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Abstract—In recent years, wireless sensing techniques, such as
Wi-Fi and Ultra-Wideband (UWB) signals, have gained attention
for activity recognition due to their ability to address privacy
concerns associated with traditional computer vision methods.
While UWB Channel Impulse Response (CIR) is believed to be
prominent approach as well as Wi-Fi Channel State Information
(CSI), research on its application in activity recognition remains
limited. Previous studies have not fully explored the brevity
of single measurements or the potential for feature extraction
from CIRs. This paper presents a novel approach to robust
device-free activity recognition by exploiting periodic UWB
CIR samples. Utilizing multi-level wavelet packet decomposition
(WPD) and a customized attention mechanism, the proposed
method effectively combines multi-resolution features, improving
recognition accuracy and reducing the need for extensive fine-
tuning. Experiments conducted in various scenarios validate the
performance of the proposed approach, with ablation studies
demonstrating the superiority of multi-resolution analysis over
short-time Fourier transform (STFT) and highlighting the cost
efficiency of the method.

Index Terms—UWB, channel impulse response, wireless sens-
ing, device-free, human activity recognition, wavelet packet de-
composition

I. INTRODUCTION

Human Activity Recognition (HAR) plays a pivotal role in
the development of intelligent systems, with applications span-
ning from healthcare monitoring to smart home automation,
such as blood pressure monitoring and fall detection [1], [2].

Traditionally, HAR methods have been divided into wear-
able sensor-based and vision-based approaches. While wear-
able sensors provide high precision, they often lack user
comfort and convenience [3]. Vision-based methods, although
effective, are hindered by environmental factors and significant
privacy concerns [4].

Overcoming these limitations, wireless sensing techniques
have emerged as a promising alternative, offering device-free
solutions that eliminate the need for wearables and avoid the

privacy issues of vision-based systems [5], [6]. Among these,
RF-based methods, including Wi-Fi Channel State Informa-
tion (CSI) combined with deep learning, have shown strong
potential for HAR [7]–[9].

Recently, Ultra-Wideband (UWB) technology has gained
attention due to its increasing use in smart home automation
and indoor localization [10]. UWB transmits signals over
wide bandwidths with minimal energy, allowing high precision
without interfering with other transmissions. Its integration
into consumer devices, like iPhones, further expands its po-
tential applications.

While UWB Channel Impulse Response (CIR) has shown
improved performance over Wi-Fi CSI for HAR [11], [12],
prior studies often rely on brief single CIR measurements,
which fail to capture the dynamic nature of activities or
differentiate between similar motions. Existing CIR processing
methods, such as Short-Time Fourier Transform (STFT), also
require extensive manual tuning, limiting their practicality.

To address these challenges, this research proposes the
Attention-aware Multi-level Wavelet (AMW) method, which
uses Wavelet Packet Decomposition (WPD) and a custom at-
tention mechanism to efficiently combine multi-resolution fea-
tures. AMW reduces manual tuning and improves recognition
accuracy, demonstrating robust performance and significant
classification improvements in device-free HAR across diverse
scenarios.

The contributions of this paper include the following points:
• We propose a device-free activity recognition approach

by effectively leveraging periodic CIR samples.
• We exploit the optimal time-frequency analysis with

multi-level wavelet and attention mechanism by designing
a framework named AMW.

• We show the superiority of proposed approach over
previous practices by conducting comparison experiments
in several typical scenarios.



II. RELATED WORK

A. Device-free HAR based on channel information

Device-free HAR primarily utilizes Wi-Fi CSI and UWB
CIR to extract channel information. Wi-Fi CSI has been
extensively studied for passive activity recognition. Chen et al.
proposed a neural network framework integrating bidirectional
and attention mechanisms for effective CSI data processing
[9]. Schäfer et al. introduced Nexmon, a tool that simplifies
data collection across platforms, delivering robust HAR results
[13]. However, the performance of these deep learning models
can be hindered by individual variances and environmental
dynamics, which introduce intrinsic noise into CSI data,
ultimately impacting accuracy [10].

UWB technology, characterized by its high temporal res-
olution and broad bandwidth, has demonstrated significant
potential for passive activity recognition. Sharma et al. showed
UWB CIR’s effectiveness in basic activity classification [11],
while Bocus et al. highlighted UWB’s advantages over Wi-Fi
CSI in specific scenarios [12].

B. Feature extraction for periodic signal

To address the time-variant nature of wireless signals in
device-free HAR, time-frequency analysis techniques such as
STFT and Discrete Wavelet Transform (DWT) have been
widely applied to generate spectrograms [2], [14]–[17].

Multi-scale wavelet techniques have been particularly effec-
tive in robust feature extraction. Fang et al. employed multi-
level discrete wavelet transform for CSI-based indoor position-
ing, while Wang et al. utilized multi-resolution analysis with
wavelet packet functions to process UWB signals, constructing
energy decomposition trees for CNN training [18], [19].

Despite their utility, these methods often require extensive
manual hyperparameter tuning and fail to fully exploit reso-
lution features. This limitation can lead to misrecognition in
HAR, as specific resolutions are better suited for represent-
ing certain activities. Improving the utilization of resolution
features remains an open challenge.

C. Attention-based methods

Recently, attention-based models have gained attention for
their ability to reduce reliance on extensive parameter tuning.
Fei et al. demonstrated the effectiveness of Vision Transform-
ers (ViT) for Wi-Fi CSI analysis [20], while ConTransEn, a
hybrid model combining CNNs and Transformers, achieved
competitive results [21].

Time-frequency analysis has been shown to be effective
in the literature, although extensive tuning efforts are needed
as aforementioned. On the other hand, the reliance on large
datasets and the complexity of attention mechanisms pose
challenges in resource-constrained environments. A promis-
ing direction lies in integrating traditional signal processing
techniques with attention mechanisms to address hyperparam-
eter tuning issues and reduce training costs. Such a hybrid
approach could leverage the strengths of both methodologies,
potentially unlocking new capabilities for HAR in real-world
applications.
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Fig. 1: Problem on differentiation of jogging and walking.

III. PROBLEM SETTINGS

A. Channel Impulse Response of UWB

The Channel Impulse Response of UWB represents en-
capsulates the channel characteristics, describing signals as a
composition of multi-path components based on the Saleh-
Valenzuela model [22]. The received signal r(·) of UWB
system can be represented as follows:

r(t) =

K∑
k=0

αke
jθks(t− τk) + n(t) (1)

Here, αk, θk, and τk represent the amplitude, phase shift,
and time delay of the kth path, respectively. s(·) denotes the
transmitted signal, and n(·) represents additive Gaussian noise.
CIR effectively captures multi-path propagation, enabling de-
tection of signal variations caused by human movement.

B. Limitations of Existing Researches

1) Brevity of Single CIR Measurement: Studies using
single-shot CIR measurements for device-free HAR [11], [12]
are limited by the brevity of CIR data (1[µs]), making it
challenging to capture activities lasting several seconds. This
hampers differentiation between similar activities like jogging
and walking (Fig. 1).

To address this, multiple CIR samples over time can be
used to capture complete activity durations. Although applied
in other fields [23], [24], this approach remains underexplored
in device-free HAR. This study leverages periodic CIRs to
enhance activity recognition accuracy.

2) Feature Extraction from Periodic CIRs: Using shuttle
jogging data, we explore feature extraction challenges. Fig.
2(a) shows that the raw time-domain amplitude of the first
path struggles to depict activity variations due to significant
noise in CIR data. Applying Fast Fourier Transform (FFT)
removes noise by isolating relevant frequency ranges, as in
prior studies [12], revealing periodic signal variations linked
to activity movements (Fig. 2(b)).

To enhance localized analysis, third-level wavelet decom-
position is performed to extract low-frequency components
around the first path, effectively capturing the periodicity of
jogging (Fig. 2(c)).

While time-frequency analysis shows promise, selecting
optimal resolutions and reducing noise requires careful tun-
ing of parameters (e.g., STFT window size, wavelet levels).
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(a) Time series of raw
first path amplitude
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(b) Time series of low
frequency component
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(c) Time series of low
frequency component
around first path

Fig. 2: Time series features extracted from periodic CIRs

This process is computationally intensive and time-consuming,
posing a challenge for practical implementations.

IV. PROPOSED METHOD

A. Overview

For the purpose of accurately capturing the full duration
of activities, we utilize periodic UWB CIRs, comprising
sequential CIR measurements over time. Our approach com-
bines initial pre-processing with multi-level WPD to extract
diverse time-frequency features. An attention mechanism is
then applied to automatically identify and prioritize the most
relevant resolutions, ensuring optimal feature representation
with minimal manual parameter tuning. Fig. 3 illustrates the
proposed method.

B. CIRs Acquisition and Pre-Processing

1) Periodic CIRs: In this study, we expand the measure-
ments in the dimension of time-series to span the entire activity
period, direct our attention to analyzing the amplitude of CIR.
The periodic CIR matrix at time t, denoted by M (t), is
formulated as follows:

M (t) =


x(t−cτ)

...
x(t−τ)

x(t)

 (2)

where τ signifies the interval between successive CIR mea-
surements(e.g., 0.1[s]). while c represents the count of mea-
surements taken before the current measurement, respectively.
The term x(t) denotes the amplitude row vector of a single
CIR measurement at time t, which is defined as:

x(t) = [|r(t)| , |r(t+∆T )| , ... |r(t+N∆T )|] (3)

with N − 1 denoting the length of the single-shot CIR
sequence, and ∆T representing the sampling interval of CIR
measurements in the nanosecond range.

2) Calibration: As illustrated in Fig. 3, the raw CIR data
exhibits redundancy along with significant noise, attributed to
environmental factors and device output. To address this issue,
we leverage the estimated first path index value according to
the Leading Edge Detection algorithm [25] to discard noisy
segments and focus on fluctuations caused by the multi-path

effect. Consequently, the refined amplitude vector for a single
CIR measurement is represented as:

x′(t) = [|r(t+ (lt − op)∆T )| , ... |r(t+ (lt + of )∆T )|] (4)

where the lt indicates the first path index of CIR measurement
at time t, op and of denote the offset around the index. The
segment before the first path is retained to estimate noise
levels.

Furthermore, we employ the Preamble Accumulation Count
(PAC) value, which correlates with signal quality [26], mitigat-
ing environmental effects. The calibrated periodic CIR matrix
is expressed as:

M ′(t) =


x′(t−cτ)/pt−cτ

...
x′(t−τ)/pt−τ

x′(t)/pt

 (5)

Here, the pt denotes the PAC value associated with the CIR
measurement at time t.

C. Multi-resolutions Feature Extraction

Unlike DWT, WPD allows for further decomposition of
high-frequency components, where each node represents a
set of coefficients corresponding to a specific frequency band
[27], [28]. This makes WPD particularly suitable for analyzing
UWB signals, as it captures the signal characteristics in the
joint time-frequency domain by analyzing the coefficients of
the resulting nodes [29].

The Haar wavelet was chosen for decomposition due to
its optimal time-space resolution, robustness to frequency
variations, and suitability for signals with abrupt transitions,
such as those found in human activities [30].

D. Wavelet-Attentive Temporal Network(WATNet)

After extracting WPD coefficients as feature maps, these
are input into a neural network for activity classification.
An attention mechanism selectively integrates features across
levels, while a Bidirectional Long Short-Term Memory (Bi-
LSTM) network extracts time-series features from periodic
CIRs. The network concludes with a flattening layer, a Fully
Connected (FC) layer, and a softmax layer for classification,
using CrossEntropyLoss as the loss function. The architecture
is shown in Fig. 4.

To integrate features from multiple decomposition levels,
we introduce a self-attention layer that operates on WPD co-
efficient dimensions, assigning weights across time-frequency
resolutions. As depicted in Fig. 4, feature maps derived from
multi-level WPD of calibrated periodic CIRs are processed by
the attention mechanism. This mechanism computes scores for
each coefficient and transforms them into attention-weighted
maps. By learning the importance of different resolutions, this
layer automates feature integration, assigning higher weights
to the most informative features.
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V. EXPERIMENT RESULTS

A. Experiment settings

1) Device Information: We conducted experiments using
Decawave EVK1000 board pairs, implementing the Two-Way
Ranging protocol for precise distance measurements per the
802.15.4a standard. To meet the specific configuration require-
ments of our study, we enabled simultaneous transmissions
across multiple devices and set the maximum sampling rate to
10 Hz. The boards, equipped with DW1000 chips, operated
at a 4.0 GHz carrier frequency, 500 MHz bandwidth, 64
MHz Pulse Repetition Frequency, 1024-bit preamble, and a
6.8 Mbps data rate. CIRs (1016 samples each) were extracted
via laptops or Raspberry Pis.

2) Experiment Environments: The experiments were con-
ducted in various settings, including a meeting room, office,
corridor, and outdoor area, as illustrated in Fig. 5. While the
meeting room served as a controlled environment, the other
settings were designed to closely simulate natural conditions.
To maintain the study’s focus on single-person recognition,
participants were required to cross the devices’ transmission
paths.

In the office environment, in addition to the participant,
other individuals continued working around the sensor setup
to simulate environmental noise caused by human activity. In
the corridor, occasional passersby added to the complexity of
the environment. The corridor’s low ceiling and smaller space
created conditions for simulating complex signal reflections
from walls. The outdoor setting, though similar to the corridor

in its experimental design, produced fewer reflections due to
the absence of objects. Instead, it introduced environmental
noise, such as wind, providing a unique challenge for evalu-
ating system performance in outdoor scenarios.

Across these environments (excluding the outdoor setup),
we tested two typical device placement scenarios:

i. Horizontal scenario: The implementation of horizontal
device placement has been a prevalent methodology in
prior researches, particularly in scenarios where device
alignment at specific levels captures abundant human
reflections effectively.

ii. Vertical scenario: Contrary to the horizontal arrange-
ment, the vertical device arrangement, entailing device
placement on the ceiling, significantly diminishes human
reflections. The EVK1000 devices were encased in cus-
tom 3D-printed enclosures and securely mounted to the
ceiling.

3) Datasets: We collected CIR data as participants per-
formed specified activities within the environment involved six
male adults. Our dataset encompasses four dynamic behaviors
―jogging, walking, waving, and transitioning (between stand-
ing and sitting)―and two static postures: standing and sitting,
as depicted in Fig. 6.

The waving activity involves subjects waving their right
hands, and transitioning entails movements between standing
and sitting. Furthermore, to validate human presence detection,
a ”No Activity” category was introduced.

4) Other Configurations: To account for the periodicity of
each activity, as observed in the CIR variations shown in Fig.
2(c), the window size and stride are empirically set to 1.5[s]
and 0.1[s], respectively, in the following experiments. F1 score
is employed as a metric to evaluate activity recognition per-
formance, utilizing a k-fold cross-validation approach where
k is set to 10.

B. Comparison Experiment

1) Comparison With Previous Feature Extraction Methods:
In this experiment, we compare the performance of existing
feature extraction methods with our proposed approach. One
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TABLE I: Comparisons Results

Setting Peak-Value
[1] [23]

Single-Shot
[11] [12]

AMW
(Ours)

Meeting Room(H) 0.313 0.916 0.993
Meeting Room(V) 0.080 0.808 0.973

Office(H) 0.242 0.966 0.997
Office(V) 0.133 0.839 0.993

Corridor(H) 0.596 0.850 0.956
Corridor(V) 0.161 0.751 0.958

Outdoor 0.301 0.715 0.937

common method is to directly leverage single CIR measure-
ments [11], [12]. As lack of similar studies on HAR with
UWB CIR, the methods used in health monitoring is used to
compare involving extracting signal changes at specific points
and analyzing them as a sequence [1], [23].

Table. I presents the comparison results. The methods used
in health monitoring show poor performance, as they fail to
capture the detailed posture information represented by the
entire CIR measurement. Additionally, activities are typically
more dynamic and involve greater movement intensity com-
pared to micro-motions like pulse monitoring, leading to more
fluctuating CIR reflections.

While single-shot CIR can effectively identify static pos-
tures and detect human presence, it struggles to distinguish
between dynamic activities such as Waving and Transitioning,
and especially between Jogging and Walking due to their sim-
ilar movement patterns but differing speeds. In contrast, our
proposed method significantly improves recognition accuracy,
particularly in scenarios with sparse human reflections, such
as outdoor and vertical placements.

2) Comparsion with STFT: Since STFT is a widely used
tool for time-frequency analysis, we fine-tuned its parameters
to compare its performance against our proposed method. To

streamline the parameter optimization process, the window
function was fixed as a Hamming window, while the window
length and overlap ratio (relative to the window length) were
varied to correspond with each decomposition level of WPD.
For a fair comparison, we use a standard Bi-LSTM combined
with the STFT. The results across different environments in
horizontal scenario are shown in Fig. 7.

With parameter fine-tuning, the STFT can achieve perfor-
mance comparable to our method. Although we have not
exhaustively explored all possible parameter configurations for
STFT, achieving optimal accuracy would require considerable
manual effort and time. In contrast, our proposed method does
not demand extensive fine-tuning to attain high performance,
making it a more practical and efficient approach.

C. Ablation study on levels of Wavelet

This experiment evaluates WPD coefficients at various
levels to compare time-frequency resolution performance for
different activities. Three methods are examined: (1) Baseline:
Utilizes periodic CIRs with only pre-processing; (2) Different
Decomposition Levels: Applies specific levels of WPD to
calibrated CIRs; (3) Multi-level WPD: Combines multiple
levels, including “Best Levels” (Top 3 levels based on F1
scores), “MW” (without attention), and the proposed “AMW”.
All methods, except AMW, use a vanilla Bi-LSTM model.

Taking the horizontal scenario results in the meeting room
as an example, summarized in Table II, single-resolution
features slightly outperform the baseline, with the fourth
decomposition level achieving the best accuracy. However,
finer levels, such as the seventh, reduce accuracy due to sparse
features. Variability across activities highlights the importance
of combining features from all levels for optimal performance.

The MW method improves accuracy by integrating all levels
but struggles with similar activities like Jogging and Walking
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Fig. 7: Comparison between our method and STFT with fine-tuning.

TABLE II: 10-fold F1 score results of the Horizontal scenario in the Meeting Room

Method Average No Activity Standing Sitting Waving Walking Jogging Transitioning
Baseline 0.957 0.991 0.985 0.986 0.973 0.896 0.905 0.960
Level 1 0.964 0.993 0.985 0.983 0.980 0.914 0.925 0.965
Level 2 0.959 0.990 0.983 0.988 0.977 0.898 0.906 0.971
Level 3 0.965 0.991 0.982 0.990 0.979 0.917 0.926 0.972
Level 4 0.969 0.990 0.993 0.989 0.981 0.922 0.929 0.976
Level 5 0.967 0.993 0.992 0.991 0.981 0.911 0.923 0.975
Level 6 0.964 0.990 0.987 0.990 0.980 0.907 0.919 0.976
Level 7 0.956 0.989 0.985 0.985 0.975 0.887 0.899 0.968

Best Levels 0.977 0.996 0.991 0.991 0.988 0.943 0.950 0.982
MW 0.984 0.996 0.997 0.998 0.989 0.955 0.960 0.991

AMW 0.993 0.999 0.999 0.999 0.997 0.978 0.981 0.997

due to interference from less relevant levels. In contrast, our
AMW method prioritizes useful levels, achieving a 99.3%
F1 score―3.6% higher than the baseline―with near-perfect
recognition of static postures and improved differentiation of
dynamic activities.

To illustrate how WATNet assigns weights, attention maps
were extracted and grouped by activity class for clarity. The
generalized patterns, shown in Fig. 8, reveal level-specific
attention distributions.
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(d) Outdoor

Fig. 8: Attention maps for all the activity classes.

The attention maps reveal distinct focus patterns across
different levels for various activities, varying by environment
due to differences in signal reflection and transmission paths.
For instance, finer frequency resolution dominates in the
corridor, while finer time resolution is prioritized in the office.

Interestingly, attention patterns do not always align with single
levels showing optimal performance in the ablation study. This
suggests that the attention mechanism dynamically reweighs
features to optimize overall performance, demonstrating an
adaptive capability to diverse scenarios without prior knowl-
edge of optimal resolution levels.

VI. CONCLUSION

This study tackles the limitations of device-free Human
Activity Recognition (HAR) using Ultra-Wideband (UWB)
Channel Impulse Response (CIR) by introducing a novel ap-
proach that combines periodic UWB CIRs with an Attention-
aware Multi-level Wavelet (AMW) method. The AMW
method applies multi-level Wavelet Packet Decomposition on
CIR measurements, integrating time-frequency features and a
custom attention mechanism to enhance recognition accuracy.
Experimental results demonstrate the method’s effectiveness,
achieving an F1 score above 90% across various configurations
and distinguishing between similar activities like jogging and
walking, showcasing its robustness.

However, challenges remain for future work. The method
lacks adaptability to new environments, necessitating cross-
domain adaptation techniques to reduce retraining costs and
improve environmental robustness. Additionally, the feasibil-
ity study is limited to simulated environments, restricting
applicability to real-world scenarios. Future research should
incorporate real-world experiments, considering obstacles and
varying sensor setups, to validate the method’s practicality and
scalability for broader applications.
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