavior
that avoided obstacles by the right-side as 4c, owing to
the suboptimality-reflected optimization by importance sam-
pling. The max path-based approximation of lc+max cannot
learn suboptimal principles as in Fig. 4e because it only

(a) MHD50 (b) MHD90 (c) Reward difference (d) Calculation time [s]

Fig. 2: Results of four evaluation metrics on lane-change tasks

(a) MHD50 (b) MHD90 (c) Reward difference
(d) Calculation time [s]

Fig. 3: Results of four evaluation metrics on intersection tasks

TABLE I: Evaluation among RRT-based methods on lane-
change tasks

RRT+max RRT+sum ours
MHD50 2.183 ± 2.118 2.087 ± 2.05 1.744 ± 1.538
MHD90 3.952 ± 3.248 3.831 ± 2.911 3.449 ± 2.574

reward diff 68.98 ± 42.09 67.04 ± 41.68 66.49 ± 50.13
time [×103s] 8.68 ± 0.46 11.53 ± 1.08 11.27 ± 1.10

TABLE II: Evaluation among RRT-based methods on inter-
section tasks

RRT+max RRT+sum ours
MHD50 1.932 ± 0.977 2.037 ± 0.961 1.881 ± 0.949
MHD90 3.481 ± 1.477 3.882 ± 1.643 3.320 ± 1.237

reward diff 414.32 ± 259.74 431.45 ± 231.73 381.09 ± 214.54
time [×103s] 6.95 ± 0.34 10.19 ± 0.33 10.12 ± 0.30

uses a single path to update the parameter. lc+max could
not recover an effective reward due to the unstable planning;
therefore, the predicted behavior passed through the obstacle.

V. CONCLUSION

Recently, IRL is believed to be one of the prominent
approaches for robust reward designing in driving behavior
prediction through driver demonstration. Despite the rigorous
extension of maximum entropy IRL in continuous setting,
this paper clarifies that the exploration towards robust and
reliable motion planning and its full exploitation of the
planned results still exists. In this paper, we leverage RRT as
an efficient motion planner with a highly efficient sampler
from the single generated RRT during IRL training. Though
the proposed model is still simple, its efficiency and stability
could be achieved in contrast to the existing approximation

(a) behavior
(demo)

(b) reward
(ours)

(c) behavior
(ours)

(d) reward
(lc+max)

(e) behavior
(lc+max)

Fig. 4: Comparison of lane-change behaviors (4 lanes)

methods. The experimental results on artificial highways
and intersections show that the proposed method achieves
better performance in terms of stability and speed in multiple
driving tasks. Future work includes the validity of our
algorithm in time-variant situations where pedestrians pass
intersections with time-variant reward functions.

REFERENCES

[1] A. Bemporad and M. Morari, “Robust model predictive control: A
survey.” Springer, 1999.

[2] J. Chen, W. Zhan, and M. Tomizuka, “Constrained iterative lqr for
on-road autonomous driving motion planning,” in Proc. ITSC, 2017.

[3] M.-P. Dubuisson and A. K. Jain, “A modified hausdorff distance for
object matching,” in Proc. of ICPR, 1994.

[4] C. Finn, S. Levine, and P. Abbeel, “Guided cost learning: Deep inverse
optimal control via policy optimization,” in Proc. of ICML, 2016.

[5] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for optimal motion planning,” Robotics Science and Systems VI, 2010.

[6] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” 1998.

[7] A. J. Leslie, “Analysis of the field effectiveness of general motors
production active safety and advanced headlighting systems,” Univer-
sity of Michigan, Ann Arbor, Transportation Research Institute, Tech.
Rep., 2019.

[8] S. Levine and V. Koltun, “Continuous inverse optimal control with
locally optimal examples,” in Proc. of ICML, 2012.

[9] ——, “Guided policy search,” in Proc. of ICML, 2013.
[10] W. Li and E. Todorov, “Iterative linear quadratic regulator design for

nonlinear biological movement systems.” in Proc. of ICINCO, 2004.
[11] L. Ma, J. Xue, K. Kawabata, J. Zhu, C. Ma, and N. Zheng, “A fast

RRT algorithm for motion planning of autonomous road vehicles,” in
Proc. of ITSC, 2014.

[12] V. Milanés, S. E. Shladover, J. Spring, C. Nowakowski, H. Kawazoe,
and M. Nakamura, “Cooperative adaptive cruise control in real traffic
situations,” IEEE Trans. on ITS, 2013.

[13] A. Perez, R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-
Perez, “LQR-RRT*: Optimal sampling-based motion planning with
automatically derived extension heuristics,” in Proc. of ICRA, 2012.

[14] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich, “Maximum margin
planning,” in Proc. of ICML, 2006.

[15] D. M. Saxena, S. Bae, A. Nakhaei, K. Fujimura, and M. Likhachev,
“Driving in dense traffic with model-free reinforcement learning,” in
Proc. of ICRA, 2020.

[16] K. Shiarlis, J. Messias, and S. Whiteson, “Rapidly exploring learning
trees,” in Proc. of ICRA, 2017.

[17] M. Shimosaka, T. Kaneko, and K. Nishi, “Modeling risk anticipation
and defensive driving on residential roads with inverse reinforcement
learning,” in Proc. of ITSC, 2014.

[18] M. Shimosaka, K. Nishi, J. Sato, and H. Kataoka, “Predicting driving
behavior using inverse reinforcement learning with multiple reward
functions towards environmental diversity,” in Proc. of IV, 2015.

[19] M. Shimosaka, J. Sato, K. Takenaka, and K. Hitomi, “Fast inverse
reinforcement learning with interval consistent graph for driving
behavior prediction,” in Proc. of AAAI, 2017.

[20] D. J. Webb and J. Van Den Berg, “Kinodynamic RRT*: Asymptotically
optimal motion planning for robots with linear dynamics,” in Proc. of
ICRA, 2013.

[21] Z. Wu, L. Sun, W. Zhan, C. Yang, and M. Tomizuka, “Efficient
sampling-based maximum entropy inverse reinforcement learning with
application to autonomous driving,” IEEE RAL, 2020.

[22] L. Xin, S. E. Li, P. Wang, W. Cao, B. Nie, C.-Y. Chan, and
B. Cheng, “Accelerated inverse reinforcement learning with randomly
pre-sampled policies for autonomous driving reward design,” in Proc.
of ITSC, 2019.

[23] F. Zaklouta and B. Stanciulescu, “Warning traffic sign recognition
using a hog-based kd tree,” in Proc. of IV, 2011.

[24] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning,” in Proc. of AAAI, 2008.

