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AoA Estimation from Array of Single-board Devices with
Single-antenna Wi-Fi chip
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Abstract: Angle of Arrival (AoA) estimation has received considerable attention as a key solution in indoor position-
ing systems, particularly using Channel State Information (CSI) derived from Wi-Fi packets. Traditional approaches
often leverage multi-antenna MIMO devices to perform MIMO-based time-of-arrival analyses across different anten-
nas. However, these devices have been discontinued and are increasingly difficult to acquire, while single-board CSI
scanners pose challenges for accurate AoA prediction. In this work, we propose a novel deployment strategy that
arranges multiple single-board, single-antenna devices in an array to capture CSI from the same packet. We combine
these measurements via matching MAC addresses and sequence numbers, then apply a learning-based AoA estima-
tion model to obtain angle estimates. Our approach offers a more flexible and easily deployable solution with readily
available hardware, serving as an effective sensor platform for downstream applications using AoA.
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1. Introduction

In recent years, Angle of Arrival (AoA) estimation of wireless
signal has received considerable attention as a key solution in in-
door positioning systems and human activity recognition. Among
them, WiFi-based AoA estimation is notable for their ability to
use existing protocols without additional equipment, reducing de-
ployment costs [1].

For WiFi-based approach, Channel State Information (CSI)
has been extensively studied for AoA estimation in recent years.
It has the ability to provide complex features by capturing fre-
quency attenuation information, compared with traditional Re-
ceive Signal Strength Indicator (RSSI) based approach [2] [3].

Unlike RSSI, CSI collection requires specialized equipment.
Most of the recent commercial devices lack the ability of ex-
tracting CSI from Wi-Fi signal. Traditional approaches of getting
Ao0A estimation from CSI often leverage multi-antenna devices to
perform Multi Input Multi Output (MIMO) based time-of-arrival
analyses across different antennas.

However, these MIMO devices have been discontinued and are
increasingly difficult to acquire in the market. Meanwhile, the
use of Single Input Single Output (SISO) devices raises concerns
about AoA estimation performance, as they fail to provide suffi-
cient features.

To address these issues, this paper presents a method that uti-
lizes an array of multiple SISO devices to extract CSI informa-
tion for AoA estimation. This work provides an effective founda-
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tional solution for subsequent AoA-driven downstream applica-
tions, such as indoor localization and human activity recognition.

The contributions of this work include the followings:

e We propose a novel approach that utilizes an array of inex-
pensive and commercially available single-board SISO com-
puters to collectively capture CSI data.

e We design an MLP-based learning model for AoA estima-
tion, using the combined CSI amplitudes as input.

e We offer an effective foundational solution for subsequent
AoA-driven applications using easily obtainable commercial
SISO devices.

2. Related work

2.1 Channel State Information for Wi-Fi sensing

In recent years, CSI has gained widespread application in the
fields of Wi-Fi sensing and localization. CSI is a physical layer
metric used to reflect frequency-selective fading. It is extracted
from pilot signals by certain specialized devices and provides de-
tailed information on the phase and amplitude attenuation of in-
dividual subcarriers. The amplitude and phase of the CSI are in-
fluenced by the movements and displacements of the transmitter,
receiver, and nearby objects and people.

CSI captures more complex reflection information than the tra-
ditional RSSI. It reflects the attenuation at multiple subcarrier fre-
quencies, when traditional RSSI only represents the overall sig-
nal attenuation. Therefore, CSI has become a preferred choice
in many studies, where it has replaced RSSI in various applica-
tions. For example, Human Activity Recognition benefits from
the complex reflection information provided by CSI. For instance,
features of CSI can be learned through deep neural networks to
recognize certain activities [4] [5]. Also, fingerprint-based local-
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ization with CSI is getting popular [6].

However, CSI is heavily influenced by physical reflections.
Many studies focus on analyzing CSI to extract useful physical
information, such as AoA [7] and Time of Flight (ToF), con-
cluded in [8]. These metrics help in deriving meaningful features
from CSI.

2.2 Angle of Arrival estimation by CSI

Angle of Arrival (AoA) from CSI can reflect the angle at which
a signal arrives, making it applicable in many fields such as sig-
nal source localization [9] and human activity recognition [10].
CSI can be used for AoA estimation of wireless signal, because
CSI reflect detailed channel states through signal attenuation and
phase variations. Some methods use CSI phase differences across
different antennas to extract AoA of the signal [7] [11].

Since phase is easily affected by sampling clock asynchrony,
some recent studies have utilized amplitude or a combination of
amplitude and phase to extract AoA information. For example,
AoA-net [12] uses optimal subcarriers for estimating the AoA
using a deep neural network.

However, obtaining suitable devices for AoA estimation us-
ing CSI remains a significant challenge. Most existing methods
for AoA estimation rely on specialized MIMO devices [7] [11]
or custom-designed WiFi access points [12] for CSI data col-
lection, which are distinct from commercially available devices
commonly used today.

2.3 Traditional CSI data collection tools for AoA estimation

To extract effective phase information, traditional devices are
equipped with the same core and support MIMO capabilities. As
one of the most classic CSI collection tools, the Linux 802.11n
CSI Tool is widely used in research [13]. It collects CSI data
from packets using the Intel 5300 NIC on Linux systems, ob-
taining values for 30 subcarriers per packet. Equipped with three
antennas, the Intel 5300 NIC is particularly notable for its abil-
ity to extract stable phase information, making it widely used in
research [14].

However, this device has long been discontinued, and com-
patible components are difficult to obtain, making it challenging
to acquire CSI for new research. Intel 5300 NIC was released
in 2008, and computers with the device should have being sold
around that time and are discontinued by manufacturers as well.
Therefore, downstream applications using AoA estimates from
CSI requires a new tool that is more readily available, easier to de-
ploy, scalable, and capable of obtaining relatively accurate AoA.

2.4 ML-based processing on CSI

Recently, machine learning-based approaches for processing
CSI have garnered significant attention and research interest.
Since CSI vectors can capture attenuation information across
multiple channels, machine learning methods are advantageous
for learning hidden features. For example, DeepAoA+ [15] uses
a domain-specific model to estimate the AoA of incoming sig-
nals from CSI phase, while AoA-net [12] uses CSI amplitude for
estimating the AoA using a deep neural network.

However, mainstream methods still rely on extracting signal
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paths using phase differences between antennas on MIMO de-
vices. ML-based approaches for obtaining AoA are less common,
likely because such methods tend to capture the complex environ-
mental information, making cross-domain estimation challenging
to achieve.

3. Proposed Method

3.1 Array of single-board devices with single-antenna Wi-Fi
chip

We employ a sensor array of multiple single-board devices
with single-antenna Wi-Fi chip to extract additional features. The
device is fully SISO and only one antenna is attached to the board,
but with multiple of these devices in the array, it is possible to
make the sensor array serve as a MIMO device.

Typically, MIMO devices are used to extract CSI informa-
tion received by multiple antennas and predict the signal’s AoA
through signal processing or machine learning methods. These
devices process data from multiple antennas using a single core,
ensuring clock synchronization across antennas and avoiding syn-
chronization errors that could affect phase measurements.

However, SISO devices only have a single input antenna, mak-
ing it impossible to capture phase differences between multiple
antennas. Additionally, the CSI collected by SISO devices is less
detailed, limiting their accuracy in AoA estimation compared to
MIMO devices.

In order to address this issue, multiple SISO devices can be
arranged in an array and collect CSI data together, as shown in
Fig. 1. Each device collects CSI independently from its single
antenna, and the CSI from the same packet across different SISO
devices is combined for estimation.

However, since each SISO device operates with its own board,
the clocks across their antennas are difficult to synchronize, mak-
ing phase differences unreliable. Therefore, we use only CSI am-
plitude for estimation.
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Fig. 1 Collectible CSI from MIMO device, SISO device and Array of SISO
devices(Ours)

3.2 CSI data processing
3.2.1 Data packet matching

With our proposed sensor array, the packet is collected by mul-
tiple devices multiple times, so it is necessary to match the CSIs
belong to the same wireless packet. We propose using MAC ad-
dress, Sequence number and Time of Arrival within the packet to
match the received CSI data of the same packet.

For frames such as Probe Request Frames, in which the MAC
address and sequence number are randomized, we can use this
information to gather the CSI of the same packet from different
devices.
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However, the method cannot be applied to some types of the
frame. For the frames with Wi-Fi connection, the MAC and se-
quence number may not change over the time series of packets,
such as Block ACK frames, as in Fig. 2. These packets are sent
when using ping command in the mobile device, while sequence
number field of this type of frame is always the same over time.

To address this issue, we design an algorithm that matches data
packets based solely on their time-of-arrival differences within a
specified threshold. Since the SISO devices are positioned very
close to each other, the arrival timestamps of the same packet
across the three devices have only small difference. By setting
the ping transmission time interval higher than this timestamp
difference, we can reliably determine whether two pieces of data
originate from the same packet or from different packets. For
packets from different transmissions, the timestamp difference is
determined by the ping frequency, providing a clear basis for dis-
tinguishing and matching the data.

In the actual setup, the time difference between two consecu-
tive ping packets is approximately 100[ms], while the arrival time
difference of the same packet across different devices is within
25[ms].

3.2.2 CSI data normalization and combination

For data processing, we apply packet-level normalization to
the CSI amplitude from each receiver and simply concatenate the
vectors into the input vector of the estimator. CSI data contains
phase and amplitude information, but the phase information is not
reliable over the devices, which is why we extract only ampli-
tudes of the CSI to get AoA estimates. Normalization is applied
to each CSI amplitude vector because these values are affected
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by automatic gain control, leading to significant variations in ab-
solute amplitude. By normalizing the vectors, we focus on their
relative variations rather than their actual amplitudes, allowing
the features to better capture meaningful information.

In the frequency domain, the multipath causes frequency-
selective fading, which is characterized by Channel Frequency
Response (CFR). A single value of CFR is defined as

a(f;) = llz(f;)]le’ P (1)

where z( f;) is a sample at the j th subcarrier, which is a complex
number. This value refers to the fading scale of the signal at the
receiver of a certain frequency. For a fixed channel the subcarrier
index is bounded with an only frequency, so CFR uses the sub-
carrier index as a parameter. CSI is a collection of CFR over all
the subcarriers. Thus, we can define h(m, k) as the CSI data of
packet m, received by receiver k. There is:

h’(m’k) = [x(fl)vx(fQ)vx(f3)7"'7x(fJ)]T (2)

where J is the number of subcarriers. Here, J equals to 30. We
use the absolute value to get only amplitude of each CFR.

h(m, k)| = [lz(f)l, [z(f2)], [2(f3)], - [z (fDIT 3)

Then, we conduct normalization for h(m, k). Normalization
will make the data mainly reflect the changes instead of the ac-
tual strength. Thus we have g(m, k) as normalized CSI data of
packet m received by receiver k. Here, g(m, k) is defined as:

g(mvk) = [C(fl)vc(.h)’c(f?))v'"vc(fJ)]Ta )

and each element is calculated by:

= [z = p(h(m, K)]) ‘

in which p(Jh(m, k)|) represents the mean value of |h(m, k)|,
while o(|h(m,k)|) represents the standard deviation value of
|h(m, k).

Finally, we have the input vector for packet m, ¢(m) by com-
bining all the CSI data of the packet received by all the receivers.

g(m., K)

where K is the number of receivers. Therefore, for each packet
m, g(m, k) € R, J is the number of subcarriers, and the final
input vector has i(m) € R¥/.

3.3 Learning-based AoA estimation with CSI from multiple
SISO devices

To estimate AoA using CSI amplitudes, we propose a learning-

based method that utilizes a Multilayer Perceptron (MLP) with
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Fig.3 MLP based AoA estimation from multiple SISO CSIs

pre-processed CSI vectors as input. By adjusting the output lay-
ers, we validate its performance through both classification and
regression tasks. Specifically, we deploy a 5-layer MLP and mod-
ify the final layers to adapt to the requirements of each task. The
structure is shown in Fig. 3.

Angles are continuous data, but we choose classification be-
cause it is also a traditional solution for AoA estimation and is
more straightforward to implement. This method divides the an-
gle range into equal-sized classes and assigns samples to their
corresponding angle category. The width of each angle class af-
fects the estimation results; if the width is too large, even per-
fectly correct classifications will still result in angle errors pro-
portional to the class width.

For the classification task, we use a softmax layer in the final
layer of the MLP to output the class probabilities and then map
the class labels back to the corresponding angles. The Negative
Log Likelihood (NLL) loss is applied to the classification task as
a loss function.

For the regression task, we use a fully connected layer at the
end to obtain a single numerical prediction result. We apply mean
squared error (MSE) loss as a loss function for regression estima-
tion.

4. Experiment Results

In this section, we designed experiments to evaluate the per-
formance of our AoA prediction system under different settings,
including the use of classification or regression models, varying
the number of devices, different distances between the transmitter
and the receiver, as well as varying spacing between the devices
themselves.

4.1 Evaluation Protocol
4.1.1 Implementation

In the experiments, we used up to three Raspberry Pi 4B de-
vices as representatives of the single-board devices described ear-
lier, as shown in Fig. 4. They were all equipped with the Nex-
mon [16] tool to extract CSI from the frames.

To align the single-board devices into an array, we used a 3D
printer to produce a framework for Raspberry Pi 4B, and each
framework had 4 sharpened legs to attach solidly to a foam block.
This setup allowed us to easily adjust the number of devices as
well as the spacing between each device.

We used two devices as transmitters: the Google Nexus 5 and
the iPhone 14 Pro. The former was used in earlier experiments
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to transmit probe request frames. The transmission frequency of
the Nexus 5 was extremely low, approximately one packet every
few seconds to ten seconds. Due to its low frequency, we adopted
the iPhone 14 Pro in the other experiments, utilizing its appli-
cation and the ping command to continuously send packets at a
transmission frequency of around 10Hz.

~3d-printed framework

Foam
Single-board computer as sensor Array of sensors

Fig. 4 Prototype of sensor array with multiple Raspberry Pi 4B

4.1.2 Data collection

We collected two datasets to comprehensively evaluate the per-
formance of our AoA estimation system. The first dataset fo-
cused on assessing the performance of the AoA classification
task, while the second dataset was designed to validate the re-
gression task over a wider angle range with varying patterns.

For the first dataset we collected data for six classes with AoA
of 0, 10, 20, 30, 40 and 45 degrees. For this dataset, we defined
the positive y-axis as the O degree AoA, and for the 0 degree cat-
egory, the distance between the transmitter and receiver was 1.5
meters. The data packets were passively transmitted as probe re-
quest frames by a Google Nexus 5 that was not connected to a
network. We used a frame control field filter to ensure only these
types of frames were captured. The deployment is shown in Fig.
5. Note that in this dataset, the collect data used category labels
as the ground truth labels, rather than the actual numerical AoA.

@ : Data collection point

f2des 40deg 30deg 20deg 10deg Odeg
TR EX)

15m

AoA

dttoo

Sensorl Sensor3
Sensor2

Fig. 5 Dataset 1 for AoA classification
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In the second dataset, we minimized the impact of propagation
distance on CSI by keeping the distance fixed and demonstrated
that forming an array with multiple devices achieved better AoA
prediction performance, thereby validating the effectiveness of
our approach.

We set up data collection points at intervals of 15 degrees
within the range of 0 degrees to 180 degrees, resulting in a to-
tal of 13 points, as in Fig. 6. An iPhone 14 Pro continuously
sent data packets using the ping command at a transmission rate
of 10 packets per second. At each point, 1,200 valid data frames
were collected per device. Data was collected at two different
distances, 1m and 2m, and using two different device spacings
(the distance between single-board devices), set at 2cm and 4cm,
respectively.

@ : Data collection point

Transmitter _

Device

90 deg

180 deg 0deg

Experiment settings

Fig. 6 Dataset 2 for regression validation with different settings of distance,
number of devices and spacing

4.1.3 Evaluation Metrics

We used both classification accuracy and Mean Absolute Error
(MAE) to evaluate our performance for different tasks. For the
classification model, accuracy and a confusion matrix were used
for analysis. For the regression model, the MAE was employed as
the evaluation metric. Lower MAE refers to better performance
in the AoA estimation task.

However, the classification accuracy only indicates whether a
sample can be correctly assigned to an angle range. Since angles
are continuous numerical values, achieving high accuracy does
not necessarily imply the ability to accurately predict AoA on a
continuous scale.

4.2 Results on three single-board devices
4.2.1 Classification Performance

In the first experiment, we used the first dataset which con-
tained CSI data with 6 classes of labels. We used 80% of the data
as the training dataset and the others as the validation dataset.
From Fig. 7, it is clear that our proposed AoA estimator achieved
an accuracy of 97.67% in AoA classification.
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Fig.7 Confusion matrix of AoA classification task

4.2.2 Regression Performance

In this experiment, we used dataset 2 described previously and
evaluated the performance of our approach in regression estima-
tion. We also adjusted the distance between the receiver (i.e.,
our array of devices) and the transmitter (the mobile device). We
aimed to demonstrate that our AoA estimation is not strictly de-
pendent on distance and can achieve good performance across
different distances.

From Table 1, the experiment showed that our method achieved
4.14 degrees of MAE when the distance was 1 meter and 4.37
degrees when the distance was 2 meters. Our method achieves
similar performance across different distances, indicating that our
AoA estimation approach can perform well regardless of the dis-
tance.

Moreover, to clearly show regression performance over the
AoA ground-truth, we calculated the estimation errors at differ-
ent angles. We visualized the estimation results, where the value
at each angle in the figure represents the estimation MAE at that
angle. Points closer to the origin indicate smaller MAE and better
Ao0A estimation performance. According to Fig. 8, it is evident
that AoA estimation near 90 degrees performed better, while es-
timates for angles near the range edges were less accurate. We
hypothesized that this is due to the use of a regression-based pre-
diction model, where data influencing the edge angles are less
abundant compared to those near the center angles.

Table 1 Comparison between different distance between transmitter and re-
ceiver
Distance (m) [ Mean Absolute Error (deg) |
1 4.14
2 4.37
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Mean Absolute Error of AoA regarding the Ground Truth

Mean Absolute Error, distance = 1m
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902

420° 600
N
Ve N
Pacty S5
/ \
/ \
As0° L= 80
/ - S \
/ \
/ \
65° 115°
180> ‘ v o
MAE=10 deg MAE=5 deg MAE=5 deg MAE=10 deg

Fig. 8 MAE regarding different distance between transmitter and receiver

4.3 Results on different number of SISO devices and spac-
ing
4.3.1 Comparison of different number of SISO devices

In this experiment, we demonstrated that forming an array with
multiple SISO devices achieved better AoA prediction perfor-
mance, thereby validating the effectiveness of our approach.

To ensure a fair comparison, we varied only the number of de-
vices while keeping the distance between the receiver and trans-
mitter unchanged, maintaining the same experimental setup, data
volume, and the spacings between devices.

From the experiment results in Table 2, we achieved 6.84 de-
grees of MAE when using only 1 SISO device, 5.22 degrees when
using 2 of them, and 4.14 degrees when 3 SISO devices were
aligned into an array, as we proposed. We visualized the result
in Fig. 9. It is evident that under the same setup, more devices
in the array resulted in better AoA prediction performance. This
demonstrates that our proposed array of single-antenna devices
can effectively enhance the performance of AoA estimation us-
ing CSI amplitude.

Table 2 Comparison between different number of devices

Device setting [ Mean Absolute Error (deg) |

1-Raspberry Pi 6.84
2-Raspberry Pi 5.22
3-Raspberry Pi 4.14

Mean Absolute Error of AoA regarding the Ground Truth

Mean Absolute Error, # of devices = 3
Mean Absolute Error, # of devices = 2
Mean Absolute Error, # of devices = 1

A50° \3\0°
/ \
/
165 Mse
|
: \
|
4808 = -
MAE=10 deg MAE=5 deg MAE=5 deg MAE=10 deg

Fig. 9 MAE regarding different number of devices
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4.3.2 Comparison of different spacing between devices

In this experiment, we used different spacing between each re-
ceiving device and evaluated the performance in AoA estimation.
Generally, for AoA estimation methods based on CSI phase, ad-
justing the antenna spacing can help achieve better phase differ-
ences, with a commonly recommended spacing of half the wave-
length. For 5GHz wireless signals, this distance is approximately
3cm. We aimed to verify whether this assumption still holds true
for our amplitude-based approach.

We attempted to shorten the device spacing to 2cm, which is
almost the shortest distance we could consider due to the thick-
ness of the Raspberry Pi boards. However, the result in Table 3
shows that the MAE of 2cm spacing setting is only 6.51 degrees,
which is worse than the result of the 4cm setting. As shown in
Fig. 10, we observed that compared to a 4cm spacing, the new
setup resulted in weaker estimation performance almost in all the
ground-truth AoA labels. This might be due to the short spacing
causing onboard antennas to be obstructed by other Raspberry Pi
boards, leading to unwanted reflections, or because shorter dis-
tances are less conducive to extracting spatial information from
amplitude. In fact, when using only amplitude, the phase infor-
mation carried in the complex values of CSI is ignored, rendering
the previous assumptions about device spacing inapplicable.

As part of future research, we will attempt to acquire more ef-
fective phase information or conduct experiments using external
antennas. At that time, we will further explore and discuss the
impact of device spacing.

Table 3 Comparison between different device spacing

Device spacing (cm) [ Mean Absolute Error (deg) |
4 4.14
2 6.51

Mean Absolute Error of AoA regarding the Ground Truth

Mean Absolute Error, spacing = 4cm
Mean Absolute Error, spacing = 2cm

80°
MAE=10 deg

MAE=5 deg

MAE=5 deg MAE=10 deg

Fig. 10 MAE regarding different spacing between receiving devices

4.4 Discussion

AoA-based localization offers efficiency by focusing on phys-
ical information, but learning-based methods like ours and other
CSI amplitude-based approaches, face cross-domain challenges
requiring retraining in new environments, which we aim to ad-
dress by correcting phase errors.

Generally, AoA obtained using WiFi is often used for indoor
positioning. Compared to traditional techniques based on RSSI
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or CSI fingerprinting, AoA-based localization focuses on obtain-
ing physical information rather than more abstract signal features.
This approach eliminates the need to collect fingerprint data at ev-
ery location, thereby improving the efficiency of data collection
for localization systems. Notably, using the 2D-MUSIC algo-
rithm to classify signals does not require additional training data.

Since our method relies on learning-based AoA estimation,
we must collect data across multiple angles, which increases the
complexity of its application. At the same time, we did not ad-
dress the cross-domain issue of the same model, which could re-
sult in a trained model being applicable to only one specific envi-
ronment, making it less suitable for building a robust system.

It is worth noting that other proposed methods based on CSI
amplitude also face the same issue, requiring retraining in differ-
ent environments. We believe this problem is not unique to our
proposal but rather caused by the inherent complexity of CSI sig-
nals. In the future, we will focus on how to correct phase errors in
devices or explore ways to adapt a pre-trained model to different
environments.

5. Conclusion

This study proposed a novel method utilizing an array of
single-board Single Input Single Output (SISO) devices to ex-
tract Channel State Information (CSI) amplitude information for
Angle of Arrival (AoA) prediction. This approach addresses the
limitations of previous AoA estimation studies that relied on tra-
ditional MIMO capable devices, which are challenging to obtain
in the market and difficult to scale. A frame header-based match-
ing technique is proposed to align CSI data from the same frame
received by different devices and adopted a learning-based ap-
proach to use the combined CSI from multiple devices as input to
achieve AoA estimation results.

Multiple experiments demonstrated that our method achieved
good AoA estimation performance with 4.14 degrees error in the
optimal setting. We also tested various device configurations, in-
cluding the impact of different numbers of devices, device spac-
ing, and the distance between the receiver and transmitter. In the
future, it is expected that this method can serve as a foundational
implementation for studies aiming to extract AoA information
from wireless data packets, offering not only easily accessible
devices but also reliable estimation performance.
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