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Abstract—Prediction of the Received Signal Strength Indicator
(RSSI) distribution is a very important task. However, most of the
current research is on methods that complement the RSSI distri-
bution for beacons that actually collect data. The most common
method for fully online simulation without beacons is based on
physical Ray-Tracing. However, the Ray-Tracing model requires
the determination of the attenuation rate of the wall. This makes
it difficult for ordinary people to perform the simulation. Also,
without measuring the actual RSSI, it is impossible to know
whether the simulation results are appropriate for the actual
environment or not. To address these issues, we propose a data-
driven RSSI simulation method. RSSI can be collected by various
devices, and it is easy for the general public to obtain RSSI for
each location. The simulation is based on the actual RSSI data, so
that the simulation can be performed in a realistic environment.
In this paper, we have realized a data-driven simulation that
matches the environment by learning the attenuation of RSSI
derived from the environment and actual data using Generative
Adversarial Network(GAN). In order to conduct experiments in
a real environment, the simulation model is trained in an office
environment, and its accuracy is evaluated using actual RSSI
values. As a result, the average absolute error of RSSI values
was improved by 8% and the average positioning error of indoor
localization was improved by 19% compared with the simulation
using the radio propagation formula.

Index Terms—Frameworks for indoor positioning and naviga-
tion, Machine learning.

I. INTRODUCTION

In recent years, many communication technologies have
been used in our daily lives, including Internet of Things (IoT).
Therefore, research on Received Signal Strength Indicator
(RSSI), which indicates the strength of radio waves, has
been very active. Indoor localization [8]–[10] using RSSI has
attracted much attention due to its ease of implementation and
higher accuracy in indoor environments compared to GPS, and
various studies have been conducted to prepare an environment
suitable for IoT by optimizing beacon placement based on
the prediction of RSSI distribution. [11], [12] In particular
RSSI simulation, which predicts the distribution of RSSI when
beacons are placed, is a very important research.

Currently, Ray-Tracing models [13], [14] are commonly
used as simulation models for RSSI prediction. These models
calculate the ray path from the beacon to the prediction point,
taking into account reflections and transmissions by walls, etc.,
and then simulate the attenuation of RSSI due to reflections
and transmissions by walls. The simulation is based on the
attenuation of RSSI in the reflection and transmission of walls.

On the other hand, in the past few years, the use of
Generative Adversarial Networks (GAN) in RSSI research has
been increasing, and the usefulness of these models in RSSI
has been recognized. Research has been published on the
detection of abnormal changes in RSSI using Discriminator
[15], and on the extension of RSSI distribution data used in
learning indoor positioning using Generator [16], as well as
on the completion of RSSI from a part of RSSI to the whole
RSSI. [17] However, it has not yet been possible to simulate
RSSI.

Therefore, we propose a data-driven RSSI simulation
method based on real data using GAN. Specifically, the
proposed method learns the difference between the predicted
RSSI value based on the general RSSI propagation formula
using the distance from the beacon and the actual value, and
understands the environmental characteristics without the need
for environmental surveys. This makes RSSI simulation easy
for general users in the actual environment.

The contributions of this study are as follows
• The difference between the prediction by the radio prop-

agation formula using the distance from the beacon
and the actual value is learned, and the environmental
characteristics are understood without the need for an
environmental survey.

• We will compare the usefulness of the simulation method
with the existing method by using actual RSSI data.

The structure of this paper is as follows: section 3 describes
the problem setup for the RSSI simulation in this study. In
section 4-7, we explain how the RSSI simulation is realized
in this study. In section 8, we actually collect RSSI data and
conduct an evaluation experiment of the proposed method, and
in section 9, we summarize our conclusions.

II. RELATED WORK

A. Physics-based RSSI simulation

The Ray-Tracing model is the most common method used
in RSSI simulations today. This model calculates the ray path
from the beacon to the measurement location, taking into
account walls and obstacles. The attenuation of the RSSI
when it moves along the ray path due to wall reflections
and transmissions is set up based on an actual environmental
survey.

Electromagnetic diffraction has been the subject of research
by many people. [18] Among them, Yun et al. [19] have



2023 13th International Conference on Indoor Positioning and Indoor Navigation (IPIN)

developed a method for ray-tracing in radio waves, and their
RSSI simulations have been used in many papers. In contrast
to Yun et al., Nicolas Amiot et al. [13] proposed py-layers, a
simulation method for RSSI that takes into account all paths
between the wall and the point to be simulated and uses the
attenuation rate due to the wall.

On the other hand, however, there are many problems
with the Ray-Tracing model. The first problem is the high
computational cost. It is well known that the more obstacles
there are and the larger the target area, the more ray paths
from the beacon to the predicted point increase, requiring
a large amount of computational memory. This is a major
problem in RSSI simulations that need to be implemented
in various environments. There have been attempts to reduce
the computational cost for a long time, such as the method
proposed by Mudhafar et al. [20] in 2002, in which all walls
are processed in the same way. Therefore, there are some
papers that present the multi-wall model as a comparative
method, which greatly reduces the computational cost and
considers only the walls between the beacon and the predicted
location as a simpler model. [14], [21], [22]

Naturally, without collecting actual RSSI data, it is im-
possible to know whether the values are in line with the
actual environment or not. In fact, in the experiment of beacon
placement optimization conducted by Yang Zhen et al. [12],
although the RSSI simulation is clearly necessary to determine
where to place beacons and how much radio waves are
received, the data completion method using Gaussian Process
Regression (GPR) with sequential data collection was used,
and the Ray-tracing method was not accurate enough. The
results show that the accuracy of the Ray-tracing method alone
is not sufficient.

B. Machine Learning-Based RSSI Approach

In recent years, various forms of machine learning have been
used in the field of RSSI research. Abbas et al. [10] aimed to
improve the accuracy of indoor positioning by removing noise
from the RSSI distribution using the Encoder-Decoder model.
Suroso et al. [23] used Variational Autoencoder (VAE) to learn
the latent distribution of RSSI distribution. Hamada Rizk et al.
[24] learned a latent distribution of RSSI independent of the
device from which RSSI is acquired using VAE and proposed
a model to transform the RSSI distribution of other devices.

Among the various models proposed, the compatibility
between GAN and RSSI has attracted particular attention.
Haojun Ai et al. [15] proposed the use of the discriminator in
GAN to detect abnormalities in RSSI caused by environmental
changes such as wall movement. This allows us to determine
whether or not we need to take actions such as re-collection
of data in response to changes in the environment. Ran Guan
et al. [17] proposed the use of GAN to complement the
RSSI distribution. Furthermore the model is able to respond
to different locations by inputting a map.

It has been found that the GAN approach is a very good
match for learning features for RSSI, and RSSI simulations
are performed using this approach.

III. PROBLEM SETTING AND EXISTING METHODS FOR
RSSI SIMULATION

A. RSSI simulation problem setting

We use Bluetooth RSSI as the simulation target The target
area is divided into a grid of w × h, and the length of each
grid is assumed to be the same in both w and h directions.
One RSSI is obtained for each beacon. Let xi be the location
information of beacon Bk.(k ∈ Dtest) Let rk,i,j be the
RSSI value obtained for beacon Bk at the location of grid
(i, j).(i ∈ {1, 2, ..., w}, j ∈ {1, 2, ..., h}) In the case of a phys-
ical simulation, the environmental information obtained from
the environmental survey is used. In the proposed method, we
use the data Bk,rk′,i,j ,xk of the training beacon as the training
data.(k′ ∈ Dtrain) The problem of this study is to simulate
rk,i,j using these data.

B. Physical Simulation in RSSI

The most common approach in physical simulation is the
Ray-Tracing model. Using information on the location and
material of the wall and the calculation of the ray path, the
reflection and transmission of the RSSI from the beacon to the
destination point are calculated, and the RSSI at the destination
point is predicted based on the attenuation rate of each.

The simulation of RSSI using the Ray-Tracing model re-
quires the correct setting of the wall information, which makes
it difficult for ordinary people to perform the simulation. Also,
since the actual RSSI values are not used, there is always a
deviation from the actual RSSI values, no matter how correctly
the environmental information is set. These problems still exist
in physical simulations.

C. Advantages of Data-Driven RSSI Simulation

In this paper, we propose a data-driven RSSI simulation
to solve the problem of RSSI simulation models. In the
data-driven simulation, instead of acquiring environmental
information by off-line investigation of walls, etc., the data-
driven simulation aims to collect RSSI data and to learn
environmental information from the data. This allows us to
perform more realistic simulations with a simpler method of
RSSI data collection.

IV. DATA-DRIVEN RSSI SIMULATION IN INDOOR
ENVIRONMENTS

A. The idea of RSSI simulation with GAN

We aimed to perform RSSI simulations using GAN. In
recent years, many GAN have been studied in the field of
image processing, especially in the area of pix2pix [25], which
solves the task of restoring the original image using semantic
data and segmentation data as input. We use these ideas in
our RSSI simulation. As the input semantic data, we use data
that only depends on the location of the beacon, ignoring
environmental information. Then, a model that learns the
environmental information is added to the data and attenuates
the data according to the real environment to realize a data-
driven RSSI simulation.
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Fig. 1. RSSI Simulation Overview

The full description of the proposed GAN simulation is
Figure1.

B. Input data generation

The goal of this study is to learn environmental information
using GAN. Therefore, the input data should have the average
RSSI distribution when it is not affected by walls and so on.
In general, the propagation equation of RSSI is expressed as
follows [8].

RSSI = α+ β log
L

L0
+ ψ (1)

In this case, L refers to the distance between the measurement
position and the beacon position. L0 is the reference distance
that can be determined and is considered as 1(m) in this
case. ψ is noise and follows a normal distribution. Since the
target value in the simulation is the mean value, the noise is
ignored. By determining the remaining values α and β, we can
determine the RSSI based on the distance from the beacon.

C. Determination of coefficients in the propagation equation

In this paper, the least-squares method is used to determine
the propagation equations α, β. The least-squares method is
one of the common regression analysis methods. In this case,
for the beacon B′

k (k′ ∈ Dtrain) used in the training data, the
RSSI value rk′,i,j obtained at the position of grid (i, j) and
the distance Lk′,i,j from the beacon are obtained. The least-
squares method requires minimizing the following equation

LS(α, β) =

Dtrain∑
k′

1,2,.,w∑
i

1,2,..,h∑
j

(rk′,i,j − (α+ β logLk′,i,j))
2

(2)

Minimize the sum of the squared error between the predicted
and measured values ignoring noise according to the propaga-
tion equation. Solve the following equation

∂LS(α, β)

∂α
= 0 (3)

∂LS(α, β)

∂β
= 0 (4)

Solving this yields the following equation using the mean r′

of rk′,i,j and the mean l′ of Lk′,i,j .

α =

∑Dtrain

k′
∑1,2,.,w

i

∑1,2,..,h
j (rk′,i,j − r′)(logLk′,i,j − l′)∑Dtrain

k′
∑1,2,.,w

i

∑1,2,..,h
j (logLk′,i,j − l′)2

(5)
β = r′ − αl′ (6)

The input data are generated from the predicted values using
the determined α, β. The actual input data are normalized from
this generated data.

V. LEARNING ENVIRONMENTAL INFORMATION USING
GAN

The input data generated by the propagation equation is
considered as semantic data, and the goal is to create generated
data to which wall information is added by the Generator.

Therefore, we use GANs for the task of generating images
by coloring segmentation data such as line drawings and
semantic data. pix2pix proposed by Phillip et al. [25] is a
suitable model for these tasks.

A. Generator

U-net proposed by Ronneberger et al. [26] is used as the
Generator. U-net uses the Encoder-Decoder model instead of
a simple Convolutional Neural Network (CNN) [27]. The
Encoder-Decoder model first computes the input using the
Encoder to compress the dimensionality and then expands it
to the original dimensionality using the Decoder. In this case,
we use a CNN for the Encoder and a Deconvolution Neural
Network (DCNN) for the Decoder in order to convolve the
two-dimensional data. structure that can upsample the data size
by performing the convolution and inverse computation of a
CNN. In general, it is assumed that the number of dimensions
is symmetrical between the Encoder and Decoder.

By ignoring the layers in between and passing the input
image information directly to the Decoder, which would
otherwise be excessively lost due to Encoder compression,
U-net produces output that is closer to the input image.
Although the Generator usually includes noise to allow various
types of generation, since our goal is to reproduce the RSSI
distribution, the inclusion of noise leads to a loss of accuracy.
Therefore, dropout [28] is used to avoid overlearning. By
setting the output of the layer to 0.0 with a certain probability,
overlearning is avoided by partially generating missing data.

B. Discriminator

The Discriminator does not simply input the data output
by the Generator and the real data, but also simultaneously
inputs the semantic data, the data generated by the propagation
equation input to the Generator. This allows us to make
inferences based on whether the Generator is able to simulate
the input data.
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C. loss function

The loss function using these methods is explained.
Let Pk be the input data generated by the propagation

formula for beacon Bk, Ak be the real data, G(Pk) be the
output by the Generator, and D(Pk : Ak) be the output
by the Discriminator. Let px×py be the output size of the
discriminator. First, as in general GAN, the Generator needs
to fool the Discriminator, so the following adversary loss LGA

is used.

LGA =

k∈Dtrain∑
k

BCE(ones,D(Pk : G(Pk))) (7)

BCE(p, q) = E{−pi log qi − (1− pi) log(1− qi)} (8)
(pi ∈ p, qi ∈ q) (9)

BCE means binary cross entropy. ones is a matrix of size
px×py and value 1. The data generated by the Generator is
trained so that the Discriminator guesses it to be true, i.e.,
1. At the same time, the real purpose of the Generator is to
generate real data Ak. Therefore, we consider the following
reconstruction loss LGR between the distribution simulated by
the Generator and the actual RSSI.

LGR =

k∈Dtrain∑
k

E|Ak −G(Pk))| (10)

These loss functions give the Generator loss function LG as
follows

LG = λGALGA + λGRLGR (11)

where λGA, λGR is a coefficient determined to adjust the
ratio of adversary loss to reconstructed loss.This paper use
λGA = 1, λGR = 100.

Also, the Discriminator needs to guess 0 for false if the data
are generated by the Generator, and 1 for true if the data are
real. Therefore, the following loss function LD is computed

LD = BCE

k∈Dtrain∑
k

{BCE(zeros,D(Pk : G(Pk))) (12)

+BCE(ones,D(Ak))} (13)

where zeros is a matrix of size px×py and value 0 as well
as ones.

The GAN is learned by alternately learning LD, LG.

VI. RSSI SIMULATION IN VIRTUAL BEACONS

Determine where to place the virtual beacon, propagation
formula determined by the aforementioned method generates
the input data for the virtual beacon. By inputting this data to
the Generator, you can simulate the virtual beacon.

VII. EXPERIMENT

A. Experiment overview

The model was tested on the 4th floor of the West 8E
building at Tokyo Institute of Technology using actual data.
This floor measures 15.3m × 45.2m. Forty beacons were

Fig. 2. Locations where data was collected

Fig. 3. Point where the beacon was placed

placed in Figure 3, and 321 data points were used for RSSI
collection, as shown in Figure 2 with blue dots. These
measurement points are basically set 1 m apart. The beacon
used is a Bluetooth 5.0 beacon with a txPower of 0 (dBm).

Data was collected using a MacBook Pro. Data was mea-
sured three times at each location, and the average of the
obtained values was used as the measured value at that beacon.
Experiments are conducted using 20 beacons as training data
and 20 beacons as test data.

The number of filters and kernels used in the Generator and
Discriminator are shown in I and II. Because of the use of U-
net, the number of filters for the Generator’s DCNN is twice
as many as the output before one input.

For comparison, a prediction model using a simple distance-
based radio propagation equation and a multi-wall model that

TABLE I
GENERATOR STRUCTURE

Layer model input-filter output-filter kernel
1 CNN 1 16 3
2 CNN 16 16 3
3 CNN 16 32 3
4 DCNN 32 16 3
5 DCNN 16 × 2 16 3
6 DCNN 16 × 2 1 3

TABLE II
DISCRIMINATOR STRUCTURE

Layer model input-filter output-filter kernel
1 CNN 1 6 3
2 CNN 6 12 3
3 CNN 12 24 3
4 CNN 24 12 3
5 CNN 12 6 3
6 CNN 6 1 2
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Fig. 4. Approximate curve by propagation formula

takes into account walls between the beacon and the predicted
location in addition to the distance are provided.

The multi-wall method was created in reference to [21]. In
the paper, the wall was divided into two types with a constant
minute thickness, and the damping ratio was set for each. In
this experiment, since a glass wall is present, the attenuation
rate is set separately for the normal wall and the glass wall.
The least-squares method was used as the damping rate setting
method.

The result of the least-squares method for the simulation
with the radio propagation equation is shown below.

RSSI = −15.53× log(distance)− 36.63 (14)

The approximate curve is shown in Figure 4 Since the log
is used, the expected RSSI rises sharply for locations near
the beacon. However, the actual data does not show such
an increase. Therefore, it can be seen that the radio wave
propagation equation used as an approximation equation can
be improved.

The simulation results with the proposed method and the
average absolute error between the comparison method and
the real data are summarized in TableIII. The average absolute

TABLE III
THE AVERAGE ABSOLUTE ERROR

method Proposed Multi-wall Formula
Training beacons

average absolute error[dBm] 4.92 5.13 5.53

Test beacons
average absolute error[dBm] 5.12 5.21 5.58

error was improved by 11% for the training beacon and by 8%
for the test beacon. This indicates that the proposed method is
able to learn not only the simple distance but also the effects
of obstacles such as walls and furniture, and to improve the
RSSI simulation.

In addition, 5 of the 20 beacons selected for training
were in Lab1, so the accuracy was improved especially in
Lab1. The average absolute error of the simulation with the
radio propagation formula is 5.43[dBm] in Lab1, while the
proposed method is 4.66[dBm], which is a 14% improvement.
Compared to the average overall error of the entire experiment
in the proposed method, only Lab1 has a 5% improvement.

This indicates that further improvement in accuracy can be
expected by deploying more beacons and collecting more data.

B. Evaluation by Indoor localization

The RSSI distribution contains a lot of noise even in real
data. Therefore, even if a simulation that faithfully reproduces
the real data can be performed, it may not be a truly correct
simulation. The ultimate simulation is to predict the mean
value of RSSI distribution without the noise. In the study of
RSSI distribution in general, the evaluation of RSSI distribu-
tion by indoor positioning is used as an evaluation method to
confirm the consistency of RSSI distribution.

We evaluate the RSSI distribution generated by the simu-
lation using indoor positioning with a feature called Ellipsoid
proposed by Sugasaki et al. [8]

Experiments will be conducted on each of the beacons used
to train the model and the test beacons. Using the indoor
localization model trained on the predicted RSSI data, perform
indoor localization on the actual RSSI data and evaluate the
accuracy.

The average indoor positioning error is 19% better with the
proposed method than with the prediction using the propaga-
tion formula.

VIII. CONCLUSION

In this study, a data-driven RSSI simulation method is
proposed. The existing RSSI simulations are generally based
on the Ray-Tracing model, which requires the determination
of parameters such as the attenuation rate of walls and other
objects, which requires an investigation of the real-world
environment. The task of determining the attenuation rate of
RSSI transmission and reflection based on the material and
thickness of the wall is highly specialized and difficult for the
general public. Even if such a study was actually conducted,
the simulation would not necessarily be accurate to the actual
environment unless it was compared with the actual RSSI.

For this reason, we have created a data-driven RSSI sim-
ulation model using only actual RSI data. The collection of
RSSI itself is possible with various devices, and the task of
collecting RSSI at a specific location is easy for the general
public. In addition, the use of real RSSIs makes the simulation
more realistic to the actual environment.

As a result, the average absolute errors of the training
beacon and the test beacon were improved by 11% and 8%,
respectively, compared to the simulation using the radio prop-
agation formula. In addition, the evaluation of the simulated
data by indoor positioning showed that the average absolute
error in positioning was improved by 19%. These results
indicate that the proposed simulation method improves on the
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TABLE IV
AVERAGE ABSOLUTE ERROR IN INDOOR LOCALIZATION

λGA, λGR Training Beacon Absolute Error Test Beacon Absolute Error
Mean 6.49 5.68

Proposed 90% 14.32 10.82
Max 40.61 38.33
Mean 7.23 7.05

Propagation Formula 90% 16.49 16.28
Max 40.61 41.19
Mean 7.21 5.98

Multi-wall 90% 19.65 11.05
Max 35.69 34.53

propagation equation and that the model is able to learn the
environmental information.
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