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Abstract—Indoor position information, which is difficult to
obtain by GPS, can be used for various services and applications,
thus indoor localization methods have been widely researched.
Among them, device-free indoor localization does not require
the target persons to possess a localization device, such as a
smartphone, which can support the localization of all persons
in the environment. Many methods using RSSI and Wi-Fi CSI
have been proposed as device-free indoor localization using
radio waves. However, RSSI is easily affected by environmental
factors, such as multipath propagation. Wi-Fi CSI also has
the disadvantage that there is no standard, so it relies on
special hardware and software. Therefore, we propose device-free
multi-person indoor localization using ToF information, which is
less susceptible to noise. ToF information in indoor localization
has mainly been used for highly accurate estimation of the
receiver position, while this paper proposes a new application.
In addition, distance measurements using ToF of Wi-Fi and
UWB have been standardized and can be implemented with
commercial equipment, which is highly practical. In this research,
we considered the change in the distance measurement due to
radio wave occlusion by a human body and built a device-free
indoor localization system that can estimate multi-person position
even if the model is trained on the data of only one person.

Index Terms—Wi-Fi, UWB, Round Trip Time, Time of Flight,
device-free indoor localization, indoor positioning, density esti-
mation

I. INTRODUCTION

Indoor position information, which is difficult to obtain
by GPS, can be used for various services and applications,
so indoor localization methods have been widely researched.
Among indoor localization methods, many methods have been
proposed that use radio wave information received from access
points by the devices that the targets possess [1]–[5]. However,
these methods cannot localize persons who do not have such
devices or have not installed the corresponding application.
Therefore, device-free indoor localization, which does not
require the targets to possess a localization device, is a very
important method given a lack of localization.

Currently, cameras are often used for device-free indoor
localization in the real world. However, there are places not
suitable for installation of a camera from the viewpoint of

privacy. Therefore, many methods using radio waves to solve
the privacy issue have been proposed.

For example, methods that use changes of RSSI (Received
Signal Strength Indicator) due to radio wave interference
caused by humans have been proposed [6], [7]. However, they
are very susceptible to environmental disturbance and have
low accuracy.

In recent years, many methods using Wi-Fi CSI (Channel
State Information) have been proposed [8], [9]. CSI responds
sensitively to changes in radio waves in the environment, so it
is possible to estimate persons’ positions with high accuracy.
However, there is no standardization for CSI, so we have
to rely on special equipment and software to acquire it in
a practical setting.

In this paper, we propose a device-free multi-person indoor
localization method using distance calculated by ToF (Time
of Flight) information, which is less susceptible to noise. The
RTT (Round Trip Time) protocol can calculate the distance
from the communication time between the transceiver and
receiver with low noise. IEEE 802.11mc standardizes distance
measurement using Wi-Fi as Wi-Fi RTT. In addition to Wi-Fi,
distance measurement is also possible with UWB (Ultra Wide
Band), which is standardized by IEEE 802.15.4a. In this man-
ner, the measurement using the RTT protocol is standardized
and does not require special equipment or software, so it is
more practical than the CSI-based method.

Using this protocol, many researchers have achieved accu-
rate indoor localization with devices that the target persons
possess [10]–[13]．However, in this manner, the use of ToF
is mainly focused on high-precision estimation of receiver
position, and device-free indoor localization with it has not
been discussed. This paper proposes a new application of ToF
information to device-free indoor localization.

However, it is not clear how the distance measurement re-
sults change due to human radio wave interference or how they
can be used for localization. In this research, we constructed
a localization system after considering the change.



The contributions of this study can be summarized as
follows:

• We investigated the changes due to radio wave occlusion
caused by a human body in the measured distance and
signal strength of Wi-Fi and UWB.

• We propose a Gaussian Median-Max feature as a function
to appropriately express the degree of human presence
and absence between antennas.

• We built a localization model that can estimate multi-
person positions by learning only one person’s data in
the environment.

• We performed device-free indoor localization with the
proposed model and evaluated its accuracy.

Related work

Device-based indoor localization with radio wave: As
indoor localization methods using devices owned by target
persons, there are methods using the strength of radio waves
called RSSI (Received Signal Strength Indicator). Wi-Fi RSSI-
based indoor localization has been researched for the last 20
years [1]–[5]. To localize the target devices in this framework,
a model matches an input fingerprint, which is a vector of
RSSIs, to the training data. This framework has been actively
explored owing to its practicality and the availability of Wi-Fi
signals in many environments.

ToF distance measurement technologies are being consid-
ered as new protocols for indoor localization in recent years
[10], [12]–[15]. Both Wi-Fi RTT and UWB are standardized
by IEEE 802.11mc and IEEE 802.15.4a, so they can be
obtained easily with commercial equipment. ToF measurement
is also known to have less noise than RSSI.

However, device-based indoor localization methods cannot
localize persons who do not have devices such as smartphones
or have not installed the corresponding application.

Device-free localization with Wi-Fi RSSI and CSI: As
device-free indoor localization methods using the changes of
Wi-Fi radio waves, methods using changes in RSSI due to
human interference [6], [7] have been researched. Additionally,
there are methods using Wi-Fi CSI (Channel State Informa-
tion) [9], [16]–[18], which is detailed information on radio
waves, such as the amplitude and phase difference of radio
waves acquired by multiple antennas of Wi-Fi transceivers
and receivers. In particular, CSI can respond to changes in
radio waves in the environment sensitively, so its use has been
researched not only for high-precision localization of persons
but also for various fields, such as human activity recognition
[19]. However, RSSI is very susceptible to environmental
factors, such as multipath propagation, and handling the noise
becomes a problem. In addition, there is no standardization for
CSI, so we have to rely on special equipment and software to
acquire it in practical use.

Applied technology for human detection using ToF infor-
mation: There have been several studies that have applied
ToF information to human detection [20], [21]. Choi et al.
proposed a system that detects persons passing through an
entrance by measuring distances with a UWB transceiver and

receiver attached to the ceiling [20]. They also constructed a
system to detect persons in a small area [21]. Although these
methods have proposed new application methods of detecting
the presence of persons, they are limited to the detection of
one person in a small area. Therefore, they cannot be applied
to multi-person localization or the estimation of congestion.

In this paper, we propose device-free multi-person indoor
localization using ToF information.

II. DISTANCE MEASUREMENT WITH TOF INFORMATION

A. Overview of Wi-Fi RTT and UWB

Wi-Fi RTT is a protocol standardized by IEEE802.11mc
that measures the distance between a Wi-Fi access point and
Wi-Fi device based on ToF of Wi-Fi radio waves. Because
it uses time information, it is known to be less susceptible
to noise than Wi-Fi RSSI. Standardization has been done, so
there are merits that Wi-Fi CSI does not have, such as being
able to collect on general Android devices.

UWB (Ultra Wide Band) is a wireless technology and is
standardized by IEEE 802.15.4a. It uses signals distributed
over a wide band and can measure distance from ToF in the
same way as Wi-Fi RTT. It is often used for localization and
radar. In recent years, UWB antennas have also been installed
on the iPhone. The output of the transmitted UWB radio wave
is weak, and it is only noise for other radio waves, so there is
little problem of radio wave interference.

These ranging techniques are often used for accurate re-
ceiver position estimation in the field of indoor localization
[10], [12]–[15].

B. How to apply ToF information to human detection and its
concerns

Both Wi-Fi RTT and UWB use the communication time
between antennas for distance measurement. Due to radio
wave diffraction and reflection, ToF is longer in the NLoS
(None Line of Sight) state where there is an obstacle between
the antennas than in the LoS (Line of Sight) state where
there is nothing between them．As a result, the measured
distance also becomes longer. By focusing on the change in the
measured distance, it becomes possible to determine whether
there is a person between the antennas or not. In our research,
we realize device-free indoor localization by applying this.

However, there are concerns about the use of this ranging
result for device-free indoor localization. Figure 1 summarizes
the results of 50 distance measurements of 7 m with Wi-Fi
RTT (left) and UWB (right) in a boxplot. Measured distance
by Wi-Fi RTT has a variation of approximately 1 m even when
there is no obstacle, as shown in the left of Figure 1. This is
because Wi-Fi RTT is susceptible to multipath. Multipath is
a phenomenon in which transmitted radio waves pass through
multiple propagation paths and are received multiple times.
If it is susceptible to this, there is a problem that the radio
waves that have passed through multiple paths are recognized
as being slightly shifted and overlapped due to the difference in
arrival time, and variation occurs in measured values. There is



concern that this measurement variation may lead to a decrease
in localization accuracy.

Meanwhile, UWB radio wave is strong against multipath,
so the error is very small, as shown on the right of Figure
1. However, UWB is generally known to be able to measure
accurate distance even if there are obstacles, and it is not clear
whether it can be used for human detection between antennas.

Therefore, in this research, after verifying how much the
measured distances of Wi-Fi RTT and UWB change due to ra-
dio wave occlusion by human (Section IV-A), we constructed
a localization system.

Fig. 1: 50 distance measurements of 7 m with Wi-Fi RTT (left)
and UWB (right)

III. DEVICE-FREE MULTI-PERSON INDOOR LOCALIZATION

A. Flow of proposed localization system

The localization model proposed in this research consists
of three important points: environment sensing, data fea-
turization, and density-based device-free localization. Figure
2 shows the flow of our ToF-based device-free indoor lo-
calization. First, we monitor the target environment with
installed transceivers and receivers by determining whether
radio waves are occluded for each transceiver-receiver pair.
The ToF measured distance is affected if a direct path (line
of sight (LoS)) changes to an indirect path (non line of sight
(NLoS)) because of occlusion by a human body. To detect the
location of an individual, we combine the NLoS information
of the transceiver-receiver pairs to observe the locations of
target persons.

Then, we extract their possible locations from the combi-
nation. However, we cannot explicitly determine whether the
signal state is LoS or NLoS because we do not know the LoS
and NLoS ranging value explicitly. The ranging value contains
errors due to offsets depending on the devices, measurement
noise, environment structure effect, and different deterioration
values caused by difference of person. To handle ranging
noise, we encode how likely it is for the ranging value to be
LoS or NLoS by using median or maximum ranging results
in a training dataset for each transceiver-receiver pair. Details
are described in Section III-D.

Finally, for multi-person localization, we estimate the target
location with a density estimation model. Here, although re-
gression directly models the location and provides an accurate
estimation, it cannot model locations of multiple persons. In
this research, to match the localization of multiple persons,

we define the localization model as a density estimation. We
estimate the density for each small mesh, which divides a
target environment. The estimated multi-person location is
obtained by thresholding the density estimation results. This
localization procedure does not place an upper bound on
the number of estimated persons. Details of the model are
described in Section III-C.

Trained
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each pair
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with single person

Encode 
LoS/NLoS

by RBF

Location of 
multiple persons
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Fig. 2: Folw of ToF-based indoor localization

B. Scheme of device-free multi-person indoor localization

The cross point of multiple NLoS signals is the location
where a person is most likely to be. Figure 3 illustrates an
example of the person detection scheme; Figure 3 (a) shows
an environment. Figure 3 (b) shows the signal properties when
one person is in the environment. The two ranging results
become NLoS because LoS is occluded by the person. From
the ranging results, the location where the person is most likely
to be is the lower-left one.

We perform multi-person sensing in the same way as the
single person case. In Figure 3 (c), the NLoS signals cross at
the upper-right location in addition to the lower-left location of
the Figure 3 (b) setting. From the ranging result, the locations
where the persons are most likely to be are the upper-right and
lower-left. We can differentiate the one-person setting from the
multi-person setting with NLoS combinations in this manner.

Here, we also discuss the position of the receivers and
transceivers placed in the environment. When two or more
signals are occluded by the target person, the position of the
person will be most likely estimated to be the intersection
of the paths. Therefore, it is essential that there are at least
two intersections of direct paths in the target mesh. Figure 11
shows an example of the localization environment. In Figure
11, the intersections of the direct paths are evenly distributed
in the environment, and the meshes for localization also have
them. Therefore, the environment is suitable for our indoor
localization.

C. Device-free indoor localization model

This section describes the details of the localization model.
We use changes in ToF measurements to estimate the positions
of persons. However, it involves noise due to the number
of persons in the environment and the passage of time. In
addition, as it is not clear how much the ranging results
change depending on occlusion by a human body, it is not
possible to explicitly acquire the state between antennas. In
other words, it is necessary to deal with the changes due to
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Fig. 3: Scheme of device-free multi-person indoor localization:
(a) environment with four target locations, (b) NLoS when one
person is at lower-left location, (c) NLoS when one person is
at lower-left location and one person is at upper-right location

the occlusion as the probability of human presence, rather
than directly detecting human presence at the intersection of
direct paths. To construct a localization model that is robust
against the noise, we propose a density estimation model. It is
also possible to deal with multi-person localization by using
a density estimation model.

As shown in Figure 11, we place N (T) transceivers and
N (R) receivers in the environment and use the ranging re-
sults obtained from the pairs as input to construct a density
estimation model. We define the measurement results such as
ToF measured distance and RSSI as x(i,j) acquired by the
pair of transceiver i and receiver j. The localization model
is expressed by Equation 1. In the localization model, the
vector y = [y1, · · · , y|L|]

⊤, which indicates the density of
persons in each localization target mesh, is the objective
variable. We use ϕ(x) as an explanatory variable. ϕ is a
function, which featurizes a vector of measurement results
x = [x(1,1), x(1,2), · · · , x(N(T),N(R))]

⊤ acquired by each pair.

y = Wϕ(x). (1)

L is a set of localization target meshes, yi [number of persons
/ m2] is a density of persons in the mesh with a size of 1
× 1 m, and W is a weight matrix. The design of the feature
function ϕ is discussed in Section III-D, the optimization of
the weight W is discussed in Section III-E, and the inputs
suitable for localization are discussed in Section IV-A.

After estimating density of persons in each target mesh,
using the threshold a determined by Equation 2, the positions
of the target persons are estimated by the threshold function
h of Equation 3.

a = θ(max(y)−min(y)) + min(y), (2)

h(yi) =

{
1 (yi > a)

0 (otherwise),
(3)

where θ is a real number such that 0 < θ < 1, and min(y)
and max(y) are the minimum and maximum values of the
elements of vector y, respectively. As a result of the threshold
processing, it is estimated that the target person exists in mesh
li where h(yi) = 1.

In this model, multi-person localization can be realized only
by learning the training data in which one person exists in the
environment. This is achieved by defining the model for each
target mesh and learning the density of persons independently
in each mesh for an input x. In other words, if the training
data on all mesh contains human existing data, device-free
indoor multi-person localization can be achieved by learning
only one person’s data in the environment.

D. Formulation of features considering human occlusion

To estimate the locations of the target persons with ToF
measured distance, we need to know whether the signal state
is LoS or NLoS. However, we cannot determine LoS or NLoS
directly from the ranging result for each transceiver-receiver
pair. This is because the ranging value has measurement noise,
variations due to differences in each person, environmental
structures, etc. To handle this problem, we propose a novel
feature representation using the median and max values of the
training dataset, which are likely to correspond to LoS and
NLoS conditions.

If we look at the amount of LoS and NLoS data in the
training dataset for each transceiver-receiver pair, most of the
data is LoS, and a small amount is NLoS. This stems from the
fact that only a few signals are occluded in the dataset acquired
under the single-person condition. From this fact, the median
value of the dataset for each pair reflects the LoS condition. In
comparison, under the NLoS condition, as discussed in Section
IV-A, the ranging result becomes longer than the expected
ranging result. From this fact, the max value of the dataset
for each pair is considered to be acquired under the NLoS
condition.

Therefore, we propose a Gaussian Median-Max feature,
which uses median and maximum ranging values for each
transceiver j and receiver k pair:

ϕ(M)(x(j,k)) = exp

(
−
(
x(j,k) − µ̃(j,k)

)2
2σ2

)
, (4)

ϕ(U)(x(j,k)) = exp

−
(
x(j,k) − µ

(U)
(j,k)

)2
2σ2

 , (5)

where µ̃(j,k) is the median of ranging results between
transceiver j and receiver k, and µ

(U)
(j,k) is the maximum

ranging result between transceiver j and receiver k. σ is
defined as 1.0 when Wi-Fi RTT ranging results are used and
0.1 when UWB ranging results are used. Figure 4 shows an
example of featurization on the Gaussian Median-Max feature.

The featurization function for the LoS signal (Equation 4)
returns a value of nearly 1.0 when the input is nearby the
median value and nearly 0.0 when the input is far from the
median value. The featurization function for the NLoS signal
(Equation 5), in a similar way as the LoS case, returns a value
of nearly 1.0 when the input is nearby the maximum value and
nearly 0.0 when the input is far from the maximum value.
This featurization function can sufficiently express whether
the radio wave is occluded or not.
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Fig. 4: Example of featurization on Gaussian Median-Max
feature

E. Parameter optimization of the proposed system

In this research, we used the dataset D = (x,y)
composed by a vector of ranging results x =
[x(1,1), x(1,2), · · · , x(N(T),N(R))]

⊤, which is acquired by
the transceiver-receiver pair, and a vector y = [y1, · · · , y|L|]

⊤

indicating the density of persons in each target mesh to
design the density estimation model. To optimize this model
using the dataset D, we define the L2 regularized least square
regression loss function for each location as

argmin
W

1

2
||Wϕ(x)− y||2 + λ||W ||22, (6)

where W is the weight of each featurized data, and λ is the
coefficient of the regularization term. ϕ uses both median and
max functions discussed in Section III-D, and it is defined as

ϕ(x) = [ϕ(M)(x(1,1)),ϕ
(M)(x(1,2)), · · · ,ϕ(M)(x(N(T),N(R))),

ϕ(U)(x(1,1)),ϕ
(U)(x(1,2)), · · · ,ϕ(U)(x(N(T),N(R)))]

⊤.
(7)

We construct the model by solving this optimization prob-
lem.

IV. PERFORMANCE EVALUATION

This chapter summarizes the verifications of Wi-Fi and
UWB measurements to realize robust device-free indoor lo-
calization. In addition, we evaluate the localization accuracy
of the proposed method.

A. Verification of measurements for robust localization

In this section, we summarize the measurement results
acquired by Wi-Fi and UWB transceiver-receiver pair in the
situation when there is a person or not between the antennas.

We collected data in two places: a corridor about 2 m wide
and a room of about 5 × 7 m. We used Google Wi-Fi as

a Wi-Fi transceiver (access point) and the Pixel3 is Android
device as a Wi-Fi receiver. For UWB, we used EVK1000,
which is a two-way ranging evaluation kit made by Decawave,
as transceiver and receiver. The equipment was installed on a
tripod, the Wi-Fi devices were set at 1.3 m from the floor,
and the UWB devices were 1.1 m from the floor so that a
standing person could block the direct waves sufficiently. The
equipment was set on the tripod 7 m apart, with a person stood
upright on the straight line connecting the antennas, as shown
in the Figure 5, and we collected the data.

Fig. 5: An example of data acquisition in a corridor (left) and
a sufficiently large room (right)

1) Change in ToF measured distance: First, we summarize
the distance measurement results calculated by ToF. The
results of each 50 measurements are plotted in a boxplot with
the distance from the receiver to the obstacle (x in Figure 6).
The horizontal axis is changed by 0.5 m except for ”Nobody”,
which shows the results when there is no person between the
antennas.

EVK1000 EVK1000
Pixel3 Google Wi-Fi

x[m]

Fig. 6: View from top of the data acquisition environment

Fig. 7: Wi-Fi RTT (left) and UWB (right) ToF distance
measurements in the corridor

Figure 7 shows the results of ToF distance measurements
acquired in the corridor. As shown in the left of Figure 7, the
ranging results by Wi-Fi RTT have a large variation, and it is
observed that the phenomenon that the measured distance is
extended due to human occlusion is not so much. Meanwhile,
as shown in the right of Figure 7, the ranging results by UWB
have less data variation than the results of Wi-Fi RTT, and the



phenomenon that the measured distance is extended due to
human occlusion is observed clearly.

Next, we summarize the ranging results acquired in the
room with a sufficient distance to the wall. In the same manner,
the results of each 50 measurements are plotted on a boxplot.
Figure 8 shows the results of ToF distance measurements
acquired in the room.

Fig. 8: Wi-Fi RTT (left) and UWB (right) ToF distance
measurements in the sufficiently large room

As shown in the left of Figure 8, although the ranging
results of Wi-Fi RTT have a large variation, the results are
greatly increased by the human body compared to the results
in the corridor. Meanwhile, as shown in the right of Figure 8,
although the ranging results of UWB change at the point near
the antennas of UWB, there is almost no change at the points
far away.

As described above, the results vary greatly depending on
the environment in which the data are acquired. The reason
for this is considered as follows.

First, the occlusion of a human increases the number of
radio waves that pass through paths other than the direct
path, regardless of radio waves and location. Among them,
in UWB, an increase in the measured distance was observed
in the corridor, and there was no change in the large room.
This is because the arrival time of UWB radio waves varies
only slightly in the corridor, where the length of the path
of direct wave and the path of the reflected wave do not
differ much. Therefore, it is difficult to distinguish between
direct and reflected waves, and misrecognition occurs, so the
measured distance increased. On the contrary, in the room
where the reflected path is sufficiently longer than the direct
path, it is easy to distinguish the direct wave, so the increase
in the measured distance was not observed.

In contrast, Wi-Fi is inherently difficult to distinguish be-
tween direct and reflected waves, so the measured distance
increased significantly in the room where the distance to the
wall is long and the paths are often long.

From these results, it can be seen that the distance mea-
surement by ToF increases due to radio wave occlusion by
the human body. However, the increases are not remarkable
depending on the environment.

2) Change in direct wave attenuation: Next, we consider
the attenuation of radio waves by the human body. As can
be seen from the previous results of distance measurement,
distance measurement using UWB is robust against multipath

because it is easy to distinguish direct waves. This property
also means that we can easily obtain data on the radio waves
that have passed through the direct path.

Here, we focus on FSL, which is a UWB measurement
value that indicates the estimated strength of the first received
radio wave. The radio wave that arrives at a receiver first
passes through the shortest path. If there is a person on the
direct path, the first radio wave should be received after being
attenuated by the human body. Therefore, it would be possible
to determine the presence or absence of a person by measuring
how much FSL weakened in comparison with RSL, which
is a UWB measurement value of the maximum radio wave
intensity.

In the same way as the distance measurements, we plot the
difference between RSL and FSL measurements (RSL−FSL
[dBm]) for 50 times on a boxplot. Figure 9 shows the results.

Fig. 9: Difference between UWB RSL and FSL in the corridor
(left) and large room (right)

As shown in the corridor result on the left of Figure 9, it is
observed that the difference when there is a person is larger
than when there is no person. This is because the occlusion of
the human body weakens the direct wave. The same tendency
is observed in the result of the room shown in the right of
Figure 9. The results show that the difference between RSL
and FSL does not depend on the environment and can be used
as a feature value to determine the presence of a person.

Next, we also consider Wi-Fi RSSI. Figure 10 shows the
result of plotting 50 RSSI measurements on a boxplot in the
same way.

Fig. 10: Wi-Fi RSSI in the corridor (left) and large room (right)

Here, unlike the plots so far, RSSI is attenuated by the
presence of persons compared to ”Nobody”. In other words,
it should be noted that the measured value is expected to
be small when there is a person. As shown in Figure 10,



in both environments, although the RSSI value is attenuated
when there is a person near the antenna, it is observed that
there is little change when there is a person at the central part
between the antennas. Therefore, Wi-Fi RSSI is observed to
be unsuitable for device-free indoor localization.

From these results, accurate localization can be achieved
by using the difference between RSL and FSL as a feature
quantity in addition to the ToF measured distance.

B. Experiment to evaluate localization accuracy
In this experiment, we constructed an indoor localization

system using the ToF measured distance by Wi-Fi RTT and
UWB as feature values, and performed it to compare the
localization accuracy. In addition, we compare with Wi-Fi
RSSI device-free localization using the featurization function
8 proposed by Youssef et al. [6]. The featurization function is
defined as

ϕ(A)(x(j,k)) =

∣∣∣∣x(j,k) − a(j,k)

a(j,k)

∣∣∣∣ , (8)

where x(j,k) is RSSI acquired by receiver j and transceiver k
pair, and a(j,k) is the average of RSSI acquired by receiver j
and transceiver k pair in the training data.

We also evaluated the performance of localization using
both ToF measured distance and signal strength. We define
σ in Equations 4 and 5 as 1.5 for using Wi-Fi RSSI and 1.0
for the difference between UWB FSL and RSL.

1) Experimental settings: The localization experiment was
performed in a room about 5 × 7 m. As shown in Figure 11,
when using Wi-Fi, we set up 9 Google Wi-Fis as access points
and 6 Pixel 3s as receiving devices by the wall. When using
UWB, we set up 9 EVK1000s as transceivers and 6 EVK1000s
as receivers at the same position. In addition, a total of 35 1
× 1 m meshes were set as the localization target meshes. As
discussed in Section III-B, these radio transceivers, receivers,
and the meshes are arranged so that at least two direct paths
(blue lines in Figure 11) pass through each mesh. Additionally,
in this experiment, we set θ in Equation 2 to 0.8.

Receiver
(Pixel３/EVK1000)

Transceiver
(Google Wi-Fi/EVK1000)

direct wave path

target mesh(1m×1m)

Fig. 11: Plan view of the indoor localization environment

(a) one person in env.

(a) Three people in env.

(b) Two people in env.

(a) one person in the environment

(b) two people in the environment

(c) three people in the environment

Fig. 12: Data acquisition patterns (left: positions of the target
persons in the environment; right: photo of corresponding
setting)

2) Acquired data: We acquired data for Wi-Fi and UWB on
separate days. We acquired each data with one to three target
persons in the environment. The target persons stood upright
in the center of the target mesh. Figure 12 shows examples
of data acquisition in the environment. We acquired a total of
35 patterns for each target mesh as data of one person. The
data of two persons were acquired in a total of 32 patterns,
1 m and 2 m apart, at the center, left and right columns.
We also acquired 52 data of three-person case at randomly
selected target meshes. We set zero or one person per mesh
and acquired 40 samples for each pattern.

3) Evaluation metrics: We used three metrics to evaluate
multi-person localization as follows.

Mean Estimated Number Error (MNE): We evaluated the
difference between the number of estimated persons and that
of actual persons using the mean estimated number error. We
define MNE as

1

N

N∑
i

|ni −
∑

h(ŷ)|, (9)

where N is the number of data, ni is the number of persons
in data i, h is a threshold function defined as Equation 3, and
ŷ is estimated human density vector.

Mean Average Estimated Location Error (MALE): We
evaluated the localization accuracy with error between the
estimated and actual locations, which is represented as the
mean of the average estimated location error for the location



of each actual person. We defined MALE as

1

N

N∑
i

1

|li|

|li|∑
j

min ||l(i,j) − r(h(ŷ))k||, (10)

where N is the number of data, li is a set of meshes of the
target persons’ position in data i, h is a threshold function
defined as Equation 3, and ŷ is an estimated human density
vector. Additionally, r is a mapping function from the vector
indicating the density of persons in each mesh after threshold
processing to a mesh set of the positions where targets are.

We define the estimated location error as the distance from
the actual position of each target to the closest estimated
position.

Mean Estimated Number on Each Location Error
(MNELE): We computed the average estimation error of the
number density of persons for each target mesh. We defined
MNELE as

1

N |L|

N∑
i

|yi − ŷi|, (11)

where N is the number of data, L is a set of all localization
target meshes, yi is a vector representing the density of
persons in each mesh, and ŷi is estimated human density
vector.

4) Evaluation results: We conducted the localization exper-
iment by learning only one person’s data in the environment.
However, the training data was separated from the test data.
The experimental results are shown in Tables I，II，III. Figure
13 shows an example of density estimation and localization
estimation results plotted on a plan view that simulates the
localization environment of a 5 × 7 grid. Additionally,
”combined” in the tables mean the result of using both ToF
measured distance and signal strength.

First, we compare the accuracy of the method using Wi-
Fi RSSI [6] with the proposed method using ToF measured
distance. As shown in Tables I, II, III, focusing on MNE and
MALE, which are evaluation indices after threshold process-
ing, the proposed methods are much more accurate than Wi-Fi
RSSI. Here, focusing on MNELE, which evaluates the density
estimation result before threshold processing, it is observed
that it takes a relatively small value in the result of Wi-Fi RSSI.
As shown in the results of density estimation in Figure 13 (a),
the reason is that the average value of density estimation for
all meshes is small when featurization is performed by the
Equation 8. Because there is nobody in most of the 35 meshes
in this experiment, MNELE becomes small in localization with
Equation 8, which estimated the absence of human close to
0 in density. In addition, when comparing the results of the
method using Wi-Fi RTT ToF with UWB ToF, the accuracy
of localization using UWB is better in all evaluation metrics.
From this, it can be concluded that UWB is more suitable than
Wi-Fi for device-free indoor localization using ToF.

(a) Density estimation
using Wi-Fi RSSI [6]

(b) Location estimation
using Wi-Fi RSSI [6]

(c) Density estimation
using Wi-Fi RTT distance

(d) Location estimation
using Wi-Fi RTT distance

(e) Density estimation
using UWB distance

(f) Location estimation
using UWB distance

(g) Density estimation
using Wi-Fi combined

(h) Location estimation
using Wi-Fi combined
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(i) Density estimation
using UWB combined
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(j) Location estimation
using UWB combined

Fig. 13: Examples of three-person density estimation (left)
and location estimation (right) for each method (red marks
are actual persons’ locations, yellow squares are estimated
locations)

Next, we focus on the results when combining ToF mea-
sured distance and signal strength. Comparing the results using
Wi-Fi RTT measured distance with Wi-Fi combined use in Ta-
bles I, II, III, although there is little change in the localization



for two or three people, a significant improvement in accuracy
was observed in the localization for one person. Meanwhile,
comparing the results using UWB measured distance with
UWB combined use in Tables I, II, III, in general, the accuracy
improved, and in the localization of one person, MNE and
MALE were 0, that is, the accuracy was high enough to
measure correctly in all test cases. From this result, we can
conclude that the combined use of signal strength is very
useful for improving the accuracy of ToF-based device-free
localization.

TABLE I: Localization accuracy when there is one person in
the environment

Feature MNE MALE MNELE
Wi-Fi RSSI [6] 1.13 2.10 0.0013

Wi-Fi RTT distance 1.06 1.02 0.0019
UWB distance 0.07 0.08 0.0005

Wi-Fi combined 0.46 0.46 0.0019
UWB combined 0.00 0.00 0.0005

TABLE II: Localization accuracy when there are two persons
in the environment

Feature MNE MALE MNELE
Wi-Fi RSSI [6] 1.17 2.09 0.0006

Wi-Fi RTT distance 0.96 1.53 0.0020
UWB desitance 0.76 0.56 0.0008
Wi-Fi combined 1.07 1.37 0.0017
UWB combined 0.57 0.37 0.0004

TABLE III: Localization accuracy when there are three per-
sons in the environment

Feature MNE MALE MNELE
Wi-Fi RSSI [6] 1.38 2.35 0.0024

Wi-Fi RTT distance 1.35 1.79 0.0035
UWB distance 1.29 1.39 0.0015

Wi-Fi combined 1.37 1.64 0.0036
UWB combined 1.23 1.27 0.0016

V. CONCLUSION

In this paper, we proposed device-free multi-person indoor
localization using the change of ToF. To realize device-
free multi-person indoor localization, we used ToF ranging
information to detect persons by installing transceivers and
receivers in the environment. Moreover, we developed a mesh-
wise person density estimation-based localization model and
LoS/NLoS encoded feature representation for constructing a
multi-person localization model with a single-person dataset.

In addition, we conducted an experiment to evaluate the
accuracy of device-free multi-person indoor localization by
learning only one person data. This experiment showed that
the proposed method using ToF achieves higher accuracy
than the existing method using Wi-Fi RSSI, and multi-person
localization is possible with training data from only one
person. At the same time, we also evaluated the localization
accuracy using ToF ranging with two radio waves, Wi-Fi RTT

and UWB, and showed that the localization using UWB has
higher accuracy than Wi-Fi RTT.

We are planning to realize high-precision localization with
a large number of people (more than three) and localization in
an environment with obstacles, such as furniture, in the future.
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